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Orbital order drives magnetic order in 5d1 and 5d2 double perovskite Mott insulators
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We derive spin-orbital Hamiltonians for cubic double perovskite A2MM ′O6 Mott insulators with 5d1 or 5d2

magnetic M ′ ions and nonmagnetic M ions. We find that with strong spin-orbit coupling, exchange and intersite
Coulomb repulsion lead to orbital order at a temperature To higher than the magnetic Tc. Orbital order produces
a T -dependent moment below To and stabilizes canted ferromagnetic (FM) and noncollinear antiferromagnetic
(AFM) states below Tc. We explain many experimental puzzles including loss of entropy above Tc, deviations
from a Curie-Weiss susceptibility, a negative Curie-Weiss intercept for FM systems, and why FM order is
common in cubic 5d1 materials but all 5d2 systems are AFM.
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I. INTRODUCTION

The interplay between spin-orbit coupling (SOC) and
strong correlations has provided a new platform to study
exotic phases of matter, including quantum spin liquids and
topological semimetals [1,2]. It is thus important to better
understand the nature of orbital and magnetic interactions and
the resulting broken symmetries, or lack thereof, in 4d and
5d transition metal oxides, before understanding their topo-
logical properties. While iridiates with 5d5 configuration have
received a great deal of attention [2], other fillings realized in
oxides of Re and Os are much less studied.

We focus here on cubic double perovskites A2MM ′O6,
with magnetic M ′ ions in the 5d1 or 5d2 configuration and
nonmagnetic M. These materials are Mott insulators as large
separation between M ′ ions on the fcc lattice leads to a small
bandwidth relative to the on-site Coulomb repulsion. As we
shall see, in the presence of strong SOC, exchange and in-
tersite Coulomb repulsion lead to an unusual orbital ordering
onset at a high temperature, which strongly constrains the
magnetic interactions and the nature of the magnetic ordering.

II. PUZZLES

Our work is motivated by the following puzzles:
(1) Why is there a predominance of ferromagnetic (FM)

order in cubic 5d1 double perovskites, but no known ex-
amples of ferromagnetism in 5d2 double perovskites? For
instance, the 5d2 compounds Ca3OsO6 [3], Ba2CaOsO6 [4],
and Sr2MgOsO6 [5,6] all exhibit antiferromagnetic (AFM)
order. Many 5d1 (undistorted) cubic systems, such as
Ba2NaOsO6 [7], Ba2ZnReO6 [8], and Ba2MgReO6 [8] are
FM, with the possible exception of Ba2LiOsO6 [7] which is
cubic and AFM.

(2) In 5d1 materials, the single electron in the t2g orbitals
is in a j =3/2 state with four degenerate levels. Why then is
the entropy recovered across the magnetic transitions in cubic
compounds, e.g., Ba2NaOsO6 [9] and Ba2MgReO6 [8], only
R ln 2 and not R ln 4?

(3) There are several puzzling features in the mag-
netic susceptibility χ of 5d1 materials above Tc, which
are not understood. First, its high temperature behavior de-
viates strongly from the Curie-Weiss (CW) form χ (T ) =
μ2

eff/[3kB(T − �)] in some materials [8]. Second, when the
CW form does fit the data over a temperature range, the
extracted � < 0, characteristic of AFM interactions, even
though χ (T ) diverges at Tc > 0 below which FM order
develops; e.g., in Ba2NaOsO6 [9], Ba2MgReO6 [8], and
Ba2ZnReO6 [8].

Previous works on 5d1 or 5d2 double perovskites have used
density functional theory (DFT) [10–14] and model Hamilto-
nian approaches [15–19]. Our work builds on Refs. [15,16]
to address the finite temperature issues highlighted above
that have not been addressed earlier; we discuss below the
differences between our results and earlier works (see also
Appendix A).

III. MAIN RESULTS

We derive an effective spin-orbital Hamiltonian for double
perovskite systems and based on a mean-field analysis we find
the following:

(a) Orbital ordering occurs at To that is always higher than
the magnetic Tc independent of choice of parameters. We note
that orbital ordering in the L-S basis is essentially equivalent
to quadrupolar order in the J basis. While To is determined by
both intersite, orbital-dependent Coulomb repulsion V and su-
perexchange interactions, only the latter determines the scale
of Tc.

(b) The full recovery of entropy R ln 4 does not occur at the
magnetic Tc, but only above the orbital transition To.

(c) The onset of orbital order leads to T -dependent or-
bital occupancies, and thus a T -dependent effective moment
μeff (T ). This is the origin of the strong deviations from CW
behavior in the high T susceptibility.

(d) The orbital order determines the nature of magnetic
interactions that are frustrated on an fcc lattice. This stabi-
lizes noncollinear magnetic order. For d1 systems, a canted
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FM state dominates in the large SOC limit, though a four-
sublattice AFM state is also possible in a small parameter
regime.

(e) For d2 systems, the occupied-to-occupied AFM su-
perexchange pathways dominate over the occupied-to-empty
FM superexchange, stabilizing AFM phases.

IV. d1 SYSTEMS

We focus on the t2g orbitals of the M ′ ions. The Hamilto-
nian has four terms, the first of which describes the electronic
structure in the t2g manifold:

HTB = −t
∑

α

∑
〈i j〉∈α

∑
σ

c†
i,α,σ c j,α,σ + H.c. (1)

Here 〈i j〉 denotes nearest-neighbor (NN) M ′ sites, σ labels
spin, and the orbital index α ∈ {yz, zx, xy} also labels planes
in the fcc lattice of M ′’s, since electrons in xy orbitals hop
only in the xy plane, and similarly for other corresponding
planes. Second, the multiorbital on-site Coulomb interaction
HU = ∑

i H (i)
U , with

H (i)
U = (U − 3JH ) 1

2 Ni(Ni − 1) + JH
(

5
2 Ni − 2S2

i − 1
2 L2

i

)
,

(2)
where U is the Coulomb repulsion and JH is Hund’s
coupling [20]. Third, the unquenched t2g orbital angular mo-
mentum l =−1 results in SOC: HSO = −λ

∑
i Li · Si. Fourth,

the large spatial extent of 5d orbitals leads to intersite
Coulomb repulsion

HV = V
∑

α

∑
〈i j〉∈α

[
9

4
nα

i nα
j − 4

3

(
nβ

i − nγ

i

)(
nβ

j − nγ

j

)]
, (3)

in the electric quadrupole approximation [15]. Here the orbital
occupation nα

i = ∑
σ c†

i,α,σ ci,α,σ . The interaction depends on
the relative directionality between neighboring orbitals, e.g.,
a pair of xy orbitals in the xy plane repel each other more than
an xy and an yz orbital.

Using parameter estimates [9,10] of the hopping (between
NN M ′ sites in A2MM ′O6) t � 50–100 meV and the Coulomb
interaction U � 3 eV, we see that we are in a Mott regime
(U � t ). A strong coupling expansion of HTB + HU leads to
the superexchange (SE) Hamiltonian

HSE = −JSE

4

∑
α

∑
〈i j〉∈α

{
r1

(
3

4
+ Si · S j

)(
nα

i − nα
j

)2

+
(

1

4
− Si · S j

)[
r2

(
nα

i + nα
j

)2 + 4

3
(r3 − r2)nα

i nα
j

]}
,

(4)

where JSE = 4t2/U and the strength of Hund’s coupling is
characterized by r1 = (1 − 3η)−1, r2 = (1 − η)−1, and r3 =
(1 + 2η)−1 with [21] η = JH/U . The first line of Eq. (4)
describes FM spin interactions when one of the two orbitals
is occupied while the other is unoccupied. The second line
of (4) describes an AFM spin interaction that is maximized
when both orbitals are singly occupied. JH/U determines the
relative strength of these two interactions. Additionally, there
is an effective orbital repulsion nα

i nα
j for JH �=0.

The low-energy effective Hamiltonian is Heff = HSO +
HV + HSE, whose largest energy scale is the SOC λ∼0.4 eV
for 5d oxides [22,23]. The SE JSE ∼10 meV using t ∼
100 meV and U ∼3 eV. JH/U is known [24] to be �0.2. The
intersite repulsion V is not known reliably but could be com-
parable to or larger than SE (see Appendix C for details) [25].

We find it is useful to work in the L-S basis, rather than
projecting down to the j =3/2 subspace. This gives a more
transparent understanding of the orbital ordering (symmetry
equivalent to quadupolar ordering [15]; see Appendix A). The
j =3/2-1/2 mixing will also allow to us to understand the T -
dependent effective moment and the unusual high temperature
susceptibility.

We analyze Heff using a four-site mean-field theory (MFT)
[see Fig. 1(a)]. At each site i there are 15 mean fields
〈Si〉, 〈nα

i 〉, and 〈Sinα
i 〉, and four constraints

∑
α〈nα

i 〉=1 and∑
α〈Sinα

i 〉=〈Si〉. We solve for 4 × (15−4)=44 variables to
find the lowest-energy solution of the MFT equations (see
Appendix B).

V. ORBITAL ORDERING

At high temperatures nyz =nzx =nxy =1/3. There is an on-
set of orbital ordering, with preferential orbital occupancy [see
Fig. 1(d)], at temperature To determined by both V and JSE.
Moreover, we find that V and JSE, individually and together,
lead to the same orbital ordering pattern. Magnetic order de-
velops at a Tc determined by JSE, with Tc < To independent of
parameters [26] (see Appendix D).

Figure 1(b) shows the orbital ordering pattern. On each
site we only show the two orbitals with significant occupancy,
with the lowest occupancy orbital omitted. For the two sites in
the lower plane, these are the yz and xy orbitals; while for the
two sites in the upper plane the roles of yz and zx orbitals are
reversed.

We now discuss how orbital ordering explains the puzzles
highlighted in the Introduction.

A. Entropy

L and S add up to j =3/2 with a high temperature entropy
of R ln 4. Below To, orbital ordering splits the j =3/2 quar-
tet into two Kramers doublets, leading to an R ln 2 entropy.
The remaining spin entropy is released at Tc, consistent with
experiments [8,9].

B. Local moments

Naively, the local magnetic moment vanishes in d1 sys-
tems. The t2g orbital has effective L=−1 and S =1/2 leading
to M = 2S − L = 0. Equivalently, the projection of M to
the j =3/2 subspace is zero. The observed nonzero moment
arises from a combination of the reduction [13,14] of the or-
bital moment due to (a) covalency with oxygen, (b) dynamical
Jahn-Teller effects, and (c) orbital ordering. As we show here,
(c) also explains the strong T dependence of the local moment
not easily understood in terms of (a) and (b).

Note that full orbital polarization (nα
i = 1 for some α

and zero for others) is time-reversal invariant and does not
generate an L. However, SOC creates a superposition of or-
bitals instead of the occupancy being concentrated in a single
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FIG. 1. (a) fcc lattice with four sites used in our mean-field theory shown by four different colors. (b) Orbital ordering for d1 systems
driven by V and JSE. Orbitals with the largest (smaller) occupancy are in solid (lighter) colors; the lowest occupancy orbital is not shown.
Orbital order constrains the orientation (but not the sign) of ±L. The magnetization M = 2S − L is also shown. (c) The T =0 phase diagram:
The orbital L (solid arrows) and spin S moments (semitransparent arrows) are collinear in each plane, but rotated by �90◦ between planes, due
to the orbital ordering pattern. (d) Orbital occupancies as a function of temperature for JSE = V = λ/20 for the black and yellow sites. The nyz

orbital (red) has the largest occupancy followed by the xy orbital (blue) and then zx (green). (e) L and S moments in the four-sublattice AFM
state.

orbital. The resulting partial occupancy of at least two orbitals
as in Fig. 1(d) then allows for the development of L, point-
ing along the intersection of the two occupied planes with
direction (e.g., ±x) selected by the spin interactions charac-
terized both by JH/U and the magnitude of the orbital order
parameter.

One of our key results is that orbital order results in the
j =3/2-1/2 mixing, leading to a T -dependent moment, even
in the absence of covalency with oxygen, which has not been
recognized so far. To understand this general result, it is
useful to look at the limit JSE = 0, with Tc = 0 and orbital
order driven by V , where we can find analytical results (see
Appendix E). We find that the orbital ordering shown
in Fig. 1(b) leads to a local moment μeff (T ) =
172V |δnx(T )|μB/9λ. The orbital order parameter
δnx(T ) = 〈nyz〉 − 1

3 (for the most occupied orbital) leads
to the T dependence of μeff (T ).

C. Magnetic susceptibility

We find that orbital order impacts the susceptibility χ (T ) in
two ways. First, the reduced symmetry leads to an anisotropic
response, so that χ is enhanced in the ordering planes but
reduced in the perpendicular direction. Second, χ (T ) deviates
from CW behavior due to the T dependence of the effective
moment μeff , and has a negative � as shown in Fig. 2.

VI. MAGNETIC ORDER

Orbital ordering impacts the exchange interactions in (4)
and leads to the T =0 phase diagram in Fig. 1(c) with a

FIG. 2. Temperature dependence of the susceptibility, χ =
1
3 (χxx + χyy + χzz ), and 1/χ (T ). Hybridization with surrounding
oxygen atoms modifies the g factor M = 2S − γ L. Left panels: No
hybridization (γ = 1), so there are no local moments above To and
moments are formed only as a result of orbital order (see text). Right
panels: with hybridization γ = 0.536. We have chosen JSE = 0 [so
that Tc = 0] to illustrate the impact of orbital order below To on χ (T ).
Note that while a single CW fit cannot span the entire range below
To, the intercept from high temperatures has a negative intercept.
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FIG. 3. Orbital ordering and magnetic order for 5d2 materials. (a) The canted FM, four-sublattice AFM and AFM 100 phases share the
same orbital order as in 5d1 systems in Fig. 1, while the FM 100 phase has a different orbital order. In general, the largest (smaller) occupancy
orbitals are shown in solid (lighter) colors, and the smallest occupancy orbital is not shown. The lower right (yellow) site in the FM 100 state is
an exception, where the red orbital is almost fully occupied and two others are about half occupied. (b) T =0 phase diagrams for JH/U = 0.225
and 0.25. In regimes where the four-sublattice AFM is lowest in energy, we find that the AFM 100 state is essentially degenerate with it.
Increasing JH stabilizes the canted FM state.

canted FM state over much of the parameter regime, but
a four-sublattice AFM state favored in a small regime in
(JSE/λ,V/λ). We emphasize that while the Goodenough-
Kanamori-Anderson rules [27–29] help us understand the sign
of superexchange in Eq. (4) in terms of orbital occupancy, they
are not sufficient to determine the long-range order. We see
that the same underlying orbital order can give rise to either
FM or AFM ground states due to interplay between various
parameters.

From Fig. 1(b) we see that an electron in the highest
occupancy yz (red) orbital in the lower plane, can hop into
an essentially empty yz (red) orbital in the plane just above
or below. This occupied-empty superexchange leads to a FM
interaction in Eq. (4), resulting in a canted FM ground state,
with a net ordered moment, in which the spins are FM aligned
within each plane, but rotated by 90◦ from one plane to an-
other as dictated by the orbital ordering [see inset in Fig. 1(c)].
The four-sublattice AFM structure Fig. 1(c)] is stabilized over
a larger parameter regime for weaker JH/U (see Appendix G).
Here the spins are AFM aligned in each plane, but again
rotated by 90◦ from one plane to another.

VII. d2 SYSTEMS

In contrast to d1 systems, d2 materials are mostly AFM.
We derive the microscopic d2 Hamiltonian to understand
why adding one extra t2g electron produces a sharp change
in magnetism. The ground state of the Coulomb interaction
[Eq. (2)] for two electrons has L = 1, S = 1, which splits into
J = 0, 1, 2 multiplets, with J = 2 the lowest in the presence
of SOC. We might expect to recover R ln 5 entropy across
the magnetic transition; however, only 3.7 J/(mol K) < R ln
2 = 5.76 J/(mol K) is recovered for Ba2LuReO6 [30]. The
missing entropy hints once again at a hidden order, which
preserves time reversal, above the magnetic transition.

For the d2 system, the hopping, on-site Coulomb and in-
tersite electric-quadrupole interactions have the same form as

in the d1 case, but the SOC and the superexchange are mod-
ified. The SOC projected to the Li = 1, Si = 1 ground state
manifold for the d2 system is HSO = −λ/2

∑
i Li · Si. We can

derive the superexchange Hamiltonian for the d2 system

HSE = −JSE

12

∑
α

∑
〈i j〉∈α

{
r1(2 + Si · S j )

(
nα

i − nα
j

)2

+ (1 − Si · S j )

[(
nα

i + nα
j

)2 +
(

3

2
r3 − 5

2

)
nα

i nα
j

]}
,

(5)

where the orbital occupancy nα
i is defined in the two-electron

basis, and JSE, r1, r3 are defined below Eq. (4).
A mean-field analysis of Heff = HSO + HV + HSE for d2

systems leads to the orbital order and magnetic phases shown
in Fig. 3. A major difference from d1 is the dominance of
AFM ordering in the d2 case stabilized by the occupied-to-
occupied AFM superexchange (unless JH is made very large).
See Appendix I for details on the magnetic phases and χ (T )
of d2 systems.

VIII. RELATION TO PRIOR WORK

Our d1 SE Hamiltonian in Eq. (4) differs in small ways
from that of Ref. [15], but is identical to that of Ref. [19]
(which focuses on 4d systems and ignores electric-quadrupole
interactions). Our d2 SE Hamiltonian (5) is completely dif-
ferent from Ref. [16]. Also, our four-site MFT has greater
variational freedom than the two-site MFT of Ref. [15].
Further, Refs. [15,16] project down to the j =3/2 subspace
(infinite λ limit), while we retain the mixing with j =1/2
that leads to our T -dependent effective moment. The orbital
order that we describe is, however, symmetry equivalent to
the quadrupolar order of Refs. [15,16]. See Appendix A for a
detailed discussion.
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IX. DISCUSSION

Recent experiments [31,32] on Ba2MgReO6 give x-ray
evidence for small distortions consistent with our predicted
orbital order (see Appendix H). Their magnetic order is also
consistent with our canted FM [moments aligned in each plane
but rotated between two planes (see Fig. 1)], though their
nomenclature [31,32] ([001] canted AFM) is different. The
significant separation between To (33 K for both Mg and Zn
materials) and Tc (18 K for Mg and 11 K for Zn) [31,32]
is consistent with the need to include V in the analysis.
NMR [33] found a broken local point group symmetry in
Ba2NaOsO6 above Tc =7 K that persists up to 15 K, which
could suggest To � 15 K. However, this seems inconsistent
with the loss of entropy [8,9] persisting up to much higher
temperatures. Going forward, it would be useful to measure
orbital ordering in d1 and d2 cubic double perovskites using
techniques such as resonant x-ray scattering [34].
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APPENDIX A: COMPARISON WITH EARLIER
THEORETICAL WORKS

Our work builds on the pioneering papers of Chen
et al. [15] on d1 double perovskites, and Chen and Ba-
lents [16] on d2 materials. Before going into detail, we begin
this Appendix by summarizing the ways in which our paper
differs from—and improves upon—Refs. [15,16].

(a) The Hamiltonians differ in detail as described below.
The differences are more significant for the d2 case than d1.

(b) Our mean-field analysis uses four inequivalent sites per
unit cell, as opposed to two sites in the earlier papers, and
thus has greater variational freedom. (a) and (b) account for
the differences in the phase diagrams.

(c) We use the (L, S) basis while they use the J basis, which
allows us to retain the mixing of J = 3/2 with J = 1/2 (ig-
nored in earlier papers) and leads to the T -dependent effective
moments in the orbitally ordered state.

(d) Our orbital ordering is equivalent to the quadrupolar
ordering of Ref. [15] as discussed below.

(e) Finally, our focus is somewhat different from previous
works. In addition to the ground state magnetic phase dia-
gram, we focus on finite temperature properties such as the
loss of entropy and the non-Curie-Weiss form of the suscepti-
bility, both of which we attribute to orbital ordering.

Hamiltonians. For the d1 case, the superexchange Hamil-
tonian HSE in Eq. (4) of our paper is similar to Eqs. (13) and
(18) of Ref. [15]; however, there are small differences. Refer-
ence [15] treats the AFM and FM couplings as independent
parameters, while the superexchange scale JSE and Hund’s
coupling JH/U determine our AFM and FM couplings. From
this perspective, we may say that our Eq. (4) includes a term
missing in Ref. [15]. Rewriting the second line in Eq. (4) as
+JSE(SiS j − 1/4)[r2/4(nα

i − nα
j )2 + (2r2 + r3)/3(nα

i nα
j )] we

can see that the r2/4(nα
i − nα

j )2 piece is effectively absent in
Ref. [15].

The difference in the d2 case is more severe. The d2

Hamiltonian used in Ref. [16] had the same form as the d1

Hamiltonian of Ref. [15], except for replacing the spin and
orbital operators by operators appropriate for the d2 case. This
differs from our superexchange Hamiltonian in Eq. (5), which
we derived using a strong coupling expansion for the d2 case.
It is evident that our d2 Hamiltonian in Eq. (5) does not have
the same form as our d1 Hamiltonian in Eq. (4).

A recent work [19] focused on the spin-dimer phase in 4d1

materials. They used the same d1 superexchange Hamiltonian
as our Eq. (4); however, they did not take into account the
electric quadrupole-quadrupole interaction term of Eq. (3),
which may be justified for 4d materials since the spatial extent
of the orbitals is smaller than in the 5d case of interest that
we focus on. We also note that the dimer phase found in
Ref. [19] is stabilized for parameter values (small η = JH/U
and intermediate SOC) relevant for the 4d1 materials.

Two-site vs four-site mean-field theory. Reference [15] con-
sidered a “two-site ansatz” in their d1 MFT, while we analyze
a more general MFT that allows for four inequivalent sites,
which impacts the phase diagram. For instance, using a four-
site MFT enables us to find an AFM four-sublattice ground
state, as compared to the AFM 100 phase in Ref. [15] (which
is not a stable solution in our MFT). Our canted FM ground
state is similar to the FM 110 phase in [15]; both are in fact
two sublattice structures. Details of the MFT are described in
Appendix B.

J = 3/2, 1/2 mixing. We choose to work in the full t2g ⊗ σ

basis or L ⊗ S basis, which is equivalent to working in the J
basis used in Refs. [15,16]. The equivalence is detailed below
for convenience, and this also shows the equivalence between
orbital ordering in the LS basis and quadrupolar ordering in
the J basis.

The key difference is that the authors of Refs. [15,16]
project into the total angular momentum J = 3/2 states, ef-
fectively taking the SOC λ → ∞, while we do not take this
limit. It is important to ask why we need to retain the mixing
between the J = 3/2 and 1/2 states, separated by an energy
of 3λ/2, or equivalently keep keep the full t2g ⊗ σ manifold
for 5d materials where SOC is large? As shown in the main
text, and elaborated on here, this mixing is responsible for the
effectively T -dependent magnetic moment below the orbital
ordering temperature, and the resulting non-Curie Weiss form
of the magnetic susceptibility.

As already noted in the main text, there is no magnetic
moment for a transition metal ion with one electron in the
t2g sector M = 2S − L = 0, in the limit where we ignore the
hybridization of the transition metal (TM) d orbitals with the
p orbitals of neighboring oxygen ligands. Including the latter
effect [see, e.g., Eqs. (8)–(12) in Ref. [15] leads to a small
nonzero magnetic moment, but cannot explain the observed
non-Curie Weiss behavior of the susceptibility χ (T ) above the
magnetic ordering temperature.

Our analysis explains this behavior of χ (T ) by relating
the effective local moment to the T -dependent orbital occu-
pancy below the orbital ordering temperature. As detailed in
Appendix E, this involves the mixing between the low-energy
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J = 3/2 manifold (L parallel to S) and J = 1/2 subspace (L
antiparallel to S). Physically, this mixing leads to a small
misalignment between the spin and orbital angular momenta,
which contributes to a nonzero magnetic moment (see Fig. 1).
This reveals how T -dependent nonzero magnetic moments
can arise, even in the limit where we ignore the hybridization-
led (T -independent) contribution to the moment. In the main
text, we show in Fig. 2 the susceptibilities including both the
contribution of the T -dependent moments arising from orbital
order and that of the hybridization with oxygen.

LS and J-basis operators. Here we summarize, for con-
venience, the relationship between the spin and orbital
occupancy operators that we use, and the dipole J, quadrupole
O, and octupole T operators used in Refs. [15,16].

The transformation process involves two steps: (i) a uni-
tary transformation from the L ⊗ S basis to the total angular
momentum J basis, and (ii) projecting out the high-energy
J = 1/2 subspace, and focusing on the J = 3/2 manifold. We
find

�S → 1
3
�J, �L → 2

3
�J. (A1)

To write down the orbital occupancies in terms of the Ji’s, we
need to define the quadrupole operators

O3z2−r2 = J2
z − 1

2

(
J2

x + J2
y

)
, Ox2−y2 =

√
3

2

(
J2

x − J2
y

)
.

(A2)
Using these definitions, one can write

nyz/zx → 1

3
+ 1

9
Oz2 ∓ 1

3
√

3
Ox2−y2 , nxy → 1

3
− 2

9
Oz2 .

(A3)
From here we see clearly that the orbital order that we discuss
in the main text is equivalent to “quadrupolar order,” which
does not break time-reversal invariance.

Finally, to write the operators Sanα , we need to define the
octupole operators

T α
x = J3

x − 1

2

(
JxJ2

y + J2
z Jx

)
, T β

x =
√

15

6

(
JxJ2

y − J2
z Jx

)
,

(A4)
where we use the overbar to denote symmetrization of the
operators: AB2 = ABB + BAB + BBA. We can then write

Sxnyz → 1

15
Jx − 2

15
T α

x ,

Sxnzx → 2

15
Jx + 1

15
T α

x − 1

3
√

15
T β

x ,

Sxnxy → 2

15
Jx + 1

15
T α

x + 1

3
√

15
T β

x . (A5)

APPENDIX B: MEAN-FIELD THEORY

We solve the low-energy Hamiltonian Heff = HSE + HV +
HSO (defined in the main text) within mean-field theory. We
choose a conventional unit cell of the fcc lattice with four
TM ion sites, each with 12 NN. The intersite interactions
separate into three inequivalent groups depending on whether
the NN sites lie on yz, zx, or xy planes. These terms are fac-
torized as ÔiÔ j ≈ 〈Ôi〉 Ô j + Ôi 〈Ô j〉 − 〈Ôi〉 〈Ô j〉, where the
expectation values 〈Oi〉 are the “mean fields.” Specifically, we

factorize the superexchange HSE and quadrupole interactions
HV using

Sa
i Sa

j n
α
i nα

j ≈ Sa
i nα

i

〈
Sa

j n
α
j

〉 + 〈
Sa

i nα
i

〉
Sa

j n
α
j − 〈

Sa
i nα

i

〉 〈
Sa

j n
α
j

〉
,

Sa
i Sa

j n
α
i ≈ Sa

i nα
i

〈
Sa

j

〉 + 〈
Sa

i nα
i

〉
Sa

j − 〈
Sa

i nα
i

〉 〈
Sa

j

〉
,

nα
i nβ

j ≈ nα
i

〈
nβ

j

〉 + 〈
nα

i

〉
nβ

j − 〈
nα

i

〉 〈
nβ

j

〉
. (B1)

The spin-orbit interaction HSO contains only on-site terms and
does not need mean-field decomposition.

At each site, we have a total of 15 mean fields: 3 〈Sa
i 〉

(a = x, y, z), 3 〈nα
i 〉 (α = xy, yz, zx), and 9 〈Sa

i nα
i 〉. There are

four constraints at each site
∑

α nα
i = 1 (for the d1 case and

2 for d1) and
∑

α Sa
i nα

i = Sa
i . Hence there are (15 − 4) = 11

independent variables at each site and a total of (11 × 4) = 44
“mean fields” in our four-site unit cell.

The resulting mean-field Hamiltonian is a sum of single-
site terms which depend on the mean fields 〈Oi〉 that need to
be determined self-consistently. We use an iterative, numeri-
cal procedure to solve this problem self-consistently. Starting
with an initial guess for the (input) mean fields, we solve
for the eigenvalues and eigenvectors of the single-site Hamil-
tonian, using which we compute the expectation values that
define the (output) mean fields. The procedure is iterated until
the input and output mean fields converge. To improve the
rate of convergence, we find it useful to mix the output values
with some fraction of the inputs from the previous iteration.
The ground state magnetic phase diagram is determined by
finding the lowest-energy solution for each set of couplings
JH , JSE,V, λ.

APPENDIX C: PARAMETER ESTIMATES

The parameters of the multiorbital Hamiltonian for dou-
ble perovskites are as follows: hopping t between orbitals
on nearest-neighbor sites, the on-site Coulomb repulsion
U , the spin-orbit coupling λ, the Hund’s coupling JH ,
and the nearest-neighbor electric quadrupole-quadrupole
interaction V .

Reference [9] estimates the hopping parameter t ≈
50–100 meV based on the overlap integral between two sites
and U = 3.3 eV from the Coulomb integrals of the effective
charge distribution on a site. Further, Ref. [10] obtains the
electronic structure using DFT (within the generalized gra-
dient approximation and including SOC and U ) and provide
an estimate for the t2g bandwidth W ≈ 1 eV and U ≈ 3 eV.
Since the bandwidth W = 2zt , where z = 12 is the number of
neighbors, we obtain the estimate t ≈ 42 meV which is con-
sistent with Ref. [9]. In our calculations we use t ≈ 50 meV
and U = 3 eV, and using these values we estimate the su-
perexchange energy scale JSE = 4t2/U ≈ 3.3 meV.

The analysis in Refs. [24,35] based on random-phase
approximation, estimates the Hund’s coupling to be JH ≈
0.5 eV. More recently, the values of JH and spin-orbit cou-
pling λ have been deduced from resonant inelastic x-ray
scattering [22,23]. JH depends on the d count and the row the
transition metal ion is in. For 5d transition metal compounds,
JH ≈ 0.23–0.275 eV and λ ≈ 0.34–0.425 eV.

Finally we turn to V , the strength of the electric
quadrupole-quadrupole interaction, which is the least known
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of the parameters entering our Hamiltonian. Arita [25] has
estimated it to be 10 meV from DFT, which is comparable to
superexchange. We give here a very crude estimate that gives
some physical insight, but given the uncertainty in its value,
we discuss in Appendix D the extent to which our results
depend on the value of V relative to the superexchange.

The t2g orbitals carry quadrupole moments and their inter-
site repulsion can be large because of the large spatial extent of
the 5d orbitals [15]. The traceless electric quadrupole tensors
for the xy, yz, zx orbitals (superscripts) in the Cartesian basis
with subscripts i and j taking values {x, y, z} are given by

Q(xy)
i j =

⎡
⎣Q 0 0

0 Q 0
0 0 −2Q

⎤
⎦, Q(yz)

i j =
⎡
⎣−2Q 0 0

0 Q 0
0 0 Q

⎤
⎦,

Q(zx)
i j =

⎡
⎣Q 0 0

0 −2Q 0
0 0 Q

⎤
⎦. (C1)

The magnitude of the quadrupole moment

Q =
∫

|ψ (xy)(�r)|2(3x2 − r2)d3�r

=
∫

|ψ (xy)(�r)|2(3y2 − r2)d3�r

= −1

2

∫
|ψ (xy)(�r)|2(3z2 − r2)d3�r (C2)

is obtained from the charge distribution of the 5d ionic wave
function.

To estimate the electric-quadrupole moment Q, we model
the t2g “ionic” wave function ψ (xy)(�r) as the product of
an “angular” wave function Yxy = √

60/16π (xy/r2) with the
n = 5, l = 2 radial wave function in a Coulomb potential
−Zeffe2/r. We thus obtain Q = βea2

0/Z2
eff with β = 385.7 and

Bohr radius a0 = 5.3 × 10−11 m.
Next we find V using the electrostatic energy [15] V =

ke9
√

2Q2/a5, where a is the lattice constant of the double
perovskite fcc lattice. Note a = √

2, where  is the distance
between neighboring B′ atoms. For the 5d BaNaOsO6 com-
pound  = 5.8 Å. We use the dielectric constant ke = 1

4πε0
=

14.4 eV Å/e2; since this is “short distance physics” we do not
use the macroscopic ε. Using quadrupole moment Q derived
above we find that V � 60/Z4

eff eV.

An equivalent way to understand this estimate of the elec-
tric quadrupole interaction is to say that, on dimensional
grounds, Q = eR2 where the length scale R = γ a0 with γ

a dimensionless parameter of order unity. Again, using V =
ke9

√
2Q2/a5, we find that V � 0.4γ 4 meV. This shows that

small errors in estimating the “size” of the orbital wave func-
tion γ will lead to a large error in the estimate of V .

APPENDIX D: ORBITAL ORDERING To AND SPIN
ORDERING Tc: ROLE OF V AND JSE

We saw in Appendix C that the electric quadrupole in-
teraction energy scale V could well be comparable to the
superexchange scale JSE. However, given the uncertainty in
the estimation of V , we would like to make sure about aspects
of our results that are independent of the strength of V relative
to JSE.

We show here that the orbital ordering To is always larger
than the spin ordering Tc independent of V , though the sep-
aration between the two phase transitions does depend on V .
In Fig. 4 we plot To and Tc as a function of JSE at a fixed
η = JH/U = 0.2. The left panel in the figure shows the results
for small V = 0.001λ � 0.4 meV while the right panel shows
the results for larger V = 0.025λ � 10 meV (where we use
λ ∼ 0.4 eV for 5d transition metal ions). Our results show
that both V and JSE act in concert to lead to the same orbital
order while only JSE leads to magnetic order.

Referring back to the phase diagram in Fig. 1(c) we
should also note that the very small V = 0.001λ regime is
“fine-tuned” insofar as magnetism is concerned, with a four-
sublattice AFM state, while over most of the parameter regime
the canted FM is stabilized.

APPENDIX E: ORBITAL ORDER, To AND μeff (T )
FOR d1 MODEL

Our goal in this Appendix is to gain insight into the onset
and nature of orbital ordering, and how it leads to a mixing
between j = 3/2 and 1/2 resulting in a T -dependent local
moment. In order to make analytical progress on these ques-
tions, we analyze a special limit: we set the superexchange
JSE = 0 in this Appendix so that the magnetic Tc vanishes;
this allows us to focus on orbital ordering.

FIG. 4. Tc and To as a function JSE for small V = 0.001λ (ground state is AFM four-sublattice) and V = 0.025λ (ground state is
canted FM).
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We solve the mean-field equations for HV + HSO analyt-
ically. The relevant mean-field parameters for the four sites
from Fig. 1(b) are given by〈

nxy
1

〉 = 〈
nxy

2

〉 = 〈
nxy

3

〉 = 〈
nxy

4

〉 = 1
3 + δnz, (E1)〈

nyz
1

〉 = 〈
nyz

2

〉 = 〈
nzx

3

〉 = 〈
nzx

4

〉 = 1
3 + δnx (E2)

with the condition
∑

α nα
i = 1 determining the other four pa-

rameters. We obtain the single-site mean-field Hamiltonian
for V .

H ′
V = −V

[(
86
3 δnx + 43

3 δnz
)
nyz + (

43
3 δnx + 53

3 δnz
)
nxy

]
.

(E3)

In the absence of magnetism, the mean-field Hamiltonian
H ′

MF = H ′
V + HSO is time-reversal invariant, and we rotate

into the basis of total angular momentum j which factors into
two 3 × 3 blocks of doublets. The upper block may be chosen
to be of the form⎛

⎜⎜⎜⎝
3λ
2 − 43V (2δnx+δnz )

3
√

6
− 7V δnz√

2

− 43V (2δnx+δnz )
3
√

6
7V δnz

2
43V (2δnx+δnz )

6
√

3

− 7V δnz√
2

43V (2δnx+δnz )
6
√

3
− 7V δnz

2

⎞
⎟⎟⎟⎠, (E4)

where the upper block basis | j, mj〉 is given by {|1/2,+1/2〉,
|3/2,−3/2〉, |3/2,+1/2〉} (in this order). The lower block is
the time-reversal partner of the upper block.

We rotate the (upper block) Hamiltonian so that it is diago-
nalized in the j = 3/2 subspace ({|3/2,−3/2〉, |3/2,+1/2〉})

⎛
⎝ 3λ

2 x y
x � 0
y 0 −�

⎞
⎠. (E5)

Here

� = V

√
1849δnx (δnx + δnz ) + 793δn2

z

3
√

3
(E6)

and

x = −V
43

√
3(2δnx + δnz ) cos θ

2 + 63δnz sin θ
2

9
√

2
(E7)

with θ = arctan 43
√

3(2δnx + δnz )/63δnz. The expression for
y is given by changing sin(θ/2) → cos(θ/2) and cos(θ/2) →
− sin(θ/2) in x.

Next we derive the mean-field equation for the orbital
order parameter. In the large λ limit, δnz is very small (see
Appendix F and Fig. 2) at all T and we can simply set θ =
π/2. The orbital order parameter is the expectation value of
the operator, δnx → nyz − 1

3 , whose projection into the 2 × 2
subspace of energies −� and � is given by

δn̂x →
(− 1

2
√

3
− 1

6

− 1
6

1
2
√

3

)
. (E8)

The self-consistent mean equation for δnx is

δnx = 〈δn̂x〉 = 1

2
√

3
tanh β�, (E9)

where � ≈ 43V
3
√

3
δnx. The orbital ordering transition tempera-

ture To is the temperature below which � becomes nonzero.
Linearizing the MF equation we get

kBT0 = 43V /18. (E10)

Next, we look at effective magnetic moment. We project
the magnetization operator M = 2S − L onto the low-energy
subspace. Nominally g = 0 for the j = 3/2 states, and the first
nonzero correction to the wave function comes from mixing
of the j = 3/2 and j = 1/2 states. This mixing is described
by the lowest doublet with energy −�:(

ψu

ψd

)
=

(− 2x
3λ

∣∣ 1
2 ,+ 1

2

〉 + cos θ
2

∣∣ 3
2 ,− 3

2

〉 + sin θ
2

∣∣ 3
2 ,+ 1

2

〉
+ 2x

3λ

∣∣ 1
2 ,− 1

2

〉 + cos θ
2

∣∣ 3
2 ,+ 3

2

〉 + sin θ
2

∣∣ 3
2 ,− 1

2

〉
)

.

(E11)

We start with the M operator in |LzSz〉 basis and apply the
same set of transformations above as that in H ′

MF to obtain
M ′. Then the projected matrix elements of the magnetiza-
tion operator can be extracted via 〈α| M ′ |α′〉 with α, α′ ∈
{ψu, ψd}, keeping only terms of order V

λ
. From the projec-

tion, we obtain the g factors for this doublet in all three
directions (i.e., Mx = gx

μB

2 σx, etc.) and compute the average
g factor obtained in a powder susceptibility measurement
g2 = 1

3 (g2
x + g2

y + g2
z ) to obtain the powder average effective

moment for the doublet. For simplicity, we continue to work
in the approximation where δnz = 0. The g factor is then given
by g = 344V |δnx|/9

√
3λ, so that the moment is

μeff = 172V |δnx|μB/9λ. (E12)

This shows how orbital order leads to the development of a
T -dependent magnetic moment below To.

APPENDIX F: COMPARISON OF FINITE λ AND VERY
LARGE λ RESULTS

In this Appendix we compare the dependence of the orbital
order parameters and magnetic structures on the SOC strength
λ. (A) The left panels in Fig. 5 show the results for a “finite”
λ with JSE = V = λ/40, which is the parameter set used in
main text. (B) These are to be contrasted with the right panels
in Fig. 5 where we have chosen λ with JSE = V = λ/240 to
mimic the “infinite” λ limit (similar to Ref. [15]).

We note three main differences between case (a) and case
(b) in Fig. 5. First, the orbital order parameters are simpler
in the large λ limit with nxy = 1/3, or in the notation of
Appendix E δnz ≡ 0 for all T . Second, the magnetic order
stabilized in the ground state is different in the two cases as
indicated in Fig. 5. This can be easily understood in terms of
the T = 0 phase diagram of Fig. 1(c) in the main text, from
which we see that the parameters in case (a) lead to a canted
FM while that in case (b) lead to an AFM (four-sublattice)
ground state. Third, the angle between L and S decreases
with increasing SOC. At large λ, we have perfect alignment
of L and S, which leads to a vanishing M = 2S − L for
Tc < T < To (in the absence of hybridization with oxygen).

Using an approach similar to Appendix E, we can can
solve for the mean-field orbital ordering, which in the infinite
SOC limit is exactly the same as the quadrupolar ordering of
Ref. [15]. A mean-field analysis of HV + HSE projected into
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FIG. 5. Left panel: magnetic structures and order parameters at JSE = V = λ/40, JH/U = 0.2 (typical parameter values used in our paper).
The ground state is found to be canted FM and L and S though correlated are not perfectly aligned. Right panel: magnetic structures and order
parameters at JSE = V = λ/240, JH/U = 0.2 (to make contact with the very large lambda limit). The corresponding ground state is found to
be the four-sublattice AFM. L and S are almost perfectly aligned and nxy ≈ 1/3. The different magnetic ground states in the two cases can be
understood in terms of the phase diagram of Fig. 1(c) in the main text.

the j = 3/2 subspace (infinite SOC limit) leads to an orbital
ordering temperature

To = 43

18
V + JSE

4
r1 − JSE

18
(r3 + r2/2). (F1)

This essentially matches the result in Ref. [15], except for
a minor difference due to the missing piece of the AFM
superexchange interaction discussed in Appendix A.

APPENDIX G: PHASE DIAGRAM WITH VARYING JH/U
FOR 5d1 SYSTEMS

We next consider the dependence of the T = 0 magnetic
phase diagram on Hund’s coupling η = JH/U . We show

in Fig. 6 how the phase diagram in the superexchange-
electric quadrupole interaction plane (JSE/λ,V/λ) evolves
with Hund’s coupling η = JH/U . As expected, the canted FM
phase dominates over the AFM phase with increasing η.

APPENDIX H: ORBITAL ORDERING AND DISTORTIONS

In this Appendix, we give a qualitative discussion of how
orbital ordering in the 5d1 system distorts the oxygen octahe-
dra and its averaged effect over a unit cell of the fcc lattice.

Let us recall the orbital order for 5d1 materials stabilized
by a combination of the electric quadrupole-quadrupole inter-
action V and the superexchange JSE. As shown in Fig. 1(b) of

FIG. 6. Phase diagram as a function of the intersite quadrupolar repulsion V and the superexchange scale JSE measured in units of the
spin-orbit coupling scale λ for different values of the Hund’s coupling (measured in units of the on-site Coulomb repulsion U ) with JH/U
ranging from 0.1 to 0.225. As we increase η = JH/U , the canted FM phase dominates over the AFM four-sublattice phase for large JSE/λ. The
phase diagram for JH > 0.25 is filled with canted FM for almost all relevant parameters JSE and V .
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FIG. 7. Distortion of oxygen octahedra due to the onset of orbital
ordering.

the main text, the orbital order has a two-sublattice structure
with n(1)

yz > n(1)
xy > n(1)

zx on sublattice (1) (on the lower plane)
and n(2)

zx > n(2)
xy > n(2)

yz on sublattice (2) (on the upper plane).
As discussed in Appendix F, the results in the large SOC limit
are qualitatively similar to those at finite SOC, but lead to a
simpler physical picture. Hence, we focus on the infinite SOC
limit for the following discussion. From Fig. 5 in Appendix F
we see that in this limit, the low-T orbital occupancies for
sublattices 1 and 2 can be approximately written as

n(1)
yz = 0.67, n(1)

xy = 0.33, n(1)
xz = 0,

n(2)
xz = 0.67, n(2)

xy = 0.33, n(2)
yz = 0. (H1)

Next let us look at the effect of orbital order on the oxygen
cage that surrounds a transition metal (TM) ion by considering
the Coulomb repulsion between electrons on the ligand and
the TM. Let the undistorted distance between the nearest O
atom and the TM ion be d . Let ±xi be the locations of the two
O atoms located along the x axis about the site i, and similarly
±yi for O atoms located along y, and ±z1 for O atoms located
along the z axis. Then we expect (see Fig. 7) that

y1 − d > 0
(
since n(1)

yz + n(1)
xy = 1 > 0.67,

the value in the high T phase with no orbital order
)
,

z1 − d = 0
(
since n(1)

yz + n(1)
xz = 0.67

)
,

x1 − d < 0
(
since n(1)

xy + n(1)
xz = 0.33 < 0.67

)
. (H2)

A positive (negative) sign means that the O atoms move
away from (towards) the TM ion. This analysis is oversim-
plified. z1 − d is not strictly correct because the distribution of
charges in the orbital ordered state and the high T state are not
exactly the same, but z1 − d will certainly be much smaller in
magnitude than the other displacements. The same argument
around site 2 leads to y2 − d = x1 − d < 0, z2 − d = 0, and
x2 − d = y1 − d > 0. Since there is an equal number of TM1
and TM2 sites in the unit cell, the average distortion along the
x direction is small, with x1 − d < 0 and x2 − d > 0 compen-
sating each other, and the same for the distortion along the y
direction. In summary, while symmetry dictates that the sys-
tem will be tetragonal, the above argument shows qualitatively
why the magnitudes of the distortion may be very small.

APPENDIX I: MAGNETIC SUSCEPTIBILITY
χ(T ) FOR 5d2 SYSTEMS

Figure 8 shows the orbital occupations and inverse
magnetic susceptibility as a function of temperature for the
ground state phases obtained in the phase diagram [see main

text, Fig. 3(a)]. At high temperature, the orbitals have uniform
occupancy of nyz = nzx = nxy = 2/3. At the orbital ordering
temperature To, the orbitals begin developing unequal
occupancies which grow with decreasing temperature. In this
regime time-reversal symmetry is not broken. This is followed
by a second transition at the magnetic ordering temperature
Tc where time-reversal symmetry is broken. We next discuss
the behavior in the three AFM phases and the two FM phases
below.

AFM [110] phase [Fig. 8(a)]. The two ordering tempera-
tures To and Tc coincide and the electrons are pushed into the
nyz and nxz orbitals to maximize antiferromagnetic superex-
change. This orbital ordering by itself would not be favorable
as the orbital repulsion is maximal in such a configuration.
However, the transition is entirely driven by antiferromag-
netic superexchange which then forces the orbital ordering
shown, which also explains why To ≈ Tc. Due to the strong
orbital repulsion, this magnetic structure is favored only at
small V . Note the contrast with the orbital ordering in d1

systems [shown in the main text, Fig. 1(b)] where the orbital
repulsion is minimized and in this case its the orbital ordering
that drives the magnetic structure. The high T Curie-Weiss
magnetic susceptibility is fit with a negative Curie-Weiss con-
stant θCW, as expected. We note that the orbital ordering for
AFM110 is compatible with the tetragonal distortion seen in
Sr2MgOsO6 [6].

AFM [100], AFM four-sublattice, canted FM phases
[Fig. 8(b)–8(d)]. Next, we discuss three magnetic structures
[AFM [100], AFM four-sublattice, canted FM as shown in the
main text, Fig. 3(a), middle block] that share the same orbital
ordering, which minimizes the intersite orbital repulsion in
the presence of spin-orbital coupling. It is interesting to note
that while the size of the moments are different, the magnetic
ordering directions in the AFM four-sublattice and canted FM
phases for d2 are the same as those in d1 systems.

The AFM [100] is a new magnetic structure that arises only
in d2 systems. Even though it shares the same orbital ordering
pattern as the AFM four-sublattice and the canted FM, the
orbital angular momenta of the two sites on the upper xy plane
are suppressed compared to the two sites on the lower xy plane
due to the different orbital occupancy on those planes. This
happens because the orbital angular momenta are forced to lie
along the [100] direction. We find that while the AFM [100]
is not the ground state in our model, the energy difference
with the AFM four-sublattice (AFM four-sublattice becomes
ground state in certain parameter regimes) is negligible, indi-
cating that AFM [100] could be a competitive ground state in
real materials.

For all three magnetic structures, orbital ordering happens
at a higher temperature than that of the magnetic phase
transition. And yet the evolution of orbital occupations for
the three magnetic structures exhibits differences: canted FM
orbital occupations change rather more rapidly than those in
the AFM phases. In addition, there is a secondary feature
observed at a temperature T ′ < Tc in the orbital occupancies,
which shows a sudden change in behavior, and in the inverse
susceptibility, which shows a tiny cusp, indicating effects of
frustration between orbital and spin degrees of freedom.

For both AFM [100] and AFM four-sublattice phases in
Figs. 8(b) and 8(c), χ (T ) follows the Curie-Weiss law with a
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FIG. 8. Characteristic inverse susceptibility (blue) and orbital occupation (purple) curves are plotted against temperature for the three
phases in Fig. 3: (a) AFM [110], (b) AFM [100], (c) AFM 4-sublattice, (d) canted FM, and (e) FM [100]. Susceptibility is averaged over
all three directions before being taken inverse of, χ−1 = 3(χxx + χyy + χzz )−1, and all sites in the tetrahedra. Dashed blue lines are high
temperature linear fit of the inverse susceptibility for extracting the Curie constant: for all AFM phases, the Curie constants are negative; Curie
constant for canted FM is found to be positive whereas that of the FM 100 phase is found to be very close to zero. Orbital occupancies are
shown for the site circled in each plot.

negative Curie-Weiss constant above To. Below To the orbital
occupancies are temperature dependent and the inverse sus-
ceptibility deviates from its high temperature behavior. Just
below To, χ (T ) can be fit to the Curie-Weiss law with a
different negative Curie-Weiss constant from that used above
To. Similarly to the d1 case, the susceptibility continues to
deviate from the Curie-Weiss law below To; however, the de-
viations are smaller and so is the enhancement of the effective
magnetic moment due to mixing of the J = 2 states with
higher energy multiplets. We note that when JSE = 0, the mag-
netic susceptibility continues to give a negative Curie-Weiss
constant due to a non-Curie-Weiss susceptibility as in the d1

case.
For the canted FM phase in Fig. 8(d), the high T fit of

the magnetic susceptibility gives a positive Curie constant,
indicating that FM interactions dominate at large η = JH/U in
d2 superexchange terms. The divergence of magnetic suscep-
tibility at Tc features a FM phase transition. However, a finite
susceptibility for T < Tc appears as a result of the canting
angle between the parallel magnetic moments on different
planes.

FM [100] structure [Fig. 8(e)]. Deviations from the Curie-
Weiss law are seen below To, and the sign of the Curie-Weiss

constant can switch from negative to positive depending on
which temperature region is fitted. Unlike the other phases,
magnetic order appears at Tc with a first-order transition
marked by the jumps in orbital occupancy and susceptibil-
ity. This arises from competition between having the most
energetically favorable orbital structure at high temperatures
and the most energetically favorable magnetic structure at low
temperatures.

Size of moment. We compare values of the theoretical
moments to those from experiment. Oxygen hybridization
results in a Curie moment of μeff = P2(2S − L)P2 = J (1 −
γ /2) = √

6(1 − γ /2)μB, where P2 is the projection op-
erator to the d2 multiorbital Coulomb interaction ground
state [16] J = 2 [with moment size |J| = √

2(2 + 1) = √
6],

P2SP2 = J/2, P2LP2 = J/2, and γ is the effective or-
bital moment on the transition metal ion after tak-
ing into account the oxygen hybridization. Assuming
almost half of the moment resides on oxygen (i.e.,
γ = 0.5), the calculated moment is then μeff ≈ 1.8μB.
This is close to the experimentally observed moments
in Sr2MgOsO6 and Ca2MgOsO6 (both 1.87μB) [5] but
farther off from those of Ba2YReO6 (1.93μB) [36]
and La2LiReO6 (1.97μB) [36].
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