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Multiple Coulomb phases with temperature-tunable ice rules in pyrochlore spin-crossover materials
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Spin-crossover (SCO) molecules have two accessible states: one high spin (HS) and one low spin (LS).
We show that on the pyrochlore lattice elastic interactions between SCO molecules can give rise to three
different spin-state ice phases (denoted HnL4−n with n = 1, 2, or 3)—characterized by the “ice rules” that every
tetrahedron must contain n HS and 4 − n LS metals. Each is a “Coulomb phase” where a local ice rule can
be mapped to a divergence-free gauge field and the low-energy excitations carry a spin fractionalized midway
between the LS and HS states. To date, no phase with the n = 1 and n = 3 ice rules has been observed. In
SCO materials, the subtle competition between the entropies and enthalpies of the HS and LS states allows
temperature or pressure to change the ice rules, allowing straightforward access to the n = 1 and n = 3 phases.
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I. INTRODUCTION

In spin ices, such as Dy2Ti2O7 and Ho2Ti2O7, the magnetic
Dy (Ho) atoms form a pyrochlore lattice composed of vertex
sharing tetrahedra [1,2]. The combination of the crystal field
[3,4] and the long-range dipolar interaction [5,6] constrain the
magnetic moments to obey the two-in/two-out ice rule: Two
of the spins point in to each tetrahedron and two point out.
The number of ways of satisfying the ice rule grows with the
size of the system, leading to an extensive zero-point entropy
[4,7]. The ice rule can be mapped onto a divergence-free flux,
analogous to constraints in magnetostatics and electrostatics.
Violations of the ice rule carry a fraction of the magnetic
spin degree of freedom, behaving effectively as magnetic
monopoles with an emergent Coulombic interaction between
them [8–10]. Spin ices are therefore said to be in a “Coulomb
phase,” which could also arise in frustrated antiferromagnets
and some quantum spin liquids [11–14].

Coulomb phases can also arise from other degrees of
freedom. Three coexisting Coulomb phases, each obeying
two-in/two-out (or, more strictly, divergence-free) ice rules,
are observed in the charge, atom displacement, and spin con-
figurations of CsNiCrF6 [15].

It was proposed, in the 1950’s, that ices obeying the 1:3 or
3:1 ice rules should also occur [16]. However, to date, such
phases have yet to be observed, although an ordered phase
containing 1:3 and 3:1 tetrahedra has been reported [17]. For
the nearest-neighbor Ising model on the pyrochlore lattice
with collinear spins Si, then, up to a constant,

HI = J
∑
〈i, j〉

SiS j + B
∑

i

Si = J
∑

α

(Lα + B/4J )2, (1)

where Lα = ∑
i∈α Si and α labels the tetrahedra. The ground

state is clearly achieved whenever the magnitude of the “flux,”
Lα + B/4J , is minimized for all α. Ice rules require the same
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value of Lα on all tetrahedra. Therefore, sweeping the field B
moves the ground state between different ice rules. However,
in spin ices the spins are not collinear and so one cannot
simply apply a magnetic field to change the ice rules in these
systems.

Recently, it has been proposed that spin-state ice (SSI)
phases can occur in spin-crossover materials on the kagome
lattice [18]. SSIs naturally contain two simultaneous ices
as changes in the spin state and the structure of the coor-
dination sphere change mutually. Here, we show that three
different SSI phases arise for spin-crossover materials on the
pyrochlore lattice: With the ice rules that each tetrahedron
must contain n high-spin (HS) and (4 − n) low-spin (LS)
metal centers, the three phases we find correspond to n = 1,
n = 2, and n = 3. Furthermore, we show that sweeping either
temperature or pressure alone is sufficient to tune between
SSI phases obeying three different ice rules. This is a direct
consequence of the competition between the single-molecule
spin-crossover behavior and the elastic interactions between
molecules in a crystal. We predict that pinch point singu-
larities, the sine qua non of the Coulomb phase, will be
detectable via neutron scattering in small magnetic fields and
that the low-energy excitations are deconfined and carry a
spin midway between that of the two spin states of a single
molecule.

Spin crossover (SCO) occurs in transition metal complexes
and frameworks when the low-spin (LS, e.g., t6

2ge0
g, S = 0)

and high-spin (HS, e.g., t4
2ge2

g, S = 2) states have comparable
enthalpy. SCO provides a reversible molecular switch, which
is addressable by changes in temperature, pressure, light ir-
radiation, magnetic field, and chemical environment [19]. As
spin-state changes are accompanied by changes in molecular
volume, color, and magnetic susceptibility, SCO materials are
intrinsically multifunctional and have been widely explored
for applications such as high-density reversible memory,
and ultrafast nanoscale switches [19–21]. However, many
questions about the fundamental physics at play in these sys-
tems remain open [22–36].
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FIG. 1. (a) Pyrochlore lattice with the three nearest-neighbor
interactions (k1, k2, and k3) marked. We neglect through-space inter-
actions between third nearest neighbors k3s as we expect these to be
much weaker than k3. Ice rules in the (b) H2L2 and (c) H1L3 phases
(H3L1 is equivalent to H1L3 upon reversing the colors). (d) For any
reasonable potential between neighboring metals, near the minimum
∂2V (r)/∂r2 � k1 is positive and large (blue lines). At larger distances
the second derivative is negative and decreases in magnitude with
increasing distances (orange and green lines). Therefore, one expects
k1 > 0 and k2 < k3 < 0.

The weak magnetic interactions in most SCO materials
means that the fraction of HS molecules nHS ∼ χT . Hence the
magnetic susceptibility χ is commonly used as a diagnostic
for the cooperative behavior in the system—χT displays a
step at a (first-order) transition between the HS and LS phases.
Strongly cooperative behaviors often give rise to multiple
step transitions [19,36–40]. The intermediate plateaus often
display long-range patterns of HS and LS metals, but several
disordered phases have been reported [41–43].

II. MODEL AND METHODS

Changes in the molecular volume accompany spin-state
switching due to the (de)population of antibonding eg orbitals
in the (LS) HS state: The metal-ligand bond length in the HS
state is often ∼10% larger than that in the LS state. In molec-
ular materials and frameworks, the local structural distortions
caused by metals changing spin state couple to long-range
elastic interactions [44]. It is convenient to introduce a pseu-
dospin label for the spin state of each metal, σi = 1 (−1) if
the ith molecule is HS (LS). Defining RHS (RLS) to be the
equilibrium distance between metals in the HS (LS) phases,
we can write the equilibrium midpoint between neighboring
metals as R + δ(σi + σ j ), where R = (RHS + RLS)/2 and δ =
(RHS − RLS)/4. The effective Hamiltonian of the system is

H = �G

2

∑
i

σi +
3∑

n=1

kn

2

∑
〈i, j〉n

{ri j − ηn[R + δ(σi + σ j )]}2,

(2)
where �G = �H − T �S is the free-energy difference be-
tween HS and LS metals, �H = HHS − HLS and �S =
SHS − SLS are the enthalpy and entropy differences between
the HS and LS states, respectively, kn are the effective spring
constants between nth nearest neighbors (see Fig. 1), the
sum over 〈i, j〉n includes all nth nearest neighbors, ri j is the
instantaneous distance between sites i and j, and ηn = 1,√

3, 2, . . . is the ratio of distances between the nth and

first nearest-neighbor distances on the undistorted pyrochlore
lattice.

The single-molecule contribution to the entropy �S arises
from the change in the spin and orbital quantum numbers and
vibrational frequencies between the HS and LS states [45].
The vibrational contribution is typically largest and endows
a rather complicated temperature dependence on �S that de-
pends on all of the vibrational frequencies in both electronic
states. As we are not interested in any one complex and for
simplicity, we set �S = 4kB ln 5 below [46], a typical magni-
tude of Fe(II) complexes [47].

If a pairwise interaction between metal centers is expanded
to an arbitrary order only terms of bilinear order in the
pseudospin variables arise, because σ 2

i = 1 [36]. However,
there is no guarantee that any individual interaction will be
minimized—only the total free energy is minimized—thus the
kn are not required to be positive. For physically and chemi-
cally reasonable potentials, if the nearest-neighbor distance is
close to the minimum of the potential, then k1 > 0, but k2 and
k3 < 0 [36], as illustrated for the Lennard-Jones potential in
Fig. 1(d).

Estimates of k1 from measurements of the bulk modulus
yield k1 ≈ 104–105 K/Å2 [44], in good agreement with val-
ues calculated from first principles, e.g., k ∼ 8 × 104 K/Å2 in
[Fe(pz)Pt(CN)4] · 2 H2O (pz=pyrazine) [22]. As δ � 0.05 Å
[48] this means that k1δ

2 is of order kBT1/2, where T1/2 =
�H/�S is the temperature at which one expects nHS = 1/2,
typically 100–400 K [36]. Thus the characteristic energy
scales of the single-molecule physics (kBT1/2) and the inter-
actions between molecules (k1δ

2) both play important roles in
understanding SCO materials.

Inspired by recent progress in the synthesis of tetrahedral
iron cages [49] we study model (2) on the pyrochlore lattice
[Fig. 1(a)], where we expect k2 < k3 < 0 [Fig. 1(d)] and re-
quire k1 + 6k2 + 4k3 > 0 for structural stability.

FIG. 2. (a) The zero-temperature phase diagram for k1 > 0 and
k3 = 3k2/4. For small |k2| the long-range strain dominates and picks
out HS or LS states, but large |k2| suppresses this effect, allowing the
SSI phases to emerge. (b) The finite-temperature phase diagram for
k1 > 0, k2 = −0.1k1, and k3 = −0.075k1. The colors of the phase
diagram indicate the equilibrium values of the fraction of high spins
nHS, calculated via parallel tempering. We find four (black) lines
of first-order transitions that terminate at critical end points (black
circles). The blue and red lines indicate lines of metastability (spin-
odals) for the cooling and heating calculations, respectively (cf. Fig.
S1 [50]). Hence, the distance between blue and red lines is the width
of the hysteresis. Individual materials have a fixed �H (white lines),
and the corresponding HS fractions nHS and heat capacities are shown
in Figs. 4 and S2 [50], respectively.
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We make the symmetric breathing mode approximation,
which neglects asymmetric structural distortions [18,36], al-
lowing the equilibrium distance to be written as ri, j = ηnx,
where x is the distance between nearest neighbors. We then
minimize the resultant Hamiltonian over x, yielding a Ising-
Husimi-Temperley model,

H = �G

2

∑
i

σi +
3∑

n=1

Jn

∑
〈i, j〉n

σiσ j − J∞
N

∑
i, j

σiσ j, (3)

where Jn = knη
2
nδ

2, the long-range strain J∞ = ∑
n znJn, and

zn is the coordination number for the nth nearest neighbor.
We calculate the finite-temperature properties from a

combination of single spin-flip Monte Carlo, worm, and

loop algorithms on a 12 × 12 × 12 × 4 = 6912 lattice except
where stated [50]. We employ three different types of calcula-
tions: cooling, heating, and parallel tempering. The heating
and cooling calculations simulate experiments under given
conditions, giving the limits of metastability (spinodal lines),
and hence the difference between the calculations corresponds
to the width of the hysteresis. The parallel tempering calcula-
tions are designed to find the lowest free-energy state for a
given set of parameters (including temperature).

III. RESULTS AND DISCUSSION

We find three distinct spin-state ice phases: H3L1, H2L2,
and H1L3 (see Fig. 2). In the ground state of the HnL4−n

phase every tetrahedron contains n HS and 4 − n LS metals

FIG. 3. (a)–(c) The structure factors Sσσ [Eq. (4)] for (a) H1L3, (b) H2L2, and (c) H3L1. All structure factors display pinch points, one of
which is circled, at the Brillouin zone boundaries characteristic of a Coulomb phase [11]. (d)–(l) The spin structure factors SSS [Eq. (5) for
(d), (g), (j) H1L3, (e), (h), (k) H2L2, and (f), (i), (l) H3L1 at selected magnetic field strengths. For k1δ

2 ∼ 100 K pinch points are observed
for magnetic fields of <0.1 T, so only moderate fields are required for the pinch points to be observable via neutron scattering. All structure
factors were calculated for k1 > 0, k2/k1 = 4k3/3k1 = −0.1, and kBT/(k1δ

2) = 0.01 on a 36 × 36 × 4 × 4 = 20 376 lattice with (a), (d), (g),
(j) �H = 2k1δ

2, (b), (e), (h), (k) �H = 0, and (c), (f), (i), (l) �H = −2k1δ
2.
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[Figs. 1(b) and 1(c)]. Thus, the H3L1 and H1L3 phases can be
mapped onto the dimer model on a diamond lattice, and the
H2L2 phase can be mapped onto the loop model on a diamond
lattice [11]. We expect the stability of the ice phases to be
underestimated in calculations because the long-range strain,
which the favors ferroelastic (HS and LS) phases, goes to a
constant at large separations in the symmetric breathing mode
approximation [36], rather than decaying with a power law as
expected physically [44].

In order to verify that the SSI phases at T = 0 are indeed
Coulomb phases we have calculated the pseudospin structure
factor [Figs. 3(a)–3(c)],

Sσσ (
q) = 1

N2

∑
i j

〈σiσ j〉ei 
q· 
ri j . (4)

We clearly observe singularities in Sσσ at the Brillouin
zone boundary, known as pinch points, which are a direct

consequence of the existence of a divergenceless gauge field
[11]. This confirms that the intermediate plateaus are indeed
Coulomb phases.

However, directly measuring the pseudospin structure fac-
tor is not straightforward. In SCO materials the magnetic
correlations between sites are typically negligible. Therefore,
the spins are described by a Zeeman Hamiltonian, HZ =∑

i μ
z
BBSz

i (σi ), where the spin Si(σi ) depends on the spin state,
B is the applied field, and μB is the Bohr magneton. The spin
structure factor is

SSS(
q) ≡ 1

N2

∑
i j

〈Si(σi ) · S j (σ j )〉ei 
q· 
ri j (5a)

=
(m+ − m−

2

)2

Sσσ (
q) + Sd (Bz ),+SB(Bz )δ(q), (5b)

FIG. 4. The fraction of high spins nHS for selected values of �H/(k1δ
2) with k1 > 0 and k2/k1 = 4k3/3k1 = −0.1. The red, blue, and black

lines represent heating, cooling, and parallel tempering calculations, respectively. The parallel tempering calculations return the state with the
lowest free energy, while the heating and cooling calculations indicate the limits of metastability (spinodal lines). We find plateaus at nHS � 0,
1
4 , 1

2 , 3
4 , and 1, corresponding to the LS, H1L3, H2L2, H3L1, and HS phases. Hence, for a wide range of parameters, it is possible to tune

between different SSI phases with temperature alone. Snapshots of these phases are shown in Fig. S3 [50].
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where m± = ∑
i〈Sz

i (±1)〉/N , and the trivial diffuse, Sd (Bz ),
and Bragg, SB(Bz ), scattering are given by

Sd (Bz ) = [SH (SH + 1) − SL(SL + 1) − m2
+ + m2

−]nHS

+ SL(SL + 1) − m2
− (6)

SB(Bz ) =
(m+ + m−

2

)2

+
(

m2
+ − m2

−
2

)(
2nHS − 1

)
. (7)

This is directly measurable via neutron scattering and clearly
shows the pinch points [Figs. 3(d)–3(l)]. Importantly, the
fields required are modest. For a typical value of the in-
termolecular interactions k1δ

2 ∼ 100 K, the magnetic fields
required to observe pinch points are at < 0.1 T. Applied pres-
sure favors the smaller LS state. Therefore, pressure would
also allow one to tune between the three different SSI phases,
and to do so at low T where the pinch points are most easily
observed.

The ratio �H/(k1δ
2) not only has important consequences

for the low-temperature physics, but also for the high-
temperature behavior [Figs. 2(b) and 4]. For �H ∼ −(k1δ

2)
we observe a single first-order transition. This is a purely col-
lective phenomenon, as every single ion always favors the HS
state (�G < 0 at any temperature). Increasing �H induces
further transitions with plateaus at nHS � 0, 1

4 , 1
2 , 3

4 , and 1,
corresponding to the LS, H1L3, H2L2, H3L1, and HS phases,
respectively [Figs. 4(b)–4(h)]. Hence, for a wide range of
parameters, it is possible to tune between different SSI phases
with temperature alone.

This can be understood as follows: The single-molecule
entropy difference between spin states (�S) couples to the
pseudospin just as a magnetic field couples to spin in the Ising
model, Eq. (1). Thus, the single-molecule spin-crossover be-
havior acts as an effective temperature-dependent “field” for
the pseudospins. This changes the ice rules as the temperature
varies.

Due to the large width of the hysteresis loop at low
temperatures, simulations of straightforward cooling do not
always result in the same low-temperature phase as is found
by parallel tempering [Figs. 4(a)–4(g). Similar effects have
been observed experimentally in SCO materials that display
long-range antiferroelastic order [51,52], and labeled “hidden
hysteresis.” The hidden low-temperature states can be realized
by either photoswitching (i.e., reverse-light-induced excited
spin-state trapping) or applying and adiabatically releasing a
pressure to the system. Hence, it becomes possible to tune
between different SSI phases with not only temperature but
pressure and light as well. Thus, spin-crossover materials
provide a rare opportunity to study the transition between two
different topological phases.

Further increasing �H/(k1δ
2) moves the transitions to-

wards and through critical points, where the transition
is continuous, and into the crossover regime [Figs. 2(b)
and 4(g)–4(i)]. The higher-temperature transitions become
crossovers first as �H/(k1δ

2) increases until there is, even-
tually, a single crossover.

This results in significant melting of the SSI phases and the
spontaneous production of defects. For each SSI phase there
are two different types of defects. For a state obeying the spin-
state ice rules everywhere changing a metal from a LS to HS

FIG. 5. Sketch of the propagation of defects in the H2L2 phase.
(a) The H2L2 vacuum state: Every tetrahedron obeys the 2-HS/2-
LS spin-state ice rule. (b) Changing the spin state of a LS metal
center (highlighted in purple) creates h defects, on both tetrahedra
connected to the metal, but does not change the total topological
charge,

∑
Q = ∑

κδS, where κ = ±1 for tetrahedra pointing in the
±z direction, and the sum runs over all tetrahedra. (c)–(f) Additional
spin-state changes on tetrahedra hosting defects are a low-energy
process that can cause the defects to propagate. This conserves Q,
but not the numbers of h or 
 defects. Similar processes result in
deconfined excitations in both the H1L3 and H3L1 SSI phases.

state creates an h defect on both of the tetrahedra connected
to the metal center [Figs. 5(a) and 5(b)]. Conversely, changing
the spin state of a metal from HS to LS creates two 
 defects.

To understand these defects it is helpful to consider a large
magnetic field in the z direction, such that the component of
the spin parallel to the field is Sz

i (1) = SH for HS metals and
Sz

i (−1) = SL for LS metals. The creation of two h defects
increases the number of HS metals by one. Thus, each defect
carries a spin 1

2 (SH − SL ) ≡ δS. Similarly, the process of cre-
ating two 
 defects on the connected tetrahedra corresponds
to the creation of two quasiparticles with spin −δS. It is im-
portant to note that there are no intermediate spin states in the
model. Hence, these defects arise purely as a collective effect
and thus correspond to fractionalized quasiparticles with spin
midway between the HS and LS states.

The multiple ways to satisfy the spin-state ice rules allow
defects to propagate (Fig. 5). For example, a metal center
changing from HS to LS on a tetrahedron containing an h
defect restores the ice rules on that tetrahedron and creates
an 
 defect on the other tetrahedron connected to the metal
center [Figs. 5(b) and 5(c)]. Thus, the number of h- and
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-type defects are not conserved. However, the topological
charge Q = κδS is conserved, where κ = ±1 for tetrahedra
pointing in the ±z direction. It only takes a finite amount of
energy to move a pair of defects infinitely far apart. Hence,
the fractionalized topological charges are deconfined [11].

h and 
 defects carry the opposite spin. Therefore, if δS and
−δS topological charges meet on the same tetrahedron they
annihilate, restoring the spin-state ice rules. This is analogous
to electron-hole recombination in a semiconductor or matter-
antimatter annihilation.

Passing a current through a molecule [53,54] or mechani-
cally stretching or squeezing its ligands [21,55] can reversibly
change its spin state; a voltage can switch between the two
broken symmetry states of an antiferroelastically ordered
chain [56]; and strain can induce the motion of domain walls
in ordered phases of SCO materials [57]. These experiments
suggest that applying a voltage or strain could also induce the
motion of the defects in SSI phases, somewhat analogous to
the current-induced motion of skyrmions [58,59]. Either of
these effects could make SSI a valuable resource for spintronic
applications.

IV. CONCLUSION

Our calculations predict that three distinct Coulomb phases
arise in spin-crossover materials on pyrochlore lattices.
In each phase the low-energy excitations are mobile and

deconfined, carrying a spin midway between that of the HS
and LS states. Realizing Coulomb phases beyond the two-
in/two-out phases in water and spin ices has proven extremely
challenging. However, the unique role of the single-molecule
entropy in spin-crossover materials allows temperature and
pressure to change the ice rules. The physics of SCO
molecules could also allow for the use of pressure and light
to manipulate and control the excitations.

Important questions arising from this work include the
following: (1) What are the leading quantum mechanical cor-
rections to the Hamiltonian? Exchange is weak but spin-orbit
coupling is vital for the transition of a metal from HS to
LS [60] and may act as a transverse field [61]. (2) What
state do quantum mechanical corrections lead to? Is a single
classical state selected (order by disorder) or does a “quantum
spin-state liquid” emerge? Interestingly, an Ising model in
the 3-HS/1-LS or 1-HS/3-LS states with an added transverse
field term is closely related to the quantum dimer model on
the diamond lattice, which is believed to host a gapless U(1)
spin (state) liquid [62].
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