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Spin texture in a bilayer high-temperature cuprate superconductor
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We investigate the possibility of spin texture in the bilayer cuprate superconductor Bi,Sr,CaCu,QOg,5 using
cluster dynamical mean-field theory. The one-band Hubbard model with a small interlayer hopping and a Rashba
spin-orbit coupling is used to describe the material. The d-wave order parameter is not much affected by the
presence of the Rashba coupling, but a small triplet component appears. We find a spin texture circulating in the
same direction around k = (0, 0) and k = (77, ) and stable against the superconducting phase. We predict that
the amplitude of the spin structure is strongly affected by the pseudogap phenomenon, more so than the spectral

function itself.
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While electron-electron interactions are a key ingredient in
the study of quantum materials, the presence of a spin-orbit
coupling (SOC) is the source of new emergent phenom-
ena, especially in heavy transition metal compounds [1]. The
SOC is a key ingredient of the topological states of matter
[2,3]. The interplay or competition between SOC and electron
correlations is relevant in systems like the heavy fermion
superlattices [4], iridium oxides [5], and optical lattices [6],
in which exotic phases are expected. Within the Rashba-
Hubbard model, a mixed singlet-triplet superconducting state
[7-15], novel magnetism [16,17], and nontrivial topological
properties [12,18-20] are theoretically predicted.

The SOC also manifests itself in a globally centrosymmet-
ric crystal, which contains subunits in which the inversion
symmetry is broken locally [21-24], i.e., a locally noncen-
trosymmetric crystal. The bilayer SOC system is a typical
example, in which the SOCs on two nonequivalent layers
have opposite signs, such as the CeColns/YbColns hybrid
structure [25], SrPtAs [23,26], and bilayer transition metal
dichalcogenides [27,28]. The absence of local inversion sym-
metry in the bilayer system can lead to a “hidden” spin
polarization [24,29], nontrivial topological states [30-32], and
unconventional superconductivity [23,28,33].

Recent spin- and angle-resolved photoemission spec-
troscopy (SARPES) experiments have shown that, in one of
the most studied cuprate superconductors Bi;Sr,CaCu,Og. s
(Bi2212), a striking spin texture develops in the Brillouin
zone with spin-momentum locking [34]. The observed spin
texture is consistent with the prediction of a bilayer model
with opposite Rashba SOC on the two CuO layers of the unit
cell. This has motivated new studies focusing on the hidden
SOC in high-T, cuprates [35-37]. However, correlation effects
and a possible competition between the spin texture and the
d-wave superconductivity have not been fully considered so
far. In this paper, we will address these important issues in
a fully dynamical study employing cluster dynamical mean-
field theory (CDMFT).
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Model. To describe the locally noncentrosymmetric bilayer
high-T, cuprate, we use the following tight-binding bilayer
Rashba model [34-36,38]:

H = Hyin + Hsoc + H1 + Hy. (1)

The noninteracting part includes three terms,

Hin = Y e(K)Clo s )
Lk,o
Hsoc = Z higk - 0% €l e 3
1.k,0,0’
H = Zu(k)(cjlwcmr +H.o) )
k,o

where ¢jo (c;ka) is the annihilation (creation) opera-
tor of an electron on the Ith layer (I =1,2) with
spin 0 =1, ] and wave-vector k. The dispersion rela-
tion on a square lattice is e(k) = —2f(cos k, + cosk,) +
4t" cos ky cos ky, — 2t"(cos 2k, + cos 2k,) — p, in which the
hopping terms up to third-nearest neighbor (¢, ¢/, and
t") and the chemical potential p are included. The gy =
(—sink,, sin k., 0) defines the antisymmetric SOC of Rashba
type and o is the vector of Pauli matrices. Due to the global
inversion symmetry, the SOC in layers 1 and 2 are opposite in
sign: A; = —A,. The interlayer hopping is ¢, (K) = t,(cosk, —
cos k),)z, which causes the bilayer splitting in high-7, cuprate.
For Bi2212, the nearest-neighbor hopping is t = 360 meV
[39,40]. In the remainder of this paper, we set t = 1 as the
energy unit and choose the other tight-binding parameters to
be t' = —0.3, t” = 0.1, and ¢, = 0.08 [40]. Finally, we set
A = —Ay; =0.06and ,; = —A, = 0.12 in two series of com-
putations in order to assess the effect of that parameter. Note
that the Rashba coupling is limited to nearest-neighbor sites,
whereas hopping has longer-range components, in accordance
with Refs [35-37].
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FIG. 1. The cluster-bath systems used in our implementation of
ED-CDMFT. (a) Position of the two clusters forming the supercell
in 3D. (b) The cluster (blue) and bath (red) orbitals, with the various
bath parameters used in this study. See text for details.

The interacting part of Hamiltonian reads

Hy =U Zm,z,ﬂh,z,w (5)

r,/

in which n,; , is the number of electrons of spin o at lattice
site r of layer /. Only on-site interactions are considered.

CDMFT. In order to reveal the spin texture arising in model
(1), we use CDMFT [41-44] with an exact diagonalization
solver at zero temperature (or ED-CDMFT). In this approach,
the infinite lattice is tiled into identical units (or supercells)
defining a superlattice. The supercell is made of one or more
clusters, each of which is coupled to a bath of uncorrelated,
auxiliary orbitals. The parameters describing this bath (energy
levels, hybridization, etc.) are then found by imposing a self-
consistency condition.

In this work the supercell is made of two superimposed,
four-site plaquettes (one per layer), each of which coupled to
a bath of eight uncorrelated orbitals. The cluster-bath system,
or impurity model, is illustrated on Fig. 1 and defined by the
following Anderson impurity model (AIM):

Himp = He + Y 0ua(cha, + He) + ) eapala,,  (6)

7N aff

where H, is the Hamiltonian (1), but restricted to a single
cluster, and ¢, and a, destroy electrons on the cluster sites
and the bath orbitals, respectively. Probing superconductivity
forces us to use the Nambu formalism, in which each de-
gree of freedom is occurring in particle and hole form in a
multiplet. Thus, the index u is a composite index comprising
cluster site i, spin, and Nambu indices: ¢; = (ciT, Cips cl.'T, CL)-
This index takes 4 x 4 = 16 values in the particular AIM
that we use. Likewise, the index « comprises bath orbital
index r, spin, and Nambu indices and takes 4 x 8 = 32 val-
ues: a, = (arT, a,,, a%, aii). 0, 18 a complex-valued, 16 x
32 hybridization matrix between cluster and bath orbitals,
whereas €, is a 32 x 32 matrix of one-body terms within the
bath, including possible superconducting pairing. In principle,
the matrix €,p could be diagonalized (this would change the
values of the hybridizations 6, ), but we find it convenient and
intuitive to allow pairing operators between bath orbitals.

The bath parameters are assumed to be spin independent,
since we are not looking for magnetic ordering. In order to
probe superconductivity, we include singlet and triplet pairing
operators within the bath. Given two bath orbitals labeled by
r and s, the following pairing operators are defined:

~

Ay = arypdg| — g Ary

(singlet) (7)
dy) = appasy — aray,

dY) = i(asag + aryay)) (triplet)  (8)

dY = (aras, + arjas)

In terms of the bath orbital numbering scheme defined on
Fig. 1(b), the pairing terms in H;p, are

At(An+ Ay — Az — Ayy)
+ Ao(Asg + Ags — Asy — Ags)
+ipaldiy +d5) ]+ ipn[dy + 3}
b ipald) + 3] +ipaldy + dF] + He.  ©)

These terms are included in the one-body matrix €,g.

The AIM is characterized by 10 variational parameters,
all illustrated in Fig. 1(b): Bath energy levels €;» (diagonal
elements of €,p), hybridization amplitudes 0, », singlet pair-
ing amplitudes A ,, and triplet pairing amplitudes py, pi2,
Py1> Py2. It turns out that, owing to the rather small value of
A12 in Eq. (3), the triplet bath parameters are too small to
have an observable effect and can be neglected. This reduces
the number of independent bath parameters to six. The two
clusters forming the supercell also happen to have the same
bath parameter values in the converged solutions, which is
expected from symmetry.

For a given set of bath parameters, the AIM (6) may be
solved and the electron Green function computed. The latter
may be expressed as

G(w) ' =0 —t. — T (0) — Tc(w), (10)

where t, is the one-body matrix in the cluster part of the im-
purity Hamiltonian Hipp, (@) is the associated self-energy,
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and I'.(w) is the bath hybridization matrix:
1 Il
I (w)=0—0", (11)
w—€

where 6 is the 16 x 32 matrix with components 6,,, and €
is the 32 x 32 matrix with components €,g. Equation (10)
allows us to extract the cluster self-energy X .(w) from com-
puted quantities. The fundamental approximation of CDMFT
is to replace the full self-energy of the problem with the local
self-energy X. More precisely, when the supercell contains
more than one cluster, as is the case here, the supercell self-
energy is the direct sum of the self-energies of the different
clusters: X(w) = P, Zc(w). The lattice Green function is
then approximated as

1

Gk, w) = —
o — t(k) — T(w),

12)

where k is a wave vector of the reduced Brillouin zone
(associated with the superlattice) and t(k) is the one-body
Hamiltonian (2)—(4) expressed in that mixed basis of reduced
wave vectors and supercell orbitals. In our system, the ma-
trix G(l~(, ) has dimension 2 x 16 = 32, because of the two
clusters forming the supercell.

Let us finally summarize the self-consistent procedure used
to set the bath parameters, as proposed initially in [45]: (i)
Trial values of the bath parameters are chosen on the first
iteration. (ii) For each iteration, the AIM (6) is solved, i.e.,
the cluster Green functions G.(w) are computed using the
Lanczos method, for each cluster. (iii) The bath parameters
are updated, by minimizing the distance function:

d(e,0) =) W(io)[Ge(iwy) " = Gelimy) "1, (13)

C,wy

where G.(w) is_the restriction to cluster ¢ of the projected
Green function G, defined as

G @k G(k 14
(w)—f(zn)2 (k, ). (14)
(iv) We go back to step (ii) and iterate until the bath param-
eters or the bath hybridization functions I'.(@) stop varying
within some preset tolerance.

Ideally, G.(w) should coincide with the impurity Green
function G.(w), but the finite number of bath parameters does
not allow for this correspondence at all frequencies. This is
why a distance function d (e, 6) is defined, with emphasis on
low frequencies along the imaginary axis. The weight function
W (iw,) is where the method has some arbitrariness; in this
work, W (iw,) is taken to be a constant for all Matsubara
frequencies lower than a cutoff w. = 2¢, with a fictitious
temperature 8! = ¢/50. Converged values of the bath param-
eters depend weakly on this choice of w. and g (see Ref. [46]
on this issue).

The lattice Green function (12) can be used to compute
the average of any one-body operator defined on the lattice.
In addition, we can go back to a fully wave-vector-dependent
representation G(k, w), where k now belongs to the original
Brillouin zone and G is a smaller, 8 x 8 matrix, by a procedure
called periodization. The simplest periodization scheme is to
Fourier transform G directly from the supercell to the original
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FIG. 2. d-Wave superconducting order parameter as a function
of doping for U = 8, in the single-layer model (open circles) and the
bilayer model with SOC (squares) for two values of A. The triplet
component in the bilayer case (open diamonds) is roughly 50 to 100
times smaller, depending on A.

Brillouin zone, as follows [47]:

1 e
Gijk, ) = = 3 e Gk, @), (15)

oy

where i, j are composite spin, Nambu and layer indices, and
the difference between k and k is an element K of the recip-
rocal superlattice: k = k + K. Note that G(k, w) = G(k, »)
since G is by construction a periodic function of the reduced
Brillouin zone.

Results and discussion. Figure 2 shows the d-wave order
parameter, computed from the Green function (12), as a func-
tion of hole doping for U = 8. This is the ground state average
of the following operator:

szfyz = CrrCr4x,} — Cr,|Cr4x,t — Cr,4Crty,|
+ cr, | Cryy,+ +Hec. (16)

where x and y denote the nearest-neighbor vectors on the
square lattice. The blue curve is obtained in a single-layer
model, without SOC. The squares are obtained in the current
bilayer model, for two values of 1, », and differ very little from
the single layer values, because of the small value of both 7,
and X ». The open diamonds are the average of the following
triplet operator:

c?;y) = Cr,4Crtx,t T CryCrix, | + Hee. a7

Note the factor of 50 in the scale. Doubling the SOC A, , dou-
bles the triplet component of the order parameter. A similar
operator defined along the y axis with the x component of
the triplet d-vector has equal expectation values. Such a small
triplet component is unlikely to be measurable; in principle, it
would lead to a small, nonzero NMR Knight shift as T — 0,
but this small shift would compete with other effects (a con-
tribution from quasiparticles, small chemical shifts, etc.).
Physical quantities computed from this approach are of
course subject to finite-size effects, the 4-site cluster used
here being minimal. We should, therefore, focus not on the
absolute value of these quantities but on their dependence
on various external parameters, such as doping. The apparent
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(a) w=0.7,n=0.74

u=14,n=0.84

FIG. 3. Spectral function and spin textures for U = 8, X, =
40.06 and three values of electron density n. The left panels (a,
¢, e) show a color plot of the spectral function at the Fermi level
within the Brillouin zone. The noninteracting Fermi surfaces for the
same dopings are shown as a gray-dashed line. The right panels (b,
d, f) show the spin texture: The color plot is the magnitude of the
transverse vector S (k) = [S,(k, 0), S,(k, 0)] and the diluted set of
arrows indicates its direction. The color scale is the same for all
three densities (blue is lowest; red is highest). Note that the four-dot
structure at n = 0.95 is an artifact of the cluster method, as explained
in Ref. [48]; only the dot touching the noninteracting Fermi surface
is significant; the other three are “harmonics.”

jump in the singlet order parameter on the overdoped side
of the superconducting dome is a feature commonly seen in
CDMEFT computations [49] that seems to depend on the bath
parametrization and interaction U; in any case, we do not
regard it as a robust feature of the model.

The periodized Green function (15) gives us access to
quantities observable by SARPES, such as the spectral func-
tion:

Ak, w) = —ImTry[G(k, w)], (18)

where Try means a trace over spin and layer indices
that excludes the Nambu sector. One can also extract spin
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FIG. 4. Maximum value of the spectral function A(k, 0) (blue
symbols) and of the spin texture |S, (k)| (red symbols) over the
Brillouin zone, for layer 1, as a function of doping, normalized to
the same quantities at the last value of doping computed (x = 0.26),
for two values of A; ,: Filled symbols are for |1, | = 0.06 and open
symbols are for |1, ;| = 0.12. The drop as doping x — 0 shows that
the spin texture is more suppressed by the pseudogap physics than
the spectral weight itself. This relative drop is not affected by the
value of A1 5.

information by projecting the Green function G on various
spin directions. We thus define the following spin spectral
functions:

Si(k, w) = —ImTry[o,G(k, ®)] (a=x,y,2). 19)

One can also define the corresponding layer-resolved quanti-
ties.

Figure 3 shows the spin texture measured in three of the
superconducting solutions obtained, for three different values
of density n (underdoped, optimally doped, and overdoped),
on the first layer. The left panel shows a color plot of the spec-
tral function (18) at the Fermi level (the noninteracting Fermi
surface is indicated by a dashed line). The right panel shows
the magnitude of the projection on the x-y plane of the spin
spectral function (19), on which we superimposed a (diluted)
vector plot indicating the direction of the spin in the x-y plane,
as given by the vector S, (k) = [S(k, 0), S,(k, 0)]. On this
plot the arrows only provide a direction, not a magnitude. The
color scale is the same for all three values of electron density
in the figure. The structure of the spin texture is similar for
all three cases illustrated: it is made of a clockwise rotating
pattern around k = (0, 0) and around k = (7, ) on the first
layer. The corresponding quantities on the second layer are
obtained simply by reversing the arrows.

As expected, the amplitude of the spin texture is maximal
in the vicinity of the noninteracting Fermi surface, with the
important proviso that the pseudogap phenomenon suppresses
the spectral weight (and the amplitude of the spin texture)
away from the diagonals as we go in the underdoped regime.
Exactly on the Fermi surface, at least near the diagonals, the
spin texture vanishes as it must change direction, leading to
split maxima along the diagonals on the right panels of Fig. 3.
Figure 4 shows the drop of the spectral weight (indeed its
maximum value over the Brillouin zone at the Fermi level)
as doping x decreases (blue symbols). This suppression is
even more pronounced for the maximum value of |S;| (red
symbols).
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Overall, the known physics of the two-dimensional, one-
band Hubbard model is not affected by the presence of the
SOC between the two layers or by the interlayer coupling.
The d-wave order parameter (Fig. 2) is not affected in any
visible way and the triplet component of the order parameter is
two orders of magnitude smaller than the singlet component.
The SOC and the associated spin texture do not interfere with
the pseudogap physics illustrated by the concentration of the
spectral weight along the diagonal as one gets closer to half-
filling. The SOC is too small to make the system topological
[30], and we checked that the Chern number, computed by
adding the real part of the zero-frequency self-energy to the

noninteracting Hamiltonian [50,51], is indeed zero in all the
cases studied. The amplitude of the spin texture, however, is
more suppressed in the underdoped region than the spectral
function is (roughly twice as much). This is the main predic-
tion of our work.
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