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Magnetic phase transitions in an electroelastic model for magnetically ordered spin-crossover solids
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Spin-crossover and Prussian blue analog materials are investigated in two dimensions with the three-state
Blume-Emery-Griffiths model where each spin interacts with its nearest neighbors and next-nearest neighbors
and may be either in high-spin or low-spin state. The interactions through the system are strongly dependent on
the instantaneous distance between atoms and are magnetic and elastic in nature. Finite-size effects have been
detected at finite temperature on the model. The thermal distortion of the lattice configuration due to lattice
unit displacements strengthened the thermal spin transition that occurred. The generated numerical results are
obtained by two-step Monte Carlo simulations where used thermodynamic parameters allowed to establish a rich
phase diagram. Gradual and first-order transitions with thermally induced hysteresis phenomena have been ob-
served. Near the thermal hysteresis loops, the model exhibits throughout relaxation curves lattice configurations
evolving through two-dimensional nucleation and growth processes that are enhanced with suitable values of the

model parameters.
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I. INTRODUCTION

Molecular-based materials as spin-crossover (SCO) solids
and Prussian blue analogs (PBAs) [1] constitute a class of
very promising materials with real opportunities of applica-
tions (in various domains of material science) as display and
memory devices [1-4], multisensors [5—14], probes of con-
tact pressure or shocks [15], as well as actuators [6,16—18].
They are commutable solids with the presence of transition
metal coordination which have an electronic configuration
ranging between 3d* and 3d’ (chromium, manganese, iron,
and cobalt) in octahedral symmetry, surrounded by nitro-
gen atoms, called SCO complexes [1,19-22]. In special
conditions, they may exhibit a phase transition between
the diamagnetic low-spin (LS) state and the paramagnetic
high-spin (HS) state [23-25] under external stimuli such as
light, pressure, temperature, magnetic, and electric fields,
etc. [23-26]. The thermally induced spin transition leads
to both electronic and structural changes, often observed
as a color and magnetic moment changes [1,27,28]. The
system properties are strongly dependent on interactions be-
tween molecules. For weak interactions, the HS fraction
changes smoothly with the temperature; whereas when they
become strong enough, the system exhibits cooperative phe-
nomena [29-31] which manifest through the existence of
first-order transitions accompanied with thermal hysteresis.
Then, the change in HS fraction becomes sharper and sharper
with increasing interaction strength between molecules. Of
course, the interaction in SCO solids is dominated by the
variations of unit-cell volume and bond length, that are con-
siderably larger in the HS state.
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The most common case studied in literature is of Fe(Il)-
based SCO materials with 3d® configuration where the total
true spin equal to § = 2 and O in HS and LS states, respec-
tively. The SCO phenomenon is the result of the redistribution
of the electrons between the bonding #,, and the antibonding
e, orbitals. In the diamagnetic (S = 0) LS state, only bond-
ing orbitals are populated (tggeg), while in the paramagnetic
(§ = 2) HS state, the electronic configuration becomes (tfgeg)
according to the Hund’s rule. The microscopic changes of the
magnetoelastic properties of the SCO solids at the transition
accompanied with large volume changes resulting from the
constructive interferences of the molecular volume changes
which deploy at long range through elastic interactions. As
well demonstrated in several works [29,30,32], the elastic
interactions are at the heart of the existence of cooperative ef-
fects in SCO materials and play a crucial role in the existence
of first-order transitions and thermally induced hysteresis
loops observed experimentally [29]. Novel properties [33-35]
have been also detected for SCO solids, in particular, the com-
bination of magnetoelastic, photochromic, thermochromic,
and photoluminescence (PL) features [36—46] in the same
material.

In this work, materials combining the spin-transition
phenomenon with ferromagnetic interactions are investi-
gated. Describing this particular SCO system, we used the
Blume-Emery-Griffiths (BEG) models [47-49] in which we
accounted for the elastic and magnetic interactions [34,50—
62]. We demonstrate that the magnetic and elastic interactions
generate tremendous changes in the spin-transition proper-
ties, bringing to light unique and unprecedented nonlinear
behaviors of the HS fraction nys. We study carefully the com-
petitions of the elasticlike interactions responsible for the ex-
istence of multistep transitions and reentrant phase transitions
triggered by the magnetic interactions [52,54,55,57,58,63—
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67]. A detailed study of the system properties allowed to
establish a rich phase diagram [68,69] in which the various
system phases have been identified. Moreover, a dynamical
version of the present model based on a master-equation treat-
ment of the Hamiltonian is also presented [70-72]. There, we
studied the relaxation of the metastable high-spin states at
low temperature as well as the dynamical behavior at finite
temperature in bistability regions.

The paper is organized as follows. In Sec. II, we define
the Hamiltonian model of the system and present its included
interactions as magnetoelastic and electronic parts which are
responsible of the system structure and spin-state modifica-
tions. Section III is devoted to the two-step Monte Carlo
algorithm used on the spin state and for the displacements
of the lattice sites. Section IV contains the discussions of
the obtained results with the model parameters which are
described in the Hamiltonian. In the last section, we conclude.

II. MODEL DESCRIPTION AND INTERACTION
HAMILTONIAN

This work is inspired from the electroelastic model of
Boukheddaden et al. [S0-55], designed to describe the ther-
mally induced first-order transition in spin-crossover models
accounting for their electronic and volume changes at the
transition. The electroelastic model was based on the study of
a two-dimensional (2D) lattice of SCO atoms coupled elasti-
cally through springs whose elastic constants and equilibrium
distances depend on the spin states of the connected sites.
In such a model, the spin-transition molecule is described
with a fictitious spin o, whose values —1 and +1 associated
to the low-spin (diamagnetic) and high-spin (paramagnetic)
states. As a matter of fact, this model does not include any
ferromagnetic interactions between the spin states, and the
HS spin state is then paramagnetic. Recent developments
in the chemistry of spin-crossover materials and switchable
solids [6,73,74] revealed a original type of SCO materials
which order magnetically in the HS phase (at low temper-
ature). In these systems, the exchange (or superexchange)
interactions between the spin states in the HS state are then
at work. Besides, the magnetic exchange interaction was in-
troduced inside binuclear SCO complexes [75] together with
an Ising-type interaction coupling between the binuclear units.
To extend our previous two-state electroelastic model to study
the case of ferromagnetic SCO materials, we designed a
spin-1 BEG model that takes into account electroelastic in-
teractions [50-53] between SCO units based on three-state
fictitious spin description of a deformable lattice with square
symmetry of size L. The spin variables at each lattice site can
be in HS state with §; = +1 (magnetic state) or in LS state
S; = 0 (nonmagnetic state). The degeneracy ratio between HS
and LS states is defined by g = gus/gLs, where gys and grs
are the degeneracies of the HS and LS states, respectively.
Here, we take g = 150, which leads to a molar entropy change
at the transition AS = R Ing ~ 41.7 JK~' mol~!, which is in
fair agreement with experimental data of literature [31,76].
SCO molecules are assumed to elastically interact via springs
and the lattice deformation is assumed to remain inside the
plane (see Fig. 1). Thus, the topological structure of bonds
between atomic sites will be conserved during the simulations.
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FIG. 1. Lattice configuration showing the atomic links between a
site i (red ball) connected to black and bue balls, representing the NN
and NNN sites, respectively. The equilibrium bond length between
NN (NNN) SCO sites is Rey (S, S;) [R,, (S, S;)].

Since the elastic constant and equilibrium distances between
lattice sites depend on the connected spin-state values, the
model is described by the following Hamiltonian:

H = Hejec + Hmagn + Helas, (D

where H.. stands for the electronic contribution of ligand-
field energy which is set to the value A =450 K, and
entropy contribution kg7 In(g) which stabilizes the HS
state [47,49,77-80]:

Heee = (A — kgT In g) ZSIZ 2)

Within these values of ligand-field and degeneracy ratio, the
effective ligand-field energy cancels for the temperature value
T >~ 90 K which has the same order of magnitude of the
transition temperature of SCO materials.

Hinagn is the magnetic interaction between the spin states
which is only between HS species:

Hmagn = - ZJ(rij)SiS's 3
(i)

and H,j,s denotes the elastic part:

1 2
Hes = > ZAU-(m)[r,-j — Reg(Si, 5))]
(i, ))
1 ,
+5 D Butriolrie = Ry (S, S0P, ()
(i,k)
which accounts for nearest-neighbor (NN) and next-nearest-

neighbor (NNN) interactions between the sites. The NNN
interactions are introduced here to maintain the lattice stability
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with respect to shear distortion [50-53] particularly during
the volume expansion or contraction accompanying the spin
transition along the transformation from the LS to HS phases
or HS to LS phases. To take into account for the anharmonic
effects of the lattice, leading to normal thermal expansion in
the LS and HS phases, as well as for the difference of rigidity
between the HS and LS phases (HS is less rigid than LS),
the respective NN and NNN elastic constants A;; and B are
written under the following forms:

A,‘j(l’,‘j) =A0 —G—A](rij- —Rgiﬂ)2 and
Bit(ri) = Bo + By (rac — V2RI, )

where (i, j) and (i, k), respectively, run over the NN and
NNN bonds, and RFH (respectively +/2RHH) is the equilib-
rium lattice NN (respectively NNN) bond length in the HS
state. Thus, denoting by RL (respectively +/2RLE) the NN
(respectively NNN) LS equilibrium bond length, we clearly
see from Eq. (5) that the NN (respectively NNN) elastic
constant in the HS phase is Agyg = Ag (respectively Byy =
Bo), while that of the LS state is ArL = A¢ +A (R}, —
R]g;“)2 > Apy [respectively By = By + ZBI(REqH — R]e“;“)2 >
Byn], which meets the constraints of rigidities imposed to
two states. However, it is hard to connect a 2D model system
to a three-dimensional (3D) material. Indeed, some of the
parameters like the ligand field and the degeneracy have been
chosen from the experiments. The ligand field A corresponds
to the enthalpy change at the transition between the LS and the
HS state, while the degeneracy ratio g = gus/gLs connects to
the entropy change at the transition through the relation AS =
R In(g). This quantity is derived from calorimetric measure-
ments, as stated above. For the other parameters, like elastic
constants, magnetic interactions, it is really hard to connect
them to experimental data, which result from 3D systems, in
which in addition anisotropic effects may take place, while
here we treat the case of an isotropic 2D system. Furthermore,
at least the connection between the bulk modulus Y at 3D and
the elastic constants in 2D can be approximated as ¥ ~ A/a,
where A is the elastic constant of the 2D system and a is
the lattice parameter. For the other parameters (NNN elastic
constant) we do not have any experimental indication, and
the strength of the magnetic interactions between the spins’
subsystem is taken here as a variable parameter allowing to
tune the physical properties of the system.

In the magnetic part of Hamiltonian (1), whose expression
is defined in Eq. (3), the exchange term J(7;;) represents the
local magnetic coupling interaction between NN SCO sites
and is written in the form

J(rij) = Jo — a(rij — RYyY), (6)

in view to decrease the magnetic interaction during the lattice
expansion. In Eq. (6), Jy and o parameters are taken positive,
so as to ensure ferromagnetic interactions between the SCO
sites. As a result, the magnetic interaction in a lattice having
the lattice parameter of the LS state is J(ri; = Ryy) = Jo +
a(REqH — ngqL), while it is equal to J(r;; = RZH) = Jy in the
elastic HS phase. This point is important and will be discussed
later when we examine the relaxation of photoinduced HS
states.

Let us come back to the elastic part of the Hamiltonian (1)
defined by Eq. (4) and discuss in more details the involved
physical parameters. As stated above, the elastic constants
A;;(rij) and By (rix) correspond, respectively, to the NN and
NNN bond stiffness constants whereas r;; = ||7; — 75| (i)
is the instantaneous distance between NN (NNN) i and j
(i and k) sites. As it emerges from Eq. (5), bond stiff-
ness constants are taken as parabolic decreasing functions
of the instantaneous distances, which then lead to quartic
potentials. However, one may easily imagine other types of
potentials [81,82] satisfying the experimental condition of soft
HS state and rigid LS state. Here, Ag (Bg) and A; > 0 (B, > 0)
are, respectively, the NN (NNN) harmonic and anharmonic
contributions to the elastic energy.

The quantity Rey(Si, S;) [R,,(Si, Si)] is the equilibrium
distance between two NN (NNN) sites i and j (i and k),
depending on the connected spin state. Since the spin
configuration of two bounded sites can be HS-HS, HS-LS,
or LS-LS, we denote their corresponding bond lengths
as REqH, R;L = quH or REL respectively. Thus, we obtain
the following relations: Re (41, +1) = Ree(—1,—1) =
Reyg(+1,—-1) = Ry(—1,+1) = RZH, Reg(+1,0) =
Reg(0,4+1) = Ryy(—1,0) = R,(0,—-1) = REIL, and
Re4(0,0) = Ry Due to the square symmetry of the lattice,
the equilibrium distances R;q(Si,Sk) between NNN sites
have been taken equal to those of NN sites multiplied by
V2. According to these relations, it is straightforward to
demonstrate that the spin dependence of the NN distance

R.4(S;, ;) can be obtained in a unique way as follows:
Rey(Si.Sj) = Ro + 2R, (S7 + S7) + RyS7S3, ©)
where Ry =RL, Ry = j(RE'—RL), and Ry =R +
Ri; — 2R}". Evidently, the Ry represents the NN LS equi-
librium distance, while R; corresponds to the misfit of
lattice parameter between the HS and LS states, and R, =
HH LL
2( w — RSIL) represents the difference between the center
of mass of HS and LS lattice parameter and that of HS-LS

configuration. In this work, we take for simplicity R?qL =

%(RZH + RL;), which then gives Ry = 0.

A preliminary analytical examination of the role of the
bond stiffness in the energetic stabilization of the spin states
helps in the understanding of the relevant parameters con-
trolling the thermodynamic properties of this electroelastic
Hamiltonian. For that, we limit ourselves to the case of
negligible NNN interaction and negligible anharmonic con-
tributions. Using Eq. (7), Hamiltonian (1) is reexpressed in
terms of the BEG Hamiltonian

22
H == Jij)SiS;+ Y _ K(r;j)S;S
(i, (i,J)
A
+_DiST+ 3 ) (i~ Ro)’, ®)
i (i,J)

where the parameters J(r;;), K(ri;), and D; are the local mag-
netic coupling interaction, the local quadrupolar interaction,

and the local crystal-field contributions, respectively. The two
first interaction parameters are given by

J(rij) =Jo —a(rij —R") and K(r;;) = 4AoR}, (9)
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and the effective local crystal field writes

Z
D; = A — kgT In(g) + 2A0R, |:le > (rj— REE) }
j=1

(10)

The fact that the quadrupolar interaction K, which is here
positive and exclusively short range, indicates that this term
stabilizes NN spin configurations S; =0, S; = %1 or §; =
0, §; = 0 which means HS-LS or LS-LS configurations. In
contrast, the magnetic term stabilizes HS-HS (i.e., £1- £ 1)
neighboring sites. On the other hand, the effective crystal field
acting on a spin site now depends on the elastic field created
by the neighbors which acts as an internal pressure. The in-
spection of the elastic contribution 2AgR;[zR; — Z}: (rij —
R]g;“)] to the effective crystal field shows that it is positive
when r;; = Ry (LS bond length) thus stabilizing the LS

state and becomes negative for r;; = Ry;' (HS bond length)
stabilizing the HS state. This behavior of the elastic field
establishes a direct synergy between the entropic effects of
the degeneracy and the elastic interactions.

III. TWO-STEP MONTE CARLO ALGORITHM

A planar lattice of square symmetry with N =L, x L,
SCO sites is considered with free boundary conditions. The
simulations are alternatively executed on spin and position
variables in a two-step strategy. The metropolis algorithm is
considered for the spins’ and lattice positions’ update proce-
dure (sites’” displacements). Then, the stochastic algorithm is
performed in the following way: for a site (i, j) randomly se-
lected, with spin §;; = =1, 0 and position r;;, a new spin value
Slfj [such that S;; — Slfj =+1,0(S;; # Slfj)] is set without po-
sition change. This spin change is accepted or rejected by the
usual Metropolis criterion. Whatever the result (acceptance or
rejection), the lattice whole is relaxed mechanically by a slight
motion of nodes (selected randomly) with a quantity du =
0.03 (in any direction: u = x, y) which is much smaller than
the distance between the spin states. The lattice relaxation is
also performed following a Monte Carlo technique at fixed
spin configuration. The procedure of the lattice relaxation is
once repeated for each spin flip. Afterwards, a new spin site
will be selected randomly and so on, etc. Once all nodes of
the lattice are visited for the spin change, we define such step
as the unit of the Monte Carlo step and denote it “MCS.”
Physical quantities of interest are calculated in the steady state
with Ny = 10° MC steps per site for the spin-flip dynamics
and for each spin-flip attempt, all SCO unit displacements
are once attempted (one Monte Carlo cycle). Specifically, a
spin variable and its position are randomly selected within
the possible projections with a uniform distribution. About
Ng =2 x 10* MC steps per site are considered for thermal
equilibration in the spin-flip dynamics and then discarded
from the averaging procedure. Three to five independent runs
are performed on each MC process in view to get smooth data.
The lattice magnetization is calculated as follows:

1 N
= —ZS,-. (11)
N i=1

The nys fraction is evaluated as follows:
1
mas = (8%) = (N4 +N-), (12)

where N, and N_ are numbers of spins in the up and down
states, respectively. The magnetic critical temperature ¢ is
defined in this work as the temperature associated to the peak
in the magnetic susceptibility curve when the magnetization
is continuously decreasing to vanish. The magnetic suscepti-
bility is calculated by the formula

x = ()" —m?), (13)

where S is the averaged system magnetization at a given step
of the simulation and (...) denotes a statistical average over
the (Ng — Ng) MC steps. Another transition temperature of
interest 7Ti,, is that of the spin-transition phenomenon which
occurs when the HS fraction nyg is equal to % We also calcu-
late the average intermolecular distance (d) between NN SCO
sites that provides information about the lattice “volume”
change along the spin transition. Its expression is given by

2 i) V& = x)2+ () —yi)?

(d) =
(Le — DL, + (L, — DL,

) (14)

with i and j run [1, L,] and [1, L,] respectively.

IV. RESULTS AND DISCUSSIONS

This work uses as far as possible realistic model parameters
values, already derived in previous electroelastic modeling of
SCO materials by one of the authors [50-56]. The chosen
ligand-field energy value A =450 K leads to a molar en-
thalpy variation at the transition AH ~ 3.7 kJmol~!, while
the entropy change at the transition, already evaluated to
AS>~41.71] K mol~!, gives a spin-transition temperature
Tip= %5 = kglng ~90 K.

As well, the values of equilibrium distances between
two NN sites, which depend on the spin configuration of
linked sites, are taken as follows: REIH = 1.2 nm, R‘;qL =1 nm,
R?qL = %(R?qH + quL) = 1.1 nm. In view of the square 2D
symmetry of the lattice, the NNN equilibrium distances are

simply chosen as R;}(IIH = ﬁRg]H, R’LL ﬁReLqL, and R;)} AL _

\/ERSIL for the three possible electromc configurations. It 1s
worth mentioning that the value of the lattice misfit (Ry," —

R(I;qL) is taken a little bit high in order to enhance the lattice
distortions for the small lattice sizes, investigated in this study.

The effect of the elastic intermolecular interactions on
the SCO transition is investigated by considering different
values of the elastic constants. Indeed, the variation of the
equilibrium intermolecular distance and bond stiffness upon
the LS to HS transition results in volume and bulk modulus
changes, which are experimental features of the spin transi-
tion in SCO solids [83—-89]. Here, we take Ag = By in the
range 500 to 10* Knm~2, leading to an order of magnitude
of bulk modulus E 2~ Ay/R,, in the range 0.1-2 GPa, in quite
good agreement with bulk modulus of polymeric materials.
The anharmonic contributions to the elastic constants are, for
simplicity, taken as A; = B; = 10Ao. However, it is important
to notice that their contributions A;(r;; — Rg]"[)2 to the total
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elastic stiffness are maximum in the LS state and are equal to
Al(Ri‘qL — quH)2 = 200 K (for Ag = 500 K nm~2) which then
represents 40% of the total elastic energy.

Another contribution with respect to previously published
electroelastic models concerns the magnetic interaction be-
tween the SCO units, represented in Hamiltonian (3) by the
local exchange interaction J(r;;). The values of the constant
part Jy of this term are selected in the range Jy = 30-100 K,
which leads in a simple Onsager 2D model lattice to magnetic
transition temperatures in the range 85-226.90 K. The param-
eter o, representing the magnetoelastic coupling in this model,
is taken in the range of @ = 0-700 Knm~! values. The total
magnetic energy reaches its maximum value, when all spin
states are LS and lattice bond lengths are equal to those of the
LS lattice (r;; = ReLqL). In this case, the magnetoelastic contri-
bution exchange interaction J = Jo — o(r;; — REIqH) takes its
maximum value 20 K which still remains small compared to
JoforJy =50 K and @ = 100 Knm™".

A. Finite-size effects in gradual spin and magnetic transitions

The application of the two-step MC procedure enables us
to estimate steady-state finite-size effects on various physical
quantities, namely, the HS fraction nyg, the net magnetization
m, the magnetic susceptibility y, and the average intermolec-
ular distance (d) between NN SCO sites, as well as spin-spin
correlation C. Various system sizes 8 x 8, 12 x 12, 16 x 16,
and 16 x 24 SCO units are selected and investigated. Cor-
responding numerical results are illustrated in Fig. 2. The
simulations are performed with the value of the NN harmonic
elastic interaction Ag = 2000 K nm~2, for which we do not
expect a first-order spin transition, but rather a continuous
transformation from LS to HS.

In Fig. 2(a), the temperature dependence of the HS fraction
nys 1s presented for different system sizes. The set of obtained
curves shows a continuous gradual transition between the
values nps = (S?) = 0 (LS state) and ngg = 1 (HS state). It
evidently appears that finite-size effects are almost negligible
for lattice sizes beyond 16 x 16. Figure 2(b) displays the
net magnetization m, which shows a reentrantlike behavior.
Indeed, m is zero in the temperature interval 0-50 K and then
suddenly increases, goes through a maximum, the height of
which increases with system size, and finally falls down at
high temperatures, i.e., in the HS phase. The final value of
m decreases as the system’s size increases, indicating that
in the thermodynamic limit this value will be zero, and the
system will reach the paramagnetic phase. These observations
ensure that in the thermodynamic limit, the magnetization
will reach its maximum value, not necessarily, m = 1, and
its nonzero value will only prevail in a narrow temperature
range. These observations suggest that at low and high tem-
peratures, the system will be globally nonmagnetic. Indeed,
at low temperatures, the LS state ((S?) =0 and (S) = 0) is
stabilized by the ligand-field and the elastic interactions, and
so one gets m = 0 and nygs = 0. This is a strictly diamagnetic
phase, where the SCO lattice is exclusively populated by spins
of values 0. In the high-temperature limit, the states § = +1
and —1 are equally populated, and the HS sate is favored,
which leads to stabilize the paramagnetic state characterized
by m = 0 and nys = 1 for very large systems. Between the

| e

Nys| .
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0.8 [ *12x12
16x16
0.6 | * 16x24 A,=2000 |
04— J=50 |
L =100
02— —
0 | 1 | 1 (all- 0 & 1 | 1 (b-)l-
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| o 16%x24 T I R
' o 16x24
0.1 L1+ Jy—
I wE A
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025 - ": —
L ) . i
0 I(c) | 1 I(d) | 1 I 11 I<d>1.z|
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Temperature (K) Temperature (K)

FIG. 2. Thermal behavior of (a) HS fraction nys, (b) magnetiza-
tion m, (c) magnetic susceptibility x, and (d) average intermolecular
distance (d) between NN SCO molecules, for four system sizes: 8 x
8,12 x 12, 16 x 16, and 16 x 24 showing the finite-size effects on
the model. Inset in (c) represents l0g(xmax) as function of log(N~07)
(black curve), and its corresponding linear regression (red curve).
Xmax denotes the first peak height of x and N is the total number of
SCO sites. Inset in (d) illustrates the correlation between nyg and (d)
for different system sizes considered, when temperature increases.
The used parameters for all panels are Ay = 2 x 10° Knm™2, J =
50 K, @ = 100 Knm™!, A = 450 K, and g = 150.

two previous phases, a totally or partially ordered phase with
m # 0 and nys # 0 emerges [see Figs. 2(a) and 2(b)]. Here,
a ferromagnetic phase appears embedded in two nonmagnetic
phases. The above observations are strengthened by the com-
putation of the magnetic susceptibility curves, illustrated in
Fig. 2(c). Two peaks can be observed for each system, except
for the low-sized one. The first peak appears after a very
sharp jump of x(7') and is attributed to the spin transition
which occurs at about 7 = 72 K for the 16 x 24 system. A
direct finite-size analysis of the behavior of the first peak
height ym.x With system size formally given by the square root
of the system volume (number of SCO units) is performed
[see inset of Fig. 2(c)]. Calculations yield a behavior of the
form xmax =~ N*°. The extracted exponent from a log-log
plot is § = 1.75 £ 0.06, which value is close to the 2D sys-
tem. This scaling result physically indicates that the peak
is associated to a macroscopic instability in the system that
results from microscopic cooperative phenomena to which
most SCO units contribute. This instability is of first-order
kind and is accompanied by a hysteresis phenomenon. The
associated pseudotransition temperature is slowly decreasing
with increasing system size showing some convergence. It is
important to mention that the critical exponent is “measured”
on the magnetic subsystem which is, of course, coupled to
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FIG. 3. Some thermal behaviors of the model for 16 x 16 system
and varying the values of the elastic constant Ay with fixed other
parameters. (a) HS fraction nyg, (b) magnetization m, (c) magnetic
susceptibility x, and (d) average intermolecular distance (d) be-
tween NN SCO molecules. The curves show that one moves from
a continuous behavior to the appearance of discontinuities, which
are first-order transitions, when A, increases. For large values of Ag,
the magnetic susceptibility yx presents two peaks, where the first one
corresponds to the first-order spin transition, and the second one is
attributed to the order-disorder transition. For all panels, other values
of used parameters are Jy, = 50 K, o = 100 Knm™!, A =450 K,
and g = 150.

the SCO elastic lattice through the magnetoelastic interaction.
However, the effect of the SCO transition is to drive the
system from the diamagnetic (S = 0) to magnetic state (5> =
+1) through first-order or gradual transformation (Figs. 2
and 3). But then, when the magnetic order is generated, the
SCO elastic interactions play a negligible role in the system’s
behavior (the lattice parameter becomes almost that of the HS
and does not change a lot). As a result, the magnetic transition
from the ferromagnetic to the paramagnetic state, which takes
place at higher temperature than the SCO transition, mainly
follows the behavior of that of an Ising model, although the
“exchange” interaction J slightly depends on the distances as
J(rij) = Jo — a(rij — RE"). However, as we explained above,
in the HS region, one has (r;;) > Ry, and so the effect of the
long-range interactions on the magnetic subsystem remains
negligible. That is the main reason for which the same critical
exponent as that of the 2D Ising model is found in these
simulations.

The second less sharp peak is attributed to a second-order
phase transition taking place in the HS state between the
ferromagnetic phase at intermediate temperatures and the
paramagnetic disordered phase that prevails at high temper-
ature. For the 16 x 24 system, the ferromagnetic phase exists

between temperatures associated to both peaks of x which are
estimated to 72 and 93 K. The order-disorder transition tem-
perature 7c >~ 93 K well corresponds to the expected Onsager
critical temperature of a 2D Ising system T¢ = 2.269[Jy —
a((d) — RyH]. Using these values, the critical temperature

is estimated using Onsager formula Tou = 2J/In (1 + +/2)
which gives Tops = 2.269Jy = 113.4 K in the case of a per-
fect HS system, for Jy = 50 K. On the other hand, at the
maximum value of x, the corresponding HS fraction value
is nys >~ 0.9 (the magnetization peaks at m >~ 0.6) indicat-
ing that the present ferromagnetic phase is only partially
ordered. Consequently, the ferromagnetic phase of Fig. 2(b)
must be seen as a diluted phase containing about 10% of
diamagnetic LS phase, randomly distributed. Thus, the critical
transition temperature is lower than that of the pure saturated
HS phase and can be estimated in a simple attempt as 75" =
0.970ns ~ 103 K. It is, however, important to mention that
the ferroparamagnetic transition temperatures, estimated from
the MC simulations, crucially depends on the system size.
Thus, for a finite system, the critical temperature is always
lower than that of Onsager, to which it connects through the
relation Te = Tons/(1 + ﬁﬁ) [90], where N is the system

“volume.” According to these developments, one can evaluate
analytically using, for the case 16 x 16 system, the expected
ferromagnetic to paramagnetic transition temperature as 7o =
TSt/ (1 + ﬁ) ~ 95 K, which is in excellent agreement
with the value T = 93 K emerging from the simulations.
One crucial parameter of the model is the average in-
termolecular distance (d) between NN SCO molecules.
Reported in Fig. 2(d), its behavior with temperature is quite
similar to that of nyg and finite-size effects are also found neg-
ligible on this quantity beyond the 16 x 16 system size. The
linear increase of intermolecular distance (d) in the HS and LS
phases is due to thermal expansion, caused by the anharmonic
(quartic) elastic term of the Hamiltonian. Due to the form of
the anharmonic contribution [A; (r;; — RSIH)z] to the NN elas-

tic constant, which is stronger in the LS spin state (ri; = Rp}")

and almost negligible in the HS state (r;; = R},,"), the slope
of the curve (d)(T) is higher in the LS phase. According to
this behavior, the thermal expansion coefficient for the NN
bond length, defined as o7 = d(In (d))/dT, leads to the value,
6.4 x 1074 K=, which is found the same for all investigated
system sizes. This value strongly depends of the anharmonic
elastic constant A; which was taken quite high in the simu-
lations (A} = 10Ay) in order to magnify this phenomenon. In
the temperature interval 60-90 K, the intermolecular distance,
undergoes a rapid increase in the same region of first-order
transition as that of the HS fraction [see Fig. 2(a)] and finally
saturates at high temperatures. This thermal behavior of (d)
leads to an important remark concerning the magnetic prop-
erties. Indeed, the total exchangelike interaction J depends on
the NN distance between the SCO sites, and therefore at fixed
temperature 7, its average value (J) = Jo — a((d) — R}") is
clearly temperature dependent. This makes the study of the
magnetic subsystem more complex than thought, and in the
same time this fact makes the problem extremely close to
the previous BEG studies [47,78—80] in which all interacting
parameters, including magnetic exchange, were assumed to be
linearly dependent on temperature.
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The fact that a sharp transition takes place exactly in the
same region for the electronic state, that is the HS fraction
parameter [see Fig. 2(a)], and the structure, that is the lattice
parameter, is a key MC result of the model which reproduces
experimental observations on SCO solids at the spin transi-
tion. The correlation between nys and (d) is also explored
by computing nys as function of (d) [see inset of Fig. 2(d)]
as the temperature varies. Corresponding data collapse for
different system sizes in a straight line of slope 0.2 nm, es-
tablishing an undoubtedly evident correlation between nyg
and (d). The thermal behavior of the spin-spin correlation
function C(T') = (S;S;) has been also examined with system
size. The results (not reported) are similar to those observed in
Fig. 2(b). Fewer finite-size effects are obtained at low and high
temperatures than in Fig. 2(a). In these temperature ranges,
curves for different system sizes collapse.

B. Effect of the harmonic elastic constant A,

Now, we study the effect of the model parameter values on
the system. For that, since large-scale computing properties
of the model are demanding in simulation time, the 16 x 16
system is selected to predict qualitatively the thermal behavior
of magnetization m, HS fraction nygg, magnetic susceptibility
X, and average intermolecular distance (d), as function of the
elastic constant Ay. Figure 3 summarizes the system’s behav-
ior for three values of this constant: Ag = 1000, 4000, and
8000 K nm~2. One sees that the HS fraction nys [see Fig. 3(a)]
changes from gradual to sharp discontinuous transition with
unchanged transition temperature 7, ~ 69 K. This behavior
can be well understood since the transition temperature be-
tween the LS and HS states involves only a change of the total
effective ligand field, whose elastic part vanishes at the transi-
tion. Therefore, the transition temperature at which the system
switches between the LS and HS states only depends on A, Jy,
and g. Figures 3(b) and 3(c) show the magnetization m and the
susceptibility x which also change from a continuous tran-
sition character to discontinuous when values of the elastic
constant A increases. Thus, for Ag = 4000 and 8000 K nm~2,
the magnetization jumps from 0 to 0.9 exactly at the SCO
transition and then vanishes following a second order-disorder
transition whose critical temperature Te depends on Ay, as
well indicated by the shift of the broad maxima of the suscep-
tibility x [see Fig. 3(c)]. This behavior highlights the effect
of the elasticity of the material on the magnetic properties. Fi-
nally, Fig. 3(d) shows that the average intermolecular distance
(d) is influenced by the change of Ap mainly in the LS state
where the LS lattice distance (d) = 1 nm is stabilized for high
Ay while the transition transforms from gradual to first order,
in agreement with nys(7') behavior.

C. Effects of the magnetic coupling J, and the magnetoelastic
coupling constant

As for Fig. 3, quite similar tendencies are observed for
increasing values of the coupling constant Jy at fixed Ay
value (see Fig. 4). However, one can remark the existence
of notable differences between the effects of Ay and Jy. First
of all, increasing Jy from 30 to 100 K shifts downward the
spin-transition temperature, as indicated in Fig. 4(a), and so

J,=40
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FIG. 4. Some thermal behaviors of the model for 16 x 16 sys-
tem and varying magnetic coupling interaction J, with fixed other
parameters. (a) HS fraction nyg, (b) magnetization m, (c) magnetic
susceptibility x, and (d) average intermolecular distance (d) between
NN SCO molecules. Second- and first-order transitions are obtained
for selected values of Jy, and the curves shift to low temperatures
by increasing Jj values as obtained in ours previous works [78,79].
Two peaks appear in the magnetic susceptibility behavior at high
values of Jy, whereas only one is depicted for its low values [see
(c)]. For all panels, other values of considered model parameters are
Ag =10 Knm2, o = 100 Knm™!, A =450 K, and g = 150.

the exchange coupling Jy stabilizes the magnetic HS spin
phase while giving a sharper character to the spin transition,
as Ao does. It is interesting to notice that the SCO transition
temperature can be determined analytically in this model. At
the switching temperature between the LS and HS states,
free energies of HS and LS phases must be equal. Let us
denote by Pys and P.s the probabilities of occupying HS and
LS sites, respectively. Their general expressions are given as
Pus = Quse PEss and PLg = Qse PEs, where Q is the elec-
tronic degeneracy of the spin state (Qus =2 and Qs = 1)
and Eys (respectively Eyg) is the energy per site in the HS
(respectively LS) state. At the transition, one has Pys = Prs.
On the other hand, the transition takes place between LS
and HS ordered phases (their mixing entropies are equal to
zero). Moreover, the elastic energies of HS and LS phases
are also zero [see Eq. (4)] and, therefore, the energies of
the HS and LS phases are simply given by Eys = Degr — Jo
[where Desr = A — kgT In(g)] and Erg = 0, respectively. At
the transition we then have e ALA—ksTi2In20)=hl — 1 \which
leads to the transition temperature kgT7/> =~ ?11;2;0 =72 K for
Jo = 40 K, which is in excellent agreement Wi1th that of MC

simulations, derived from Fig. 4(a) for nys = 5: when a half

of the system has switched from the LS to the HS state.
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In this problem, the system exhibits two magnetic transi-
tions. The first one, strongly correlated to the SCO transition,
takes place between the diamagnetic state ((S?) =0 and
ferromagnetic state ((S?) = 1). The second ferromagnetic-
paramagnetic order-disorder transition takes place at higher
temperature in the present studied cases. To observe a
crossover between the critical exponent of 2D Ising model
and that of mean-field universality class, we must have a
long-range magnetic coupling between the spin states along
the ferromagnetic to paramagnetic transition. In other words,
there must be a strong interference between the magnetic
transition temperature and the SCO temperature. If these two
temperatures are very close, then the two transitions will
interfere and as a result the magnetic interaction J(r;;) will
strongly depend on the lattice parameter in the temperature re-
gion where the magnetic phase transition takes place between
the ferromagnetic and the paramagnetic HS states. Although
interesting, we believe that this type of study merits a specific
work.

The shift of the SCO transition can be evaluated through
the relation 71, = k?l;lfz“g in the domain where the second-
order and SCO-transition temperatures are very close regard-
ing to Jy values (e.g., for Jo =30K, 7. =90 K, and 71, =
75 K with MC simulations) and the exact relation yields
Ty, = 73.63 K. This estimation is in fair agreement with
the MC simulations of Figs. 4(a) and 4(b). Beyond that, the
obtained result leads to a lowering of the first-order transition
temperatures (77, = 52 K for MC simulations) by of 61.36 K
and with 7, = 204 K, for high second-order transition tem-
perature, when Jj is increased to 100 K. As such, this leads
to having nonvalid relation between 7i, and k?l;njfg. This
effect is also found in the magnetic transition [see Fig. 4(c)],
which also shows a huge effect of Jy on the second-order
phase transition, as expected from theory of 2D Ising sys-
tems. Indeed, a clear saturation of the magnetization m at
high temperatures and an increasing of the domain of the
ferromagnetic phase with Jy which is a common feature in
Ising systems [49,77,78]. Here, the HS units are created and
interact magnetically in the system. Overall, in Fig. 3 we
demonstrated that a strong enough harmonic elastic coupling
Ay, induced a first-order SCO [on nps(T)], and triggered a
first-order transition on the magnetization m(7T ) from the LS
diamagnetic state to an ordered (or partially ordered) ferro-
magnetic state. Here, we also demonstrate that the opposite
effect is also possible since an increasing magnetic interac-
tion Jy induces a first-order SCO transition. This interplay
between the elastic and the magnetic interactions is even
more flagrant in the curves of Fig. 4(d), which present sig-
nificant effect of Jy on the average intermolecular distance
(d), which is a purely structural quantity. Here, we see that
the slopes of (d)(T), in the HS phase change with respect
to Jo, which means that even the thermal expansion coef-
ficient (din(d)) depends on Jy values. This proves that the
magnetoelastic interaction introduced in this model is very
efficient and allows a strong coupling between the magnetic
and the structural properties of the lattice. Thus, the average
intermolecular distance (d) from the LS diamagnetic state
to an ordered (or partially ordered) ferromagnetic state is a
relevant parameter that shows the relationship between the

n
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FIG. 5. Some thermal behaviors of the model for 16 x 16 system
and varying the magnetoelastic coupling o with fixed other parame-
ters. (a) HS fraction nyg, with inset that is the corresponding phase
diagram, (b) magnetization m, (c) magnetic susceptibility x, and
(d) average intermolecular distance (d) between NN SCO molecules.
Second- and first-order transitions are obtained, for selected values
of «, and the curves shift to low temperatures by increasing o
values. Two peaks appear in the magnetic susceptibility behaviors,
at any values of « [see (c)]. Diaferromagnetic and ferroparamagnetic
phase transitions occurred as displayed the inset phase diagram in
(a). For all panels, other values of considered model parameters are
Ao =10° Knm™2,Jy, = 60 K, A = 450 K, and g = 150.

system volume change and the magnetoelastic interaction.
In addition, as in Fig. 4, similar tendencies are observed for
increasing values of the magnetoelastic coupling « at fixed Jy
and A values (see Fig. 5). For increasing o values, one gets
first- and second-order transitions where the former coincides
to the equilibrium spin-transition temperature (nys = %). All
transition temperatures shifted to lower values with increasing
«a value as depicted in the inset of Fig. 5(a). For Jy = 60 K and
Ap = 1000 K nm~2, diaferromagnetic and ferroparamagnetic
characters of the transition are found from thermal behaviors
of the thermodynamic quantities (HS fraction nys, magnetiza-
tion m, and magnetic susceptibility x).

D. Phase diagrams

It should be interesting to devise the temperature phase dia-
gram of the model, relying on the behavior of the HS fraction,
and the magnetic susceptibility. The results as functions of
Ay and Jy, for two selected values of Jy [Figs. 6(a) and 6(b)]
and for two selected values of Ay [Figs. 6(c) and 6(d)], re-
spectively. It is observed that the high-temperature phase is
a disordered phase, and the low-temperature one is a dia-
magnetic phase. The intermediate phase is the ferromagnetic
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FIG. 6. Thermal phase diagram of the model in the reduced pa-
rameters (AgR?/Jo, T /Jo) and (Jo/AoR3, T /AoR?) planes for 16 x 16
system, with selected values of Jy [(a) and (b)] and Ay [(c) and (d)],
respectively. Three phases are found: diamagnetic, paramagnetic,
and ferromagnetic phases. Lines with solid circular dots (solid square
dots) denote the equilibrium temperature 77, [the first-order spin-
transition temperature T}, (first peak of x)], whereas that with open
circular dots are associated to order-disorder transition temperature
Tc (second peak of x). Large domain of ferromagnetic phase appears
when the magnetic coupling interaction J, increases, and the phase
diagram does not show tricritical points anywhere. Other model
parameters values are o = 100 Knm™', A =450 K, and g = 150.

phase, that is separated from the diamagnetic phase by contin-
uous spin transitions at low values of Aq (or Jy, respectively),
and by first-order transitions at higher values of both pa-
rameters. It is important to notice that the model does not
exhibit tricritical points for the selected values of Jy (or Ay,
respectively), contrarily to observations done in our previous
works, where only spin-flip dynamics are considered. This
absence could be a finite-size effect. From Figs. 6(a) and 6(b),
it emerges that the transition lines decrease as function of A,
with the presence of a sharp kink in the T¢ lines at AgR? = 10
and 2.5 K, respectively, in Figs. 6(a) and 6(b). Beyond these
kinks, the spin transition occurs through a first-order transition
at low temperatures, where discontinuities are observed in the
thermal behaviors of the order parameters. In this range of
AOR%, the transition lines increase and reach their limit values.
With increasing Jy value, one can remark that the domain
of the ferromagnetic phase increases as in most Ising-type
ferromagnetic systems as previously stated, and the onset
temperature for the appearance of the first-order transition
decreases. This remark is also observed in Figs. 6(c) and 6(d),
where the transition lines decrease slightly when Jj increases,
with appearance of a sharp kink at about Jy = 50 K [Fig. 6(c)]
and Jy = 40 K [Fig. 6(d)] in the T¢ lines. From these values
of Jy, the spin-transition lines are first order, and may decrease
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FIG. 7. Thermal hysteresis loop of the HS fraction nyg at the
vicinity of first-order transition for selected values of Ay and Jo,
respectively, in (a) and (b). The system size is 32 x 32. The loop
area increases with the elastic constant Ay, where their center is
almost fixed in temperature. Whereas, for increasing Jy values, the
loop area increases and shifts to left for low temperatures. The inset
in (b) shows thermal hysteresis loop of the magnetization m, for
Jo=100K. A, B,C, D, E, F, G, and H are the positions of lattice
configurations of Fig. 9 on the upward and backward branches, at
different temperatures associated, respectively, to 7} =26 K, T, =
54K, Iz =74K, I, =75K, s =76 K, T, =126 K, T; =56 K,
and Tz = 55 K. We take A =450 K and g = 150 with other model
parameters which are written in panels.

with Jy, whereas the T¢ lines undergo a rapid increase, result-
ing in the increase of ferromagnetic phase domain.

E. Thermal hysteresis behaviors of the system

At the vicinity of first-order transitions, hysteresis phenom-
ena are observed. Here a 32 x 32 system is considered and
the calculations are proceeded as follows. The temperature
is raised from 1 to 130 K with an increment of 1 K. When
130 K is reached, the simulations continued to 1 K with a
temperature step of —1 K. The hysteresis cycles achieved are
illustrated in Fig. 7 for varying values of the parameters Ay
[Fig. 7(a)] and Jy [Fig. 7(b)] and selected values of other
parameters that are indicated in the panels. It is observed that
when the value of Ay is raised, the switching temperature of
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FIG. 8. Phase diagram of 32 x 32 system, as function of
AoR?/Jy, showing the dependence of limiting temperatures of
hysteresis loops (Ti,24, Ti/2,), and the associated equilibrium tem-
perature approximated by Ti,, = (Ti2 + Ti/2,)/2 for Jo =50K
(a) and Jy = 80 K (b). The corresponding hysteresis width AT is
displayed in (c) and shows increasing of loop area with AgR?. Other
values used for model parameters are o« = 100 Knm™!, A =450 K,
and g = 150.

the upward branch 77,4 increases while that of the downward
branch Ti,,, decreases [see Fig. 7(a)]. As a consequence,
the cycle area increases with Ay. Interestingly, the center of
the cycle evidently remains almost constant in this Aj range,
in good agreement with the previous analytical predictions
which indicated that the transition temperature at equilibrium
does not depend on the harmonic elastic constant Ay. On
the contrary, increasing values Jy shift the hysteresis loop
to low temperatures with a decrease of the associated 724
and Ty, values and a clear saturation of the lattice by HS
units at high temperatures [see Fig. 7(b)]. The magnetization
corresponding to the case of Jy = 100 K, as displayed in
the inset of Fig. 7(b), shows also hysteresis behavior with
a clear saturation in the HS phase. Figures 8(a) and 8(b)
show the behavior of the limiting transition temperatures 7724
and Ti,;, of the hysteresis loops as well as the associated
equilibrium temperatures, defined as T, = %(Tl 2t +Tip2y)
as function of the harmonic elastic constant Ay and magnetic
interaction Jy, respectively. The corresponding widths AT =
Ti/2¢ — T1/2, are also monitored when Ag and Jy increase. In
Figs. 8(a) and 8(c), at low values of Ay and for Jy = 50 K,
AT = 0 K and only critical hysteresis cycles can be observed.
There, the SCO lattice presents only gradual SCO transition
and the magnetic subsystem exhibits only second-order phase
transitions, where 71,24 >~ T /5 = T1,2. This is in fact the case
for Ap = 10> Knm~? where one maximum is found for the
response function y in Fig. 3(c). With increasing A, one can

see from this figure that a second maximum appears in the
low-temperature range. In this case, jumps are observed in
the behavior of m, nys, and x and thermal hysteresis loops
take place, as we have already explained. From the above, the
existence of a critical value of the interaction parameter Ay is
obvious [see Figs. 8(a) and 8(c)]. Close to this critical point,
the upward borderline is slightly curved. This feature may
account for the finite value of the temperature sweeping rate
(kinetic effect) [50,77]. For Jy = 80 K [Figs. 8(b) and 8(c)],
the same behaviors are obtained with a decrease of the tran-
sition temperatures (71,24, 11,2, and Ti ;) and an increase of
hysteresis loop width as shown in Fig. 7(b). One also remarks
that from the critical point, the hysteresis loop width increases
gradually with the parameter Ay and an almost straight lines
are obtained [see Fig. 8(c)]. We now turn to the study of the
spatiotemporal features of the SCO transformation obtained
with this model. At this end, some snapshots of transient states
have been taken along the thermal hysteresis loop in heating
and cooling processes of Fig. 7(a) for the elastic constant
value Ag = 8 x 103 Knm™2. In this figure, one remarks that
the transition from the LS to HS state (LS — HS) occurs
around 7; = 75 K on heating and from the HS to LS state (HS
— LS) around T3 = 55 K on cooling. Both processes proceed
via nucleation phenomena with domain growth. The obtained
results are summarized in Fig. 9 which shows, in addition to
the nucleation and growth process of the HS (red/blue) and
LS (green) spin domains in the model accompanied by the
volume (here surface) change at the transition process, the
clear occurrence of the magnetic order-disorder transition. As
reported in Refs. [50-53,82,91-95] one can observe that the
nucleation and growth processes of spin domains start from
edges and corners for both HS — LS [Fig. 9: F(Ts)-A(T1)]
and LS — HS [Fig. 9: A(Ty)-F(Tg)] transitions. The growing
domains propagate towards the center of the lattice and then
merge. During HS — LS transformation, LS domains grow
and finally combine together to extend to the whole system.
Domain growth occurs in the diagonal directions and a few
appear somewhere at the edges (see right panels of Fig. 9).
The onset of such inhomogeneous structures was reported in
Fig. 1 of Ref. [96] during the domain wall propagation ob-
served by optical microscopy [17,48,49,72,73,77,93,96-109].
Following the process in heating from LS to HS phase, we also
find local clusters of HS molecules (blue and red dots) around
the corners, but in contrast to the case of the cooling branch, a
large homogeneous region appears (see left panels of Fig. 9)
as is observed with periodic boundary conditions (PBC), thus
meeting the previous investigations of Nishino et al. [91], who
pointed out the crucial role of the surface in the emergence
of macroscopic domain nucleation in the elastic models. It is
important to mention in passing that years ago a hybrid model
combining short-range Ising coupling and elastic long-range
interactions was proposed by Nakada et al. [110] who demon-
strated that an inhomogeneous configuration (lattice and spin
degrees of freedom) are also observed at critical temperature
T. when the SCO atoms interact in a lattice with periodic
boundary conditions.

A possible reason for this difference on cooling and heating
processes originates from the energy and entropy gain. In
the cooling process at low temperatures, the energy stability
is more important than the entropy gain and the nucleation
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FIG. 9. Snapshots of lattice configuration for 32 x 32 system,
along the thermal hysteresis loop of Fig. 7(a), with Aj = 8 x
10° Knm™2, during heating (left panels) and cooling (right panels)
processes, at different temperatures 7y =26 K, T, =54 K, Tz =
74K, T, =75K, T =76 K, Te =126 K, T, =56 K, and Ty =
55 K. Green clusters are associated to those of LS units whereas red
(spin +1) and blue (spin —1) dot clusters consist of HS unit clusters.
It is clear that the nucleation and growth process start from corners,
and edges with deformations, and then propagated through the crys-
tal. Values considered for other model parameters are J, = 50 K,
a =100 Knm™', A =450 K, and g = 150.

from the corner is the most favorable. However, in the heating
process at high temperatures, the entropy gain becomes more
important and the configuration may change uniformly, which
can be seen in the inner part of the system. This obviously in-
dicates that once the system reaches the saturated HS phases,
the magnetic interaction between the HS units becomes dom-
inant compared to the elastic interactions.

Furthermore, following the same procedure as that devel-
oped in Ref. [50], the nucleation and growth processes from
the corners in our model can be explained by simple energetic
considerations. During HS — LS transition, for example, let
us start from a lattice with a saturated HS state and consider a
nucleus made of a single LS site. The energy cost associated
with the creation of an LS nucleus at the corner, edge, and

center of the HS lattice defined by AE = E(LS) — E(HS)
reads as

AE.omer(HS — LS)
= —[A — kgT In(g)] + 2Jo + 4(Ao + By)R?, (15)

AEggee(HS — LS)
= —[A — kgT In(g)] + 3Jo + 2(3A0 + 4By)R:,  (16)

AEcenter(HS - LS)
= —[A — kgT In(g)] + 4Jo + 8(Ag + 2By)R%. (17)

The analysis of these equations clearly shows that while the
system wins electronic energy (especially at very low tem-
perature) during the spin flip from HS to LS, it also faces
an energy barrier originating from the magnetic and the elas-
tic interactions, whose contributions can be easily identified
in the previous equations. The interesting point here is that
the magnetic and the ligand-field energies compete (in the
case of ferromagnetic interactions) and it is clearly seen that
the magnetic interactions stabilize the HS phase, by increasing
the energy barrier. Moreover, both of these contributions in-
crease when going from corner to edge and then to a bulk site.
As a result, the probability of appearance of a LS state along
the cooling process (~e~#2F) is higher for corner atoms. This
justifies the nucleation and growth of spin domains from the
corner of lattice. For LS — HS transition, similar considera-
tions have been developed. We start from a LS lattice in which
we flip a corner, edge, or central site form LS to HS. The
following energy barriers are found for each case as

AEcomer(LS — HS) = A — kgT In(g) + 4(Ao + Bo)R?
+ 64(A, + 2B))R?, (18)

AEeee(LS — HS) = A — kT 1n(g) + 2(34¢ + 4Bo)R?
+ 32(34; + 8B))R}, (19)

AEcenier(LS — HS) = A — kT In(g) + 8(Ag + 2Bo)R?
+ 128(A; + 4B))R} (20)

in which the elastic energy part remains unchanged because of
its positive character with a weak additional term in R}, while
the ligand-field contributions changed their signs and the mag-
netic part vanished. Adopting the same energetic reasoning,
here again, the energy barrier at the corner is the smallest
one and so the nucleation will start from the corner sites.
Compared with the cooling process, the heating one shows
large thermal fluctuations which favor the probabilities of
nucleation at the center and at the edges. However, nucleation
from the corners remains the most likely. This nucleation from
the corners can be explained by the fact that the SCO units
located at the corners of the crystal relax the elastic stresses
more easily on the surface because of their smaller number of
neighbors.

F. Isothermal relaxation near the hysteresis loop

Here, we investigated the nonequilibrium properties of the
system, at various temperatures (7" = 30, 45, 50, and 54 K)
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FIG. 10. Isothermal relaxation curves of 32 x 32 system, near
the thermal hysteresis loop of Fig. 7(a), for Ag = 8 x 10° Knm™2,
at different temperatures: T = 30, 45, 50, and 54 K. Relaxation time
increases with temperature, and concave curves are gotten from its
initial stage. Red circular dots in (b) indicate the position of spa-
tiotemporal configurations in Fig 11, along the relaxation curves
for T =50 and 54 K. Other model parameters are the same in
Fig. 7(a) with Ay = 8 x 10°> Knm~2.

near the thermal hysteresis loop of Fig. 7(a) using an elastic
constant Ay = 8000 Knm™2. Interesting relaxation dynam-
ics of metastable states are obtained according to values of
model parameters. In experiments, after photoirradiation to a
long-lived HS state, by means of light-induced excited spin-
state trapping (LIESST) [26,111-113], even that saturates HS
fraction nyg, the relaxation process is visualized at low tem-
peratures or by rapid quenching of the high-temperature stable
HS state. Using the same algorithm described in Sec. III, we
performed the simulations starting from a fully HS state, on
a square lattice (L = 32), and used 25 independent runs. The
obtained results are illustrated in Fig. 10, where the magne-
tization m [Fig. 10(a)] and the HS fraction nyg [Fig. 10(b)]
evolve according to the Monte Carlo steps (MCS). Typical
one-step relaxation curves are obtained and the behaviors
of m and nys bear some resemblance. At low temperatures,
from the hysteresis loop, sigmoidal curves are observed. From
the outside to the interior of the loop, one remarks that
the relaxation time increases when the temperature increases

T=50K T=54K

b(t,)

ot o(t)
7

d(t,) d(t,)

FIG. 11. Snapshots of lattice configuration, along the relax-
ation process for two temperatures 7 = 50 K (left panels) and
T = 54 K (right panels) at different simulation times: #; = 27,1, =
496, t; = 1080, ty = 2980, 15 = 52, tc = 1528, t; = 2386, and 13 =
8456 MCS. Colors have the same meaning as in Fig. 9. Horizontal
panels correspond to the same coverage n;s of LS fraction, except
for ¢(t3) and e(#;) configurations, while the configurations of ver-
tical panels have been taken at the same temperature 7. LS nuclei
are formed from corners and edges, and grow to coalesce at high
coverage. In (a)—(e), respectively, 5%, 23%, 96%, 99%, and 53% of
lattices are occupied by LS units. Values considered for other model
parameters are Ay = 8 x 10> Knm 2, J, =50 K, @ = 100 Knm™!,
A =450 K, and g = 150.

as reported in literature [50,77,79,80]. This counterintuitive
behavior, where the relaxation process of a metastable (or
unstable) state slows down as the temperature increases, is due
to the proximity of the lower branch of the thermal hysteresis,
in which the HS state is thermodynamically stable, and so it
has a long lifetime.

Figure 11 shows some transient states, taken also along the
relaxation curves, at different simulation times, and tempera-
tures 7 = 50 and 54 K. Horizontally, snapshots are obtained
at the same coverage or concentration nys(=1 — ngs) of LS
units excepted for panels c(t3) and e(t;). Vertically, they cor-
respond to the same simulation temperature 7. The same
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qualitative characteristics of clustering of LS domains were
also observed in isothermal relaxation processes, from the
metastable HS phase at the vicinity of the thermal hysteresis
loop (see Fig. 11). On the other hand, all HS units have the
same probability to switch from HS state to LS state during
the HS — LS transition, followed by a volume decrease.
Very close to the thermal hysteresis loop (see right panels
of Fig. 11 where T = 54 K), one gets uniform aggregates
of HS states, with some isolated LS units almost in their
edges at the initial stage of the relaxation process. It is clear
that, according to previous elastic model with open bound-
ary conditions on 2D circular crystal, Nishino et al. [114]
show that homogeneous macroscopic nucleation events oc-
curred with long-range interactions for which single-domain
nucleation appears along the relaxation processes. As for the
homogeneous transformation of the magnetic system, while
the magnetoelastic coupling contains both short- and long-
range effects, as we explained the long-range effects of J(r;;)
depend on the quantity o/(r;; — Rng) which is negligible in the
HS region where the magnetic interactions are acting. Here,
at different simulation times and fixed temperature, LS units
are created and the domain growth is clearly observed from
the corners as well as at the edges of the lattice configuration.
Domain growth occurs in the diagonal directions, and a few
appear somewhere at the edges as previously observed in the
right panels of Fig. 9 (on cooling process). This happens by
the way of the low-cost energetic associated with the creation
of an LS nucleus at the edges and mostly from the corners.
These results are consistent and show good agreement.

V. CONCLUSION

A deformable lattice SCO model with ferromagnetic in-
teractions is presented. It allows to reproduce thermal and
spatiotemporal behaviors of SCO solids and Prussian blue
analogs (PBAs). The system of SCO compounds study is
mapped on the Blume-Emery-Griffiths model with three states
(S = %1, 0), where S = £1 denote the magnetic HS state and
S = 0 is associated to the diamagnetic LS state. These atoms
interact elastically with their NN and NNN via anharmonic
springs, whose elastic constants depend on their distances.
Moreover, the NN sites also interact magnetically with an
exchange interaction, whose value is a function of the in-

stantaneous distance between the spin states. As a result, the
magnetic interaction between the spin states depends on the
elastic properties of the lattice. In the magnetic ordering, only
HS atoms, with S = 41, interact in the HS phase, while the
spin transition occurs between HS (S = £1) and LS (§ = 0)
states. Finite-size effects have been detected at finite temper-
ature on the model. This mapping allowed us to construct
the phase diagrams of the model, from which gradual and
first-order transitions are obtained, and on which the effects
of the model interaction parameters are analyzed. The thermal
dependence of the lattice configuration is studied upon heating
and cooling along the thermal hysteresis loop with model
parameters. This characterized the evolution of the system at
a constant temperature, and revealed the mechanism of the
nucleation and growth processes of the HS and LS phases as
well as the organization of the magnetic state. The isother-
mal low-temperature relaxation of the metastable HS states
is also studied for which macroscopic nucleation phenomena
were also identified. Compared to the previous elastic models,
the present model has the advantage of producing a richer
landscape of phase transitions according to the interaction
between the magnetic and the lattice subsystems. In particular,
we found that the magnetic interactions act in an efficient way
on the elastic properties of the lattice by changing the thermal
evolution of the average lattice bond length in the HS state,
while their effect is very limited on the HS fraction. All these
results suggest that the electroelastic models can be extended
to investigate the problem of magnetoelastic interactions in
PBAs and other related SCO materials with magnetic interac-
tions. Extensions of this model considering antiferromagnetic
interactions instead of ferromagnetic ones, or other lattice
topology leading to magnetic frustration, might constitute an
interesting extension of this work.
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