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Rayleigh edge waves in two-dimensional crystals with Lorentz forces: From skyrmion crystals to
gyroscopic media
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We investigate, within the framework of linear elasticity theory, edge Rayleigh waves of a two-dimensional
elastic solid with broken time-reversal and parity symmetries due to a Berry term. As our prime exam-
ple, we study the elastic edge wave traveling along the boundary of a two-dimensional skyrmion lattice
hosted inside a thin-film chiral magnet. We find that the direction of propagation of the Rayleigh modes
is determined not only by the chirality of the thin film, but also by the Poisson ratio of the crystal. We
discover three qualitatively different regions distinguished by the chirality of the low-frequency edge waves,
and study their properties. To illustrate the Rayleigh edge waves in real time, we have carried out finite-
difference simulations of the model. Apart from skyrmion crystals, our results are also applicable to edge
waves of gyroelastic media and screened Wigner crystals in magnetic fields. Our work opens a pathway
towards controlled manipulation of elastic signals along boundaries of crystals with broken time-reversal
symmetry.
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I. INTRODUCTION

Recent years have seen a new surge of excitement around
chiral surface waves in hydrodynamics [1–8]. The role of bulk
topology for the existence and robustness of such waves has
been vigorously investigated [1,2,5,7,8]. Chiral surface modes
have been also recently used as a tool to measure the bulk Hall
viscosity of an active fluid [9].

In this work we study surface waves in two-dimensional
crystals which break parity P (spatial reflection) and time-
reversal T symmetry, but preserve the combined PT sym-
metry. In the quantum realm, well-known examples of such
systems are two-dimensional thin-film chiral magnets, which
host lattices formed out of skyrmion defects [10–13], Wigner
crystals in a magnetic field [14], and Abrikosov vortex lattices
in superconductors and rotating superfluids [15]. In the last
few years such crystals were also designed in gyroscopic
metamaterials [16,17] and mass-spring networks subject to
Coriolis forces [18].

The investigation of waves that propagate along the free
surface of an elastic solid, and whose disturbance remains
confined to the vicinity of the boundary is an old topic that
goes back to the remarkable classic paper by Rayleigh [19],
where an approximate numerical solution for the dispersion
relation of such waves was obtained. Within linear elas-
ticity theory, this excitation—known today as the Rayleigh
wave—is nondispersive and has speed lower than the bulk
transverse and longitudinal sounds [20,21]. As already antic-
ipated by Rayleigh, these surface waves play a crucial role in
seismology [22].

*These authors contributed equally to this work.

The general focus of this paper is the investigation of a
long-wavelength effective field theory of a two-dimensional
skyrmion lattice, where the Cartesian components of the dis-
placement from equilibrium positions ux and uy are coupled
by a Berry term [23,24]. The displacements are assumed to
be small, which allows the framework of linear elasticity to
be employed. We find that the behavior of the edge waves can
be tuned by changing the Poisson ratio σ [25]. In fact, we
show that there exist three qualitatively distinct phases, cap-
tured by the diagram in Fig. 1. The phases are distinguished
by the propagation direction of their low-frequency surface
waves. In the long-wavelength and low-frequency limit we
develop an analytic treatment of these edge waves.

II. SKYRMION CRYSTAL ELASTICITY IN THIN-FILM
CHIRAL MAGNETS

It is well known that an elementary skyrmion defect in
a ferromagnet experiences an effective magnetic field B and
the associated Lorentz force because it picks up the Berry
phase of 2π whenever encircling a spin 1/2 [26]. Moreover,
a skyrmion can be characterized by a finite inertial mass m,
which was derived in [27] by integrating out fluctuations of
its spatial profile. In this paper we study the surface waves of
two-dimensional skyrmion lattices present in thin-film chiral
magnets such as Fe0.5Co0.5Si [11] and FeGe [12]. Starting
from the continuum theory of [23,24], the skyrmion dynam-
ics is described by a field theory of coarse-grained elastic
variables ui(x) with i = x, y, denoting the displacements of
skyrmions from their equilibrium positions, see [13] for a ped-
agogical exposition. The action of the skyrmion displacement
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FIG. 1. Sketched dispersion relations of Rayleigh surface excitations ω(k) (red) as a function of the Poisson ratio σ . In cases (a) and
(c) the low-frequency spectrum is chiral, while in the intermediate regime 0 � σ � ϕ−1 edge waves of both chiralities are present. Here
ϕ ≡ (1 + √

5)/2 is the golden ratio. The green square denotes the point σ = 1/3 where the edge wave spectrum is symmetric. Plotted in blue
are cross sections of the gapless bulk excitation.

field is given by

S[ui] =
∫

dt d2x

[
ρ

2
u̇2 − ρ�

2
εi ju

iu̇ j − Eel(ui j )

]
, (1)

where the overdot denotes the time derivative, ρ is the mass
density of the skyrmions, � = B/m is the cyclotron frequency
associated with effective magnetic field B, ui j ≡ ∂(iu j) is the
symmetric linearized strain tensor, and Eel(ui j ) is the elas-
tic energy density, dictated by the geometry of the crystal.
The convention for the completely antisymmetric Levi-Civita
symbol is εxy = −εyx = 1 and summation over repeated in-
dices is understood. At low frequencies, the Berry term in
Eq. (1), which gives rise to an effective Lorentz force, dom-
inates the first term that encodes Newtonian dynamics. As a
result, ux and uy form a canonically conjugate pair of variables
in the limit m → 0. The Berry term breaks the time-reversal T
(t → −t) and parity P (x → −x, ux → −ux) symmetries, but
preserves their combination. We assume that skyrmions form
a triangular lattice, whose symmetry class C6 limits Eel(ui j ) in
two dimensions to the isotropic form [20,25]

Eel(ui j ) = 2C1u2
kk + 2C2ũ2

i j, (2)

where ũi j ≡ ui j − (ukkδi j )/2 is the traceless symmetric part
of the strain tensor. The compressional elastic modulus 2C1

quantifies the change of energy due to deformations that pre-
serve the shape of the system but change its volume, while the
shear modulus C2 fixes the energy cost of volume-preserving
deformations. In the context of effective field theories, C1 and
C2 are just parameters of the derivative expansion and can take
arbitrary non-negative values [28].

While the action in (1) is the effective theory govern-
ing skyrmion lattice dynamics, at long wavelengths it also
describes elastic gyroscopic systems in the limit of small
nutation angle [29]. Moreover, it can also be used to describe
certain screened Wigner crystals in magnetic fields [30].

The action (1) is quadratic and the resulting equations of
motion are linear:

üi + �εi j u̇
j = 2v1∂i(∂pup) + v2∂

2ui, (3)

where we introduced v1 ≡ 2C1/ρ, v2 ≡ 2C2/ρ. Assuming an
infinite system that respects magnetic translational invariance
in both directions, the equations of motion (3) are algebraic in
frequency/wave-vector space. Contrary to the situation where
the Berry term is absent, the modes do not decouple into the

longitudinal and transverse components. The set of equations
(3) can be solved with elementary methods, and the two solu-
tions for the dispersion relations are given by

ω2
∓ = �2

2
+ (v1 + v2)k2 ∓ k2

√
v2

1 + (v1 + v2)
�2

k2
+ �4

4k4
.

(4)

Due to their cumbersome form, the polarizations ε± ≡ ux
±/uy

±
are not presented in the general case here. In this problem
we can identify two distinct physical regimes: (i) for small
wave vectors/large magnetic fields the negative branch of
Eq. (4) gives rise to a gapless magnetophonon mode with the
quadratic dispersion

ω−(k) =
√

v2(2v1 + v2)

�
k2

[
1 + O

(
k2

�2

)]
, (5)

while the positive branch represents a gapped magnetoplas-
mon mode, dispersing as

ω+(k) = �

[
1 +

(v1 + v2

�2

)
k2 + O

(
k4

�4

)]
. (6)

The latter mode is guaranteed to have the gap ω = � at k = 0
by the Kohn theorem [31]; the system is analogous to a collec-
tion of single-species charged particles in a uniform magnetic
field that interact through a potential which depends only on
their relative distances. In the zero wave vector limit, the po-
larization of the Kohn mode is circular and its chirality is fixed
by the sign of the effective magnetic field B. (ii) In the limit
of large wave vectors, the Newtonian term dominates over
the Berry term in Eq. (3) and we asymptotically recover two
linearly dispersing sound modes of a time-reversal invariant
two-dimensional solid [32]. In particular, at large momenta,
the magnetophonon (5) merges into the transverse (kiui

− =
0) mode dispersing as ω− = ct k[1 + O(�2/k2)], while the
magnetoplasmon (6) becomes the longitudinally polarized
(εi jkiu

j
+ = 0) mode with ω+ = cl k[1 + O(�2/k2)].

The Lagrangian naturally fits into a derivative expansion
within the power-counting scheme ui ∼ O(1), ∂i ∼ O(ε), ∂t ∼
O(ε2) where we introduced a small parameter ε � 1. The
difference in the power counting of temporal and spatial
derivatives originates from the soft quadratic dispersion of
the magnetophonon. All terms in the Lagrangian (1), except
for the Newtonian term ρu̇2/2, are of order O(ε2), defining
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the leading-order (LO) Lagrangian. On the other hand, the
Newtonian term scales as ε4 and is less relevant at low fre-
quencies, and thus is of the next-to-leading order (NLO). The
inclusion of this term allows us to establish the crossover of
edge waves that exist in the chiral system to the ordinary
Rayleigh waves in the absence of a Berry term. We notice
here that other NLO terms such as second-order elasticity
λ̃i jklmn∂i∂ juk∂k∂mun or the dissipationless phonon Hall viscos-
ity ηi jkl∂iu j∂ku̇l [33] are not included in the present work.

In elastic media, internal stresses and forces are en-
coded in the stress tensor Ti j = δEel/δui j [20,21]. For a
two-dimensional triangular crystal with the elastic energy
density (2) the stress tensor is

Ti j = 4C1ukkδi j + 4C2ũi j . (7)

III. RAYLEIGH EDGE MODES

We next turn to the study of exponentially localized
Rayleigh waves that propagate on the edge of the skyrmion
lattice. The breaking of time-reversal and parity symmetries
in (1) due to the Berry term suggests that such modes might
be chiral, i.e., propagating only in one direction, see, e.g.,
[30,34]. For the sake of simplicity we consider the skyrmion
crystal to fill the lower half-space with y < 0. Without loss
of generality we also choose � > 0 throughout the rest
of the paper.

The translational invariance in time and along the horizon-
tal direction motivates the ansatz u(x, y, t ) = u ei(kx−ωt )eκy for
a solution of (3). The wave vector along the boundary k and
the frequency ω are assumed to be real; confinement near the
edge of the system requires the real part of κ to be positive.

First, in order to make the following calculation more
transparent, we shall focus on the low-frequency limit and
drop the NLO Newtonian term ∼u̇2 in the model (1). The edge
ansatz inserted into Eq. (3) results in a characteristic equation
for κ with two solutions:

κ1,2(k, ω) =
√

k2 ± �√
v2(2v1 + v2)

ω + O(k2). (8)

The corresponding eigenvectors u1,2(k, ω) are functions of
the wave vector k and frequency ω. Interestingly, here, in
contrast to the ordinary Rayleigh construction, both solutions
κ1,2 originate from the single magnetophonon branch.

The general solution with given k and ω is obtained by
forming a linear superposition of u1,2(k, ω) with two complex
constants a, b,

u(x, y, t ) = ei(kx−ωt )(a u1eκ1y + b u2eκ2y). (9)

Due to the PT symmetry of the model, the dispersion satis-
fies ω(k) = −ω(−k), hence it is sufficient to study only the
interval ω � 0.

Here we will assume that the crystal is free at the boundary
y = 0. In this case there are no macroscopic forces acting on
it from the outside. Thus there is no flux of linear momentum
across the boundary surface at y = 0, resulting in the so-called
stress-free boundary conditions [35]

Txy(x, y = 0) = Tyy(x, y = 0)
!= 0. (10)

FIG. 2. For small momenta the dispersion relation has the
quadratic form ω = α

√
v2(2v1 + v2)/� k2. When only one of the

branches α± exists, the edge wave propagates unidirectionally. This
happens for σ < 0 and σ > ϕ−1, see Appendix A.

Substituting the ansatz (9) into the boundary conditions (10)
results in the linear system of equations for a and b,(

ikσε1 + κ1 ikσε2 + κ2

ik + κ1ε1 ik + κ2ε2

)(
a
b

)
= 0, (11)

where we have introduced the two-dimensional Pois-
son ratio σ ≡ (2C1 − C2)/(2C1 + C2) and the shorthand
ε1,2 ≡ ux

1,2/uy
1,2. The dispersion relation ω(k) for the edge

waves is obtained from the characteristic equation for the
matrix in Eq. (11).

In traditional treatments of elasticity theory, the Poisson
ratio was usually assumed to be a positive value [20]; however,
in recent years it was found that elastic systems can be engi-
neered to have a negative Poisson ratio [36,37] and even more
remarkably that such materials actually occur in nature [38].
By now an explosion of research into exotic metamaterials has
taken place (for an overview see [39]), which go by the name
auxetic materials. These systems have the counterintuitive
property that under uniaxial compression, they contract in
the orthogonal direction. In the following we investigate the
interval −1 � σ � 1, where the elastic system is stable.

Substitution of the two edge modes into (11) yields a dis-
persion relation ω(k) of the form

ω(k) = α

√
v2(2v1 + v2)

�
k2, (12)

with α being a non-negative and real solution of an un-
wieldy algebraic equation, which we investigate in detail in
Appendix A. This equation does not depend on the magnitude
of k, but only on its sign. As a consequence, the equations
for positive and negative k are in general different, resulting
in different solutions α[sgn(k), σ ], which we will denote by
α±(σ ).

We show the numerical solution of α±(σ ) in Fig. 2. As
the value of σ is varied, one finds three qualitatively different
regimes. For σ < 0 only the α− branch exists: edge waves
can only propagate towards the left, while propagation to the
right is forbidden. We find analytically in Appendix A that
for σ > ϕ−1 = (

√
5 − 1)/2, i.e., the inverse golden ratio, the

edge waves are once again chiral, but with propagation in the
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FIG. 3. Edge excitations as seen in finite-difference simulations
[41]. In all three plots, the system was displaced in a small region
near the boundary at x = 0 and evolved over time. The three values of
σ are representative of the three regimes shown in Fig. 1. To guide the
eye we colored in magenta the grid points that have large amplitude
defined by a threshold value.

opposite direction. In the interval 0 � σ � ϕ−1 both branches
of α± exist and consequently edge waves can propagate in
both directions. The dispersion of the surface waves is gener-
ically asymmetric, since in general α+ �= α−. However, it is
clear from Fig. 2, that at the point σ = 1/3 [40] the spectrum
is symmetric, see Appendix A for the analytical justification,
where we also determine the value α± = 2

√
2/3.

In the presence of the subleading Newtonian term we
solved the edge problem numerically. The resulting spec-
trum is sketched in Fig. 1. The inclusion of the Newtonian
term results in propagation in a forbidden direction for mo-
mentum and frequency larger than a critical value kcrit and
ωg ≡ ω(kcrit ). We checked that ordinary Rayleigh waves are
recovered for ω 	 ωg.

In order to illustrate our findings, we have carried out finite-
difference simulations of dynamics encoded by (3) subject to
the boundary conditions (10) on a 500 × 500 spatial grid; for
details see Appendix B. Figure 3 shows simulation snapshots
for different values of the Poisson ratio. The initial condition
for the displacement field is identical in all three simulations:
the elastic medium has zero displacement everywhere, except
for a small central region near the lower horizontal boundary,
where it is deformed. Starting with this condition, we let the
system evolve over time (see [41] for a simulation video). We
observe that while the excitation decays partially into the bulk
of the medium, some part remains localized near the edge and
travels along the boundary. For σ = −0.8 and σ = +0.8 one
sees clearly how the edge excitations travel unidirectionally
and in opposite directions for the two Poisson ratios. For σ =
1/3 we observe two edge excitations that travel symmetrically
in both directions.

In order to investigate the transition between the three
regimes, we studied the magnitude of the frequency gap ωg

as a function of the Poisson ratio σ . The result is displayed
in Fig. 4. The figure demonstrates that the nonchiral regime
(ωg = 0) exists inside a finite interval σ1 < σ < σ2. This im-

FIG. 4. Frequency gap ωg of the edge waves as a function of the
Poisson ratio σ . The gap is zero in the interval [σ1, σ2]. The insets
show that the gap vanishes linearly near the critical points σ1 and σ2.

plies that the gap vanishes in a nonanalytic way, reminiscent
of the behavior of an order parameter near a continuous
phase transition. Indeed, we find that the gap ωg vanishes
linearly near the critical ratios σ1 = 0 and σ2 = ϕ−1, see the
insets of Fig. 4.

A particularly simple case of surface modes is found in the
limit where the compressional modulus C1 vanishes, i.e., for
σ = −1. In the time-reversal invariant setting, this maximally
auxetic problem emerges in the twisted kagome lattice [42].
We find for our system that at σ = −1 edge modes exist and
the frequency spectrum is a flat band. This implies that once a
deformation is introduced at the edge of the system, it does not
propagate but remains there forever frozen. Such excitations
have been studied in the literature [42–44] and are known as
floppy modes. It is interesting to note that these solutions have
a hidden holomorphicity property related to the fact that, when
σ = −1, the boundary conditions (10) become the Cauchy-
Riemann equations for the field ux + iuy, see Appendix C for
more details.

IV. CONCLUSIONS AND OUTLOOK

We analyzed Rayleigh edge waves that travel on the edge
of two-dimensional crystals in the presence of Lorentz forces
and mapped out how their propagation direction depends
on the Poisson ratio, see Fig. 1. The existence of these
waves is not protected by topology, but rather originates from
spontaneously broken translational symmetry. In addition to
skyrmion crystals, we expect our findings to be directly ap-
plicable to boundary excitations of screened Wigner crystals
in an external magnetic field [30]. Moreover, our results
shed new light on elastic gyroscopic systems [45], where
edge modes are currently under active investigation [46,47].
Our work indicates that in all these systems the chirality of
Rayleigh edge waves can be controlled by changing the elastic
properties of the medium.

Extensions of this study to Abrikosov vortex crystals in
superconductors and superfluids [15] are nontrivial excit-
ing frontiers. It would be also intriguing to generalize this
work and investigate edge excitations in two-dimensional
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crystals, where time-reversal breaking originates from a dif-
ferent mechanism, such as for example the odd elasticity
discovered in [48,49].
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APPENDIX A: ANALYTIC VALUES OF σ1 AND σ2,
EDGE-WAVE DISPERSIONS AT σ = 1/3, σ = σ1,2, AND

FLOPPY MODES

Insertion of the edge-wave ansatz into the stress-free
boundary condition (11) results in an equation for α±:

2(σ − 1)
{
α2

+
[
σ
(
−

√
1

1−σ

√
2 − 2α2+ + 2

√
1 − α+ − 2

√
α+ + 1

)
+

√
1

1−σ

√
2 − 2α2+ − 2

√
2
√

1
1−σ

σ 2
]

+ (σ + 1)2(
√

1 − α+ − √
α+ + 1) + (σ + 1)2α+(

√
1 − α+ + √

α+ + 1)
}

(σ − 1)2α2+ − (σ + 1)2
= 0,

(A1)

2(σ − 1)
{
α2

−
[
σ
(√

1
1−σ

√
2 − 2α2− + 2

√
1 − α− − 2

√
α− + 1

)
−

√
1

1−σ

√
2 − 2α2− + 2

√
2
√

1
1−σ

σ 2
]

+ (σ + 1)2(
√

1 − α− − √
α− + 1) + (σ + 1)2α−(

√
1 − α− + √

α− + 1)
}

(σ − 1)2α2− − (σ + 1)2
= 0.

(A2)

We are considering non-negative values of ω, thus α± �
0. The form of the spectrum (12) yields for κ given by
(8) the values

κ1,2 = √
1 ± α|k|. (A3)

In order to have both κ1,2 real, the condition α � 1 must be
satisfied. The analytic values of σ1 and σ2 can be found by
imposing these limits. We first note that for α+ → 1 one finds
σ → 0 using Eq. (A1), and thus

σ1 = 0. (A4)

The value σ2 is obtained by letting α− → 1 in Eq. (A2). In
this limit that equation reduces to

σ2

√
1 − σ2 − 1 + σ2 = 0, (A5)

with solution

σ2 =
√

5 − 1

2
≡ ϕ−1, (A6)

which is the inverse of the golden ratio ϕ.

1. Symmetric point σ = 1/3

When σ = 1/3, both Eqs. (A1) and (A2) reduce to
the same form, thus α+ = α−. The equation that is
satisfied by α± is

(−3
√

3 − 3α2 + 3
√

1 − α − 3
√

α + 1 +
√

3)α2

+8(
√

1 − α + √
α + 1)α + 8(

√
1 − α − √

α + 1) = 0.

(A7)

It is straightforward to verify that the only admissible
solution is

α± = 2
√

2

3
. (A8)

Thus the long-wavelength edge-wave dispersion at σ = 1/3
takes on the particularly simple form

ω = 2

√
2

3

v2

�
k2. (A9)

2. Asymptotic behavior of α± at σ = ±1

When σ → 1− the value of the corresponding α+ tends to
0. By setting

σ = 1 − ε, (A10)

α = δ (A11)

in Eq. (A1) and expanding in small δ, ε, we arrive at
the equation

2δε −
√

2δ2√ε = 0, (A12)

which has the solution δ = √
2
√

ε. This yields the asymptotic

α+ ∼
√

2
√

1 − σ as σ → 1− (A13)

and as a consequence

ω ∼ 2v2

�
k2 as σ → 1−. (A14)

When σ → −1+, the value of α− tends to 0. Here we set

σ = −1 + ε, (A15)

α = δ, (A16)

and upon expanding (A2) we find δ = 3ε/2 and thus

α− ∼ 3

2
(1 + σ ) as σ → −1+ (A17)

and therefore

ω ∼ 3v2

2�
(1 + σ )k2 as σ → −1+. (A18)
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Since σ → −1+ is equivalent to v1 → 0, we can also write
this asymptotic relation as

ω ∼ 6v1

�
k2 as v1 → 0. (A19)

In both limits, σ → −1+ and σ → 1−, the spectra become
flat. Such flat spectra are associated with excitations called
floppy modes.

3. Floppy modes at σ = −1

As discussed in the main text, for σ = −1 the sys-
tem supports floppy modes. Setting σ = −1 and inserting
the edge-wave ansatz (9) into the equations of motion (3)
produces two modes with κ∓ =

√
k2 − (ω2 ± ω�)/v2 and

circular polarizations ε∓ = ±i. The boundary conditions (10)
enforce ω = 0 or ω = � and κ∓ = |k|. The latter is automat-
ically satisfied for the ω = 0 bulk mode. But, for ω = �, the
κ+ mode violates this condition.

For ω = 0 we find the floppy mode

u = [−i sgn(k), 1]Teikx+|k|y, (A20)

while the time-dependent solution with ω = � only exists for
k > 0 and has the form

u = (−i, 1)Tei(kx−�t )+ky. (A21)

We assumed above that � > 0. If, instead, � < 0, then the
time-dependent solution has the frequency ω = −�. This
change of sign modifies the sign of the allowed k values in
Eq. (A21) and thereby reverses the direction of propagation.

APPENDIX B: FINITE-DIFFERENCE SOLUTION OF THE
EQUATIONS OF MOTION

In the main part of the paper we displayed snapshots
of Rayleigh waves propagating along the boundary of a
square-grid system. These snapshots are obtained from finite-
difference simulations of the partial differential equation (3)
subject to the boundary conditions (10). To this end we
discretize space by introducing a quadratic grid. Along the
vertical sides of the square we use periodic boundary condi-
tions. In the horizontal direction, where we observe surface
waves, we use the free boundary conditions (10). In the ab-
sence of the magnetic field term, our bulk equations of motion
are reduced to those considered in the classic finite-difference
treatment of Kelly et al. [50], where an explicit scheme was
introduced. We employ the same discretization, but treat the
magnetic field term exactly. The equations of motion are dis-
cretized after rewriting them as first-order equations in time,
by introducing the velocity fields wx = u̇x and wy = u̇y:

[wx]n,m
l+1 = cos(h�)[wx]n,m

l + sin(h�)[wy]n,m
l + h[Fx]n,m

l ,

[wy]n,m
l+1 = cos(h�)[wy]n,m

l − sin(h�)[wx]n,m
l + h[Fy]n,m

l ,

[ux]n,m
l+1 = [ux]n,m

l + h[wx]n,m
l ,

[uy]n,m
l+1 = [uy]n,m

l + h[wy]n,m
l ,

where the subscript l is the time index, h is the discrete time
step, and Fx and Fy are the centrally discretized elastic forces.
The magnetic field discretization is exact in the absence of
elastic forces. Since our focus is on Rayleigh waves, the

boundary is particularly important. We use a stable finite-
difference scheme that was invented by Vidale and Clayton
[51] for the study of surface waves. In their method, an aux-
iliary horizontal layer is added to the last grid layer, and the
actual free surface is considered to be in-between these two
layers. The time evolution in all but the additional layer is
carried out by the discretized bulk equations of motion. The
updates on the added layer are derived from the boundary
conditions, which are

∂yux + ∂xuy = 0,

σ∂xux + ∂yuy = 0.

These conditions have to be imposed at the free surface, which
is obtained from the last two layers by averaging. Discretizing
these equations using central differences yields

u1,n
x − u0,n

x + 1

2

[
u0,n+1

y + u1,n+1
y

2
− u0,n−1

y + u1,n−1
y

2

]
= 0,

σ

2

[
u0,n+1

x + u1,n+1
x

2
− u0,n−1

x + u1,n−1
x

2

]
+ (

u1,n
y − u0,n

y

) = 0,

where the indices 0 and 1 denote the last and penultimate hor-
izontal layers, respectively. These equations have to be solved
in order to find the u0,n

x and u0,n
y . We can cast these equations

as matrix equations by introducing the tridiagonal matrix T
with components Tnm = δn,m−1 − δn,m+1 and forming vectors
u0

x and u1
x out of the displacements:

1

4
T u0

y − u0
x = −1

4
T u1

y − u1
x , (B1)

σ

4
T u0

x − u0
y = −σ

4
T u1

x − u1
y . (B2)

The right-hand sides are given. Solving the first equation
for u0

x and inserting it into the second, we find an equation
for u0

y alone:(
I − σ

16
T 2

)
u0

y = σ

16
T 2u1

y + σ

2
T u1

x + u1
y .

The first step is to solve this matrix equation for u0
y . In the

second step, one finds u0
x by using Eq. (B1):

u0
x = 1

4
T u0

y + 1

4
T u1

y + u1
x . (B3)

The matrix equation in the first step is of the form

(I + aT 2)x = b. (B4)

As noted in [51] this matrix is pentadiagonal and can be
solved by methods similar to those for tridiagonal matrices
[52]. Written out, this matrix equation becomes

axn−2 + (1 − 2a)xn + axn+2 = bn,

which is a three-term recursion relation that only connects the
even/odd indexed terms. It can be solved by making a two-
term recursion ansatz

xn = Anxn+2 + Bn. (B5)

We use this to eliminate xn+2 in the three-term recursion,
which results in

xn = − a

1 − 2a + aAn−2
xn−2 + bn − aBn−2

1 − 2a + aAn−2
.
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Comparing this with the two-term ansatz, we find

An = − a

1 − 2a + aAn−2
, (B6)

Bn = bn − aBn−2

1 − 2a + aAn−2
. (B7)

Let us assume that the initial conditions x0, x1 are speci-
fied and put A0 = 0, B0 = x0 and A1 = 0, B1 = x1. Then we
can determine from (B6) and (B7) all the remaining An, Bn.
Next we take the initial condition on xN and use (B5) to
determine all the xi between i = 1 and i = N − 1, thereby
solving the inversion problem (B4). In our particular problem
(B3) we have

a = − σ

16
,

bn =
[ σ

16
T 2u1

y + σ

2
T u1

x + u1
y

]
n
.

A full update step consists of a bulk update followed by the
boundary updates of auxiliary layers (on the top and bottom
of the square).

APPENDIX C: COMPLEX FORMULATION OF THE
EQUATIONS OF ELASTICITY AND HOLOMORPHICITY

AT σ = −1

When the Poisson ratio takes on the value σ = −1, the
edge-wave solutions have a hidden property. To see this we
reformulate the elasticity equations in complex form by com-
bining the real strain components ux and uy into one complex
field ψ ≡ ux + iuy. The equations of motion (3) are

üx + �u̇y − 2v1∂x(∂xux + ∂yuy) − v2
(
∂2

x + ∂2
y

)
ux = 0,

üy − �u̇x − 2v1∂y(∂xux + ∂yuy) − v2
(
∂2

x + ∂2
y

)
uy = 0,

and by multiplying the second equation by i and adding it to
the first, we obtain

ψ̈ − i�ψ̇ − 4v1
(
∂2

z̄ ψ̄ + ∂z∂z̄ψ
) − 4v2∂z∂z̄ψ = 0, (C1)

where we introduced the complex derivatives ∂z ≡
(∂x − i∂y)/2 and ∂z̄ ≡ (∂x + i∂y)/2. The boundary conditions
(10) in real space read

∂xuy + ∂yux = 0, (C2)

σ∂xux + ∂yuy = 0. (C3)

Multiplying the second equation by i and adding it to the first,
we obtain the boundary conditions in complex form

(3 − σ )∂z̄ψ = (1 + σ )(∂z̄ψ̄ + ∂zψ̄ + ∂zψ ). (C4)

At σ = −1 the boundary conditions (C2) and (C3) are the
Cauchy-Riemann equations for the real and imaginary parts
of ψ at y = 0. In addition, the real parts of the modes (A20)
and (A21) give rise to ψ’s that are holomorphic functions
of the complex variable z ≡ x + iy in the bulk. In particular,
the time-independent mode yields ψ = i exp(−i|k|z), while

FIG. 5. Numerical solution of the edge wave dispersion (red) for
equal elastic moduli C1 = C2. For comparison, also the dispersions
relations of the bulk modes ω− (blue) and ω+ (yellow) are plotted.

the time-dependent mode is ψ = i exp(−ikz + i�t ). Using
a conformal transformation we can map these edge modes,
which are localized near the boundary of the complex half-
plane, onto edge waves that propagate along the boundary of
an arbitrarily shaped region. In other words, the transformed
solutions will satisfy the boundary conditions on the new edge
and solve the bulk (Laplace) equations of motion [53].

APPENDIX D: SYMMETRIC EDGE SPECTRUM

In Appendix A we have shown that a symmetric spectrum
of edge excitations emerges for the value of Poisson ratio σ =
1/3, i.e., for equal elastic moduli C1 = C2 ≡ C. Hereby we
show that this property holds even at NLO, see Fig. 5. The
proof is based on the characteristic equation d (k, ω) = 0 of
the matrix appearing in the boundary conditions (11).

The expressions are cumbersome and it turns out to be
more convenient to study the parity property of the auxiliary
function d̃ (k, ω) ≡ d (k, ω)/[ε+(k, ω) − ε−(k, ω)] instead of
the characteristic polynomial d (k, ω). In terms of the inverse
decay lengths κ∓(k, ω) and the polarizations ε∓(k, ω) the
auxiliary function takes the following form:

d̃ (k, ω) = (k2 + 3κ−κ+) + (κ+ − κ−)

⎡
⎢⎢⎢⎣ε−ε+ − 3

ε+ − ε−
(ik)︸ ︷︷ ︸

≡g(k,ω)

⎤
⎥⎥⎥⎦.

(D1)

We will argue that the auxiliary function d̃ is an even function
of the wave vector k. First, after introducing 2C/ρ ≡ v, we
notice that

κ∓(k, ω) =
√

k2 − (2ω2 ± ω
√

3�2 + ω2)/3v (D2)

are even functions of k. As a result, all the functions outside
the square brackets in (D1) are even. Polarization functions
have no parity symmetry:

ε∓(k, ω) = −i
3�2ω + 2k

√
3v

(−2ω2 ∓ √
3�2ω2 + ω4 + 3vk4

)
ω2 − √

3�2ω2 + ω4 − 6vk2
,
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however, together with (ik), they lead to a function inside the square brackets

g(k, ω) = −k2√
ω2�2 + ω4/3

[√
−v

(
2ω2 +

√
3ω2�2 + ω4 − 3vk2

)
+

√
−v

(
2ω2 −

√
3ω2�2 + ω4 − 3vk2

)]
, (D3)

which is manifestly even under the change of sign of the
wave vector. This proves that d̃ (k, ω) = d̃ (−k, ω), therefore

the edge-wave spectrum at σ = 1/3 is symmetric, ω(k) =
ω(−k).
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