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Ca10Cr7O28 is a novel spin-1/2 magnet exhibiting spin liquid behavior, which sets it apart from any previously
studied model or material. However, understanding Ca10Cr7O28 presents a significant challenge, because the low
symmetry of the crystal structure leads to very complex interactions, with up to seven inequivalent coupling
parameters in the unit cell. Here we explore the origin of the spin-liquid behavior in Ca10Cr7O28, starting
from the simplest microscopic model consistent with experiment—a Heisenberg model on a single bilayer
of the breathing-kagome (BBK) lattice. We use a combination of classical Monte Carlo (MC) simulation and
(semi)classical molecular dynamics (MD) simulation to explore the thermodynamic and dynamic properties of
this model and compare these with experimental results for Ca10Cr7O28. We uncover qualitatively different be-
haviors on different timescales, and argue that the ground state of Ca10Cr7O28 is born out of a slowly fluctuating
“spiral spin liquid”, while faster fluctuations echo the U(1) spin liquid found in the kagome antiferromagnet. We
also identify key differences between longitudinal and transverse spin excitations in applied magnetic field, and
argue that these are a distinguishing feature of the spin liquid in the BBK model.
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I. INTRODUCTION

The search for quantum spin liquids (QSL), exotic phases
which host new forms of magnetic excitations, has become
one of the central themes of modern condensed matter
physics [1–4]. Fortunately, after a long “drought” [5], recent
years have seen an explosion in the number of materials un-
der study, with examples including quasi-2D organics [6,7],
thin films of 3He [8], spin-1/2 magnets with a kagome
lattice [5,9], “Kitaev” magnets with strongly anisotropic ex-
change [10–15], and quantum analogues of spin ice [16–20].
Another new arrival on this scene is the quasi-2D magnet
Ca10Cr7O28, a system which appears to have qualitatively
different properties from any previously studied spin liq-
uid [21–23].

The first surprise in Ca10Cr7O28 is a chemical one. In-
stead of the usual 3+ valance, Cr ions exhibit a highly
unusual, 5+ valence [24]. These Cr5+

ions are magnetic, with
spin S = 1/2, and occupy sites of the breathing bilayer-
kagome (BBK) lattice (Fig. 1) [25,26]. Curie-law fits to the
magnetic susceptibility of Ca10Cr7O28 reveal predominantly
ferromagnetic (FM) interactions, with θCW = 2.35 K [21,22].
This is accompanied by a broad peak in heat capacity at
about T ≈ 3.1 K [21–23]. However measurements of heat
capacity, ac susceptibility, and μSR asymmetry fail to find
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evidence of either, magnetic order, or spin-glass freezing,
down to 19 mK, two orders of magnitude lower than the
scale of interactions [21]. Consistent with this, neutron scat-
tering experiments find no magnetic Bragg peaks down to
90 mK [21–23]. Instead, scattering is predominantly inelas-
tic and highly structured, with results at 0.25 meV showing
hints of a “ring” centered on (2,0,0), while scattering at inter-
mediate and high energies suggests “bow-tie”-like structures
centered on (1,0,0) [21,22] (Fig. 2). With the application of
magnetic field, these structures evolve into relatively sharp,
dispersing excitations, with measurements of heat capacity
suggesting a qualitative change in behavior for fields B �
1 T [21,22]. This particular combination of dynamic and
thermodynamic properties sets Ca10Cr7O28 apart from any
spin liquid material yet studied, and presents an interesting
challenge to theory.

A range of different theoretical techniques have been ap-
plied to study Ca10Cr7O28. Pseudofermion functional renor-
malization group (PFFRG) calculations, for a spin-1/2 model
parameterized from experiment, reproduce a “ring” in the
static structure factor S(q, ω = 0), and suggest that the ground
state of Ca10Cr7O28 should be a quantum spin liquid [21].
This conclusion was supported by subsequent tensor-network
calculations [27]. Meanwhile the finite-temperature prop-
erties of Ca10Cr7O28 have been explored through Monte
Carlo simulations of a simplified, spin-3/2 honeycomb-lattice
model [28]. At high temperatures, these also reveal “rings”
in the equal-time structure factor S(q), while at low temper-
atures a 3-state Potts transition is found into a nematic state
which breaks lattice-rotation symmetries, but lacks long-range
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FIG. 1. Bilayer breathing-kagome (BBK) lattice realized by
spin-1/2 Cr5+ ions in Ca10Cr7O28. Interactions for the minimal spin-
1/2 BBK model [Eq. (1)] are labeled following the conventions of
Balz et al. [21,22]. Experimental estimates of these parameters can
be found in Table II.

magnetic order [28,29]. And, intriguingly, the thermodynamic
properties of Ca10Cr7O28 have recently been argued to fit
phenomenology based on spinons [23].

None of these approaches, however, shed light on the
nature of “bow-tie” structures observed at finite energies;
the evolution of the spin liquid in magnetic field; or the
finite-temperature properties of the microscopically relevant,
spin-1/2 BBK model. And, most importantly, while there is
agreement about the absence of conventional magnetic order,
very little is known about the origins of the spin liquid which
succeeds it.

This paper will be the first of two papers exploring the
thermodynamics and dynamics of Ca10Cr7O28, starting from
the spin-1/2 BBK model proposed by Balz et al. [21,22]

HBBK =
∑
〈i j〉

Ji jSi · S j − B ·
∑

i

Si, (1)

where first-neighbor bonds 〈i j〉 are illustrated in Fig. 1, and
parameters Ji j can be extracted from fits to inelastic neu-
tron scattering in high magnetic field B � J (Table II). In
this paper, we extend the results of an earlier preprint [30],
making the approximation of treating spins as classical O(3)
vectors, and using a combination of classical Monte Carlo
(MC) simulations and numerical integration of equations of
motion (here referred to as “molecular dynamics” or “MD”
simulation [31]), to evaluate their dynamics. From this, we
first establish a finite-temperature phase diagram for the BBK
model of Ca10Cr7O28, and then track the evolution of its prop-
erties as a function of energy and magnetic field. In the second
paper, we will compare these findings with the results of ex-
act diagonalization and finite-temperature quantum-typicality
calculations for a spin-1/2 BBK model [32].

In the classical limit, considered in this paper, we find that
the BBK model supports a spin liquid state for a wide range
of temperatures and parameter values. At low energies, this is
characterized by the slow, collective fluctuations of ferromag-
netically aligned spins on triangular plaquettes. These give
rise to a ringlike structure in the dynamical structure factor

FIG. 2. Fluctuations in the spin-liquid phase of Ca10Cr7O28,
showing q-dependent structure on different energy scales. (a) INS
data for Ca10Cr7O28 at low energy, suggestive of a “ring” of scat-
tering, centered on (2, 0, 0). (b) Equivalent results from molecular
dynamics (MD) simulations. (c) INS data for Ca10Cr7O28 at inter-
mediate energy, showing “bow-tie” structures centered on (1, 0, 0).
(d) Equivalent results from MD simulation. (e) Cut through inelas-
tic neutron scattering (INS) data for Ca10Cr7O28 at high energy,
also showing “bow-tie” structure. (f) Equivalent results from MD
simulation. Experimental data are reproduced from [21], with mea-
surements carried out at T = 90 mK. MD simulations were carried
out for a bilayer breathing-kagome (BBK) model, at T = 220 mK,
as described in the text. Energies were chosen so as to compare
corresponding features in simulation and experiment.

S(q, ω), at low energies, while fluctuations at higher energies
have a qualitatively different character, reflecting the kagome-
like physics of individual spin-1/2 moments. An added bonus
of the (semi)classical molecular dynamics simulations used is
that both of these features can be visualized directly, through
animations provided in Refs. [33,34]. At low temperatures,
we find that this classical spin liquid undergoes a three-state
Potts transition into a phase breaking lattice-rotation symme-
try (lattice nematic), consistent with results for an effective
spin-3/2 model [28]. For parameters taken from experiment,
this transition occurs at T ≈ 66 mK.

We also study the evolution of the dynamical and thermo-
dynamical properties of the BBK model in applied magnetic
field, concentrating on parameters relevant to Ca10Cr7O28

(Fig. 3).
We find that the onset of the spin-liquid observed in exper-

iment is associated with the closing of a gap to transverse spin
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FIG. 3. Schematic phase diagram of the classical bilayer
breathing-kagome (BBK) model of Ca10Cr7O28, as function of
temperature and magnetic field. At high temperatures, individual
spin-1/2 moments fluctuate independently. For T ≈ 500 mK there is
a crossover into a regime in which spins on triangular plaquettes form
effective spin-3/2 moments. For fields B � 1 T, these form a spiral
spin liquid, characterized by a ringlike structure in the dynamical
structure factor S(q). At temperatures T � 60 mK, this gives way
to states which break discrete symmetries of the lattice, including a
lattice nematic, and a multiple-q state. This hierarchy of temperature
and field scales is derived from classical Monte Carlo (MC) simu-
lations described in Secs. III and in V. The temperature for which
dynamics have been characterized in detail, T = 220 mK, is shown
with a white dashed line (cf. Fig. 2).

excitations, at a field B∗(T ), with B∗(220 mK) ≈ 0.7 T, and
B∗(T → 0) → 1.1 T. From the nature of the spin excitations
when this gap closes, we identify the low-field state as a
gapless, “spiral spin-liquid”, known for ringlike correlations
in S(q) [35–40]. Simulations also reveal low-energy, longi-
tudinal excitations, which may explain the anomalously high
specific heat measured at low temperatures. At the lowest
temperatures, we find a complex set of competing orders
including the finite-field extension of the lattice nematic and a
multiple-q state. Finally, we show how the field-saturated state
provides an opportunity to study the “half-moons” recently
discussed in the context of kagome antiferromagnets [41,42].
Taken together, these results provide a broad characterization
of the BBK model of Ca10Cr7O28, within a (semi)classical
approximation which explains many of the features seen in
experiment.

The remainder of this paper is structured as follows.
In Sec. II, we review the existing experimental and theo-
retical literature on Ca10Cr7O28and introduce the spin-1/2
bilayer breathing-kagome (BBK) model used to interpret
these results. In Sec. III, we present simulation results for the
thermodynamics of the BBK model of Ca10Cr7O28 in zero
magnetic field. Classical Monte Carlo (MC) results are used to
construct a finite-temperature phase diagram which connects
the spin liquid phase of Ca10Cr7O28 with a domain of high
classical ground-state degeneracy of the BBK model.

In Sec. IV, we show corresponding results for dynamics,
taken by numerically integrating the equations of motion for
states drawn from MC simulation (MD simulation). Results
are visualized through both animations and plots of the dy-

namical structure factor S(q, ω), which are used to connect
with experiment.

In Sec. V, we turn to the thermodynamic properties of the
BBK model in applied magnetic field. Classical MC simula-
tion is used to establish a phase diagram as a function of field
and temperature, for parameters appropriate to Ca10Cr7O28.

In Sec. VI, we explore the corresponding changes in spin
dynamics as function of magnetic field, again through nu-
merical integration of equations of motion (MD simulation).
Particular attention is paid to the way in which the spin liquid
emerges from the paramagnet found at high values of mag-
netic field.

In Sec. VII, we discuss the implication of these results for
the understanding of Ca10Cr7O28. Finally, in Sec. VIII, we
conclude with a brief summary of results and open questions.

Further technical information is provided in a short series
of Appendices. Appendix A contains technical details of the
classical Monte Carlo (MC) and Molecular Dynamics (MD)
techniques used in this study, as well as of the methods used
to animate spin configurations. Appendix B contains technical
details of the Animation of spin configurations. Appendix C
contains details of the structure factors and form factors used
when comparing with experiment. Appendix D provides de-
tails of an estimate of the Wilson ratio for Ca10Cr7O28.

II. Ca10Cr7O28 AND THE BBK MODEL

While the study of Ca10Cr7O28 has a short history, a wide
range of different experimental and theoretical techniques
have already been brought to bear on it. In what follows, we
review attempts to unravel the properties of Ca10Cr7O28, start-
ing from its chemistry and structure, and covering different
aspects of its experimental characterization, before surveying
attempts to model it in terms of a bilayer breathing-kagome
(BBK) model. A brief account is also given of the closely
related physics of the J1-J2 Heisenberg model on a honeycomb
lattice.

A. Chemistry and crystal structure

The earliest motivation for studying Ca10Cr7O28 came
from chemistry. In oxides, Cr is typically found with a 3+
valence, giving rise to magnets with spin-3/2 moments. A
typical example of such is the spinel CdCr2O4, a relatively
classical magnet, interesting for the interplay between mag-
netic frustration and spin-lattice coupling–see, e.g., Ref. [43].
Ca10Cr7O28, on the other hand, is one of a family of materials
exhibiting the unusual, spin-1/2, Cr5+ valence state [24,44].
And the spin-1/2 nature of the magnetic ions in Ca10Cr7O28

brings with it physics of an altogether more quantum nature
than is found in CdCr2O4.

Structurally, Ca10Cr7O28 has much in common with
SrCr2O8, a Mott insulator based on Cr5+ ions, which has
been studied for its quantum dimer ground state [45]. SrCr2O8

is composed of stacked, triangular-lattice bilayers, and has
the high-temperature space group R3m [46]. At T = 275 K,
it undergoes a structural phase transition into a phase with
space group C2/c, lifting the orbital degeneracy of the
Cr5+ ions [47]. This promotes a low-temperature phase in
which Cr5+ form a triangular lattice of singlet dimers, each
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arranged along the c-axis connecting the two planes of each
bilayer [45,47,48].

Ca10Cr7O28 differs from SrCr2O8 through the inclusion
of nonmagnetic Cr6+ ions, at a ratio of six Cr5+ ions to
one Cr6+ [24]. These convert the stacked, triangular bilayers
of SrCr2O8 into weakly coupled bilayers of a “breathing”
kagome lattice, in which triangular plaquettes have alternat-
ing size [25,26]—cf. Fig. 1. This bilayer breathing-kagome
(henceforth, BBK) lattice has a very low symmetry, with
the space group identified as R3c [25,44]. Within this space
group, the magnetic Cr5+ ions have a six-site unit cell, and the
Cr5+ site is located within a (distorted) CrO4 tetrahedron. The
crystal field at this site is sufficiently low that the degeneracy
of the eg orbitals is quenched, leaving a single 3d electron in
a single orbital, i.e., a spin-1/2 moment.

B. Thermodynamic properties

The thermodynamic properties of Ca10Cr7O28 distinguish
it as a frustrated magnet in which spins interact, but continue
to fluctuate down to very low temperatures. The magnetic
susceptibility of Ca10Cr7O28 displays a Curie-law behaviour

χ−1(T ) ≈ T − θCW

C
(2)

down to temperatures of a few Kelvin. A positive Curie-Weiss
temperature of

θCW = 2.35 K (3)

consistent with dominant FM interactions, was reported
by Balz et al. [21,22], with the slightly higher value of
θCW = 4.1(6) K being reported by Balodhi and Singh [26].
Both groups find a value of C consistent with an effective
moment

μeff ≈ 1.7 μB (4)

at each Cr5+ site, as would be expected for a spin-1/2 mo-
ment, assuming a Landé factor g = 2.

At low temperatures, the magnetization of Ca10Cr7O28

rises rapidly in applied magnetic field, consistent with a gap-
less ground state [22,27]. At low fields, the magnetization is
found to be nearly linear in B, with an associated susceptibility

χ0 = 3.0 emu/mol Oe,

at T = 1.8 K; a large value even by comparison with heavy
Fermion materials [Table I]. This behavior stands in marked
contrast with SrCr2O8, where the energy gap from the dimer-
ized ground-state to the lowest-lying triplet excitation ensures
that the magnetization remains zero up to a field Hc1 =
30.4 T [45,48]. The magnetization of Ca10Cr7O28 is also
broadly independent of the direction in which field is applied,
and saturates at a relatively low field, with a sharp kink in
M(H ) observed at a scale of H ∼ 1 T, and complete satu-
ration is observed for fields no greater than H ∼ 10 T, at a
temperature of 1.8 K [21,22].

Heat capacity measurements carried out in zero field by
Balz et al. [21,22] offer a consistent picture, with a dra-
matic kink in C(T ) at T ≈ 500 mK, a broad maximum at
T ≈ 3.1 K, and no evidence for either magnetic order, or

TABLE I. Comparison of the low temperature thermodynamic
properties of Ca10Cr7O28 with the conventional metal Cu, and the
heavy fermion material CeCu6. The parameters shown are the linear
coefficient of specific heat C(T → 0) = γ T ; the paramagnetic sus-
ceptibility χ (T → 0) = χ0, effective moment μeff, and the Wilson
ratio RW [Eq. (42)].

γ χ0 μeff

[mJ mol−1 K−2] [emu mol−1 Oe−1] [μB] RW

Cu 0.695 weakly diagmagnetic 1.7 n/a
CeCu6 [49,50] 1550 0.3 2.5 4
Ca10Cr7O28 [23,27] 13500 3.0 1.7 16.2

the opening of a spin-gap, down to T = 300 mK. The mea-
sured values of C(T ) at this temperature are consistent with
a high density of low-lying excitations, with C/T achiev-
ing values ∼14 J mol−1 K−2 [22] which, again, are large
even by the standard of heavy-fermion materials [Table I].
Later experiments, reported by Sonnenschein et al. [23], ex-
tended measurements down to T = 37 mK, finding a nearly
linear specific heat C(T ) ≈ γ T over the temperature range
100 mK � T � 500 mK, with

γ = 13.5 J mol−1 K−2.

For 37 mK < T � 100 mK, measurements find C(T ) < γ T ,
showing a slight suppression relative to a purely linear behav-
ior, but no evidence for a gap to excitations. Meanwhile, at
higher T , in the absence of magnetic field, C/T is a monoton-
ically decreasing function of temperature [22]. Qualitatively
similar results for C(T ) at higher temperatures were also
reported by Balodhi and Singh [26], with the caveat that the
measured values differ by a numerical factor ∼2 between the
two groups.

In applied magnetic field, the values of C/T found at low
temperatures steadily decrease, and plots of C/T acquire a
shoulder at T � 1 K [22]. A qualitative change occurs for
B ≈ 1 T, when a downturn become visible in C/T at low
temperatures, consistent with suppression of low-lying ex-
citations by the opening of a gap. Attempts to model the
field-temperature dependence of C(T ) as the sum of T 3 con-
tribution from phonons, and Shottky anomaly (broad peak)
coming from spin excitations, meet with some success. How-
ever this approach fails to explain the relatively high density
of low-lying excitations seen in experiment, especially if the
Shottky peak is associated with the gap measured in inelastic
neutron scattering, as described below [22].

C. Macroscopic dynamics

Meanwhile, measurements of AC susceptibility χ (ν, T ),
for frequencies ν � 20 kHz, exhibit a broad peak at a tem-
perature T ∗ ∼ 330 mK [21]. Under other circumstances, this
might hint at spin-glass freezing. However Cole-Cole plots of
the real against imaginary parts of χ remain semicircular for
temperatures both above and below T ∗, suggesting that a sin-
gle timescale governs the macroscopic relaxational dynamics
of Ca10Cr7O28, even at low temperatures [21]. Consistent with
this, μSR measurements reveal persistent spin fluctuations
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down to 19 mK, with the measured relaxation rates increasing
with decreasing temperature, and saturating for T < T ∗ [21].

The picture painted by these experiments is one of a
magnet whose moments continue to fluctuate down to temper-
atures two orders of magnitude smaller than the characteristic
scale of exchange interactions. A clear hierarchy of other
temperature and field scales emerges, with both θCW, and the
broad maximum in C(T ), picking out a scale of T ≈ 3 K;
ac susceptibility and μSR revealing changes in dynamics at
T ≈ 330 mK; and magnetization and heat capacity suggest-
ing a change of phase at B ≈ 1 T. This behavior would be
hard to reconcile with any simple paramagnet, and is entirely
consistent with a quantum spin liquid. However, from these
measurements alone, it is difficult to confirm the collective
nature of spin fluctuations, or to say what kind of spin liquid
might be found in Ca10Cr7O28.

D. Neutron scattering

More insight into the nature of magnetic correlations
in Ca10Cr7O28 can be gained through the structure fac-
tor measured in neutron scattering. Neutron scattering has
been carried out on both powder and single-crystal samples
of Ca10Cr7O28, using a variety of different neutron instru-
ments [21–23]. Elastic scattering fails to reveal any magnetic
Bragg peaks down to 90 mK, consistent with the absence
of any other signals of long-range magnetic order. At the
lowest energies experiments reveal instead a quasielastic sig-
nal, extending up to ∼0.2 meV. This quasielastic signal is
essentially independent of q, on the scale of the BZ, and
has been attributed to incoherent scattering from randomly
distributed nuclear isotopes [21]. Magnetic scattering is in-
elastic in character, and highly structured, confirming the
collective nature of spin fluctuations. Strong scattering for
ω � 0.4 meV echoes the characteristic temperature scale seen
in thermodynamic measurements. However this is clearly not
the only energy scale in the problem; a further strong signal
is seen at ω ∼ 1 meV, accompanied by a broad background
of scattering extending up to ω ∼ 1.5 meV. Consistent with
the lack of magnetic Bragg peaks, no hint is found of the
spin waves which would be associated with the breaking of
spin-rotation symmetry.

The strong q and ω dependence of scattering is evident in
energy cuts through the measured dynamical structure factor
S(q, ω), reproduced in Fig. 2. Scattering at low energies pro-
vides the most information about correlations in the ground
state, but unfortunately is obscured by the incoherent signal
for ω � 0.2 meV. None the less, measurements at 0.25 meV
[Fig. 2(a)] reveal that low-energy fluctuations are strongly
q-dependent, with hints of a ringlike structure centered on
(2, 0, 0). (Much stronger scattering seen at other zone cen-
ters reflects phonons [21]). The scattering at an intermediate
energy of 0.65 meV [Fig. 2(c)] is also strongly q-dependent,
but reveals a completely different kind of correlation. In this
case, instead of a “ring” at (2, 0, 0), experiments suggest a
“bow-tie” centered on (1, 0, 0). And the same bow-tie pattern
is more clearly visible at the relatively high energy of 0.9 meV
[Fig. 2(e)].

It is worth noting, that energy values in MD simula-
tions have been slightly shifted, to allow for a qualitative

comparison of the scattering pattern to INS experiments.
While the main features, namely “rings” at low energy and
“bow-ties” at higher energy, could be reproduced well within
our (semi)classical method, they occur at slightly different
energies. This renormalization is presumably due in the ap-
proximations inherent in both the BBK model of Ca10Cr7O28

(which neglects anisotropic exchange interactions) and our
(semi)classical treatment of its dynamics. We will revisit this
last point in a coming work [32].

E. The BBK model

Taken together, both thermodynamic and dynamical mea-
surements of Ca10Cr7O28 are consistent with the existence
of a gapless (or nearly gapless) quantum spin liquid at low
temperatures. This phenomenology contains elements which
are familiar from the behaviour of other magnets, such as
the bow-tie patterns observed in scattering at higher ener-
gies, reminiscent of the pinch-points observed in Coulombic
phases [51]. However, while there are plenty of examples of
studies of two-dimensional quantum spin liquids [1–15], no
model or material provides a complete analog to the behav-
ior of Ca10Cr7O28, even at a qualitative level. And the fact
that Ca10Cr7O28 displays such different behavior on different
energy scales means that a low-energy effective theory alone
cannot unlock all of its secrets. To make further progress in
understanding Ca10Cr7O28, a microscopic model is therefore
needed.

The simplest model one can consider for Ca10Cr7O28 is
one in which both orbital effects, and spin-orbit coupling,
are neglected, so that each Cr5+ ion is treated as a spin-
1/2 moment, interacting through Heisenberg interactions.
Omitting other terms allowed by lattice symmetry, such as
Dzyaloshinskii-Moriya (DM) interactions, finds some justi-
fication in the 3d nature of the magnetic electrons, and the
lack of magnetic anisotropy observed in experiment. However
even a minimal, SU(2)-symmetric model, will have many
different parameters, since the BBK lattice supports seven
inequivalent first-neighbor bonds [21,22]. And ultimately, the
extent to which one can parameterize such a complex model
from experiment, and use it to understand the novel physics of
Ca10Cr7O28, becomes an empirical question.

Fortunately, the low saturation field of Ca10Cr7O28 means
that it is possible to parameterize a minimal, microscopic
model for its magnetism from inelastic neutron scattering
(INS) experiments on its field-polarized state. These reveal
gapped, two-dimensional spin-wave excitations (discussed in
Sec. VI A, below) which, within experimental resolution, are
adequately described by a Heisenberg model for a single
bilayer [21,22],

HBBK =
∑
〈i j〉

Ji jSi · S j − B
∑

i

Sz
i , (5)

introduced as Eq. (1). This spin-1/2 BBK model has five first-
neighbor couplings within a single bilayer (Fig. 1), of which
three are ferromagnetic (FM) and two antiferromagnetic (AF)
(Table II). The strongest interactions, J21 ≈ −0.8 meV and
J22 ≈ −0.3 meV, are FM and occur within the triangular
plaquettes of the BBK lattice. Meanwhile, the couplings be-
tween these plaquettes are FM in the interplane direction,
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TABLE II. Exchange interactions within the bilayer breathing-
kagome (BBK) model of Ca10Cr7O28, [Eq. (1)], as estimated from
inelastic neutron scattering in high magnetic field [21,22]. Bond
indices Ji j , following the conventions of Balz et al. [21,22], are de-
fined in Fig. 1. Also listed are the corresponding interactions within
an effective spin-3/2 honeycomb-lattice model [Eq. (6)], with bond
indices defined in Fig. 4.

HBBK [Eq. (1)] Ca10Cr7O28 [21,22] HHC [Eq. (6)]

J0 −0.08(4) meV J1

J21 −0.76(5) meV -
J22 −0.27(3) meV -
J31 0.09(2) meV J2

J32 0.11(3) meV J2

J0 ≈ −0.1 meV, and AF within the breathing-kagome planes;
J31, J32 ≈ 0.1 meV.

The picture of Ca10Cr7O28 which emerges is therefore one
of strongly coupled FM plaquettes, which are in turn coupled
AF within a single breathing-kagome plane, and FM between
the two layers.

F. Theoretical work based on the BBK model

While even this, minimal model of Ca10Cr7O28 may seem
alarmingly complicated, it does provide a concrete micro-
scopic starting point for understanding experiment, and here
some good progress has already been made.

A straightforward, but informative exercise, is to use linear
spin wave (LSW) theory to track the evolution of S(q, ω)
with magnetic field [22]. Mean-field theory for Eq. (1), us-
ing experimental parameters (cf. Table II]), predicts that the
saturated state is stable for B > 1.1 T. Meanwhile LSW for
Eq. (1) gives a qualitatively reasonable description of the
scattering observed in experiment, and its field evolution for
B � 1 T [22].

More sophisticated methods have been applied to the
spin-liquid ground state found for T = 0. Pseudofermion
functional renormalization group (PFFRG) calculations for
the BBK model Eq. (1) [21], find a disordered ground state for
a range of parameters centered on those found in experiment.
And, encouragingly, PFFRG calculations of the static struc-
ture factor, S(q, ω = 0), exhibit a ringlike structure, similar to
that observed in experiment. The stability of this spin liquid
state is, interestingly, found to depend on the differences in
parameters between the different planes of the bilayer, with
symmetric choices leading to ordered ground states.

Subsequent tensor-network calculations, based on “pro-
jected entangled simplex states” (PESS) [27], also predict
a spin-liquid ground state. This approach has been used to
estimate the ground-state magnetization for parameters taken
from Ca10Cr7O28 (cf. Table II). At low fields, the magne-
tization is found to be nearly linear in B, with associated
susceptibility

χPESS = 1.1731 μB/Cr5+T = 3.93 emu mol−1 Oe−1,

about 30% larger than the value observed in experiments
carried out at T = 1.8 K [22]. The same calculations find a
saturation field of B ≈ 1 T [27].

A phenomenological approach to the low-temperature
properties of Ca10Cr7O28 has also been developed by Son-
nenschein et al. [23]. Taking inspiration from the broad
continuum found in inelastic neutron scattering [21], and the
(nearly) linear specific heat at low temperatures, these authors
introduce a model of noninteracting Fermionic spinons hop-
ping on a (decorated) honeycomb lattice. This model is not
derived directly from Eq. (1), but respects the symmetries of
the BBK lattice and is parameterized so as to reproduce the
energy scales and some of the key qualitative features of the
scattering seen in experiment. It has three twofold degenerate
bands; the lower occupied band has a nearly circular holelike
Fermi surface, while the unfilled high-energy bands mirror the
dispersion of graphene. This approach which corresponds to a
U (1) QSL, reproduces the rings of scattering in S(q, ω) at low
energy h̄ω ∼ 0.15 meV, and suggests features at intermediate
energy h̄ω ∼ 0.85 meV, which contain at least relics of pinch-
point structure.

By introducing further phenomenological parameters for
pairing of spinons, Sonnenschein et al. are also able to model
the deviation from T -linear specific heat found for 35 mK <

T < 100 mK [23]. The best fits are found for an f -wave gap,
leading to a Fermi surface with Dirac points, and implying
a Z2 spin liquid ground state [52]. This spinon pairing also
“cures” a seeming contradiction with experiment, since a U(1)
QSL would show additional, divergent, contributions to C(T )
coming from gapless gauge fluctuations [53,54].

G. Effective honeycomb lattice model

Phenomenology aside, published theory for quantum ef-
fects in Ca10Cr7O28 are limited to its ground state. Also,
very little is known about the properties of the spin-1/2 BBK
model at finite temperature. Some progress has however been
made in the classical limit, by considering a simplified, spin-
3/2 model.

The strongest couplings in the BBK model of Ca10Cr7O28

are the FM interactions within the triangular plaquettes of the
BBK lattice, J21 ≈ −0.76 meV and J22 ≈ −0.27 meV (cf.
shaded green triangles in Fig. 1). This immediately suggests
a simplification, namely treating each plaquette as a spin-3/2
moment on the medial, honeycomb lattice

H� = J1

∑
〈i j〉1

Si · S j + J2

∑
〈i j〉2

Si · S j − Bz
∑

i

Sz
i , (6)

where the first-neighbor coupling J1 ≈ −0.08 meV corre-
sponds to the FM inter-layer coupling J0 in the original BBK
model, while the second-neighbor coupling J2 ≈ 0.10 meV
can be taken to be the mean of the AF intralayer interactions
Jeff as

Jeff ≡ (J31 + J32)/2. (7)

Classically at least, this simplified model can be expected to
give a reasonable account for the properties of Ca10Cr7O28 for
T, ω < J21, J22.

Working with a spin-3/2 model on a honeycomb lat-
tice has the added advantage that it connects Ca10Cr7O28

with an established literature on unconventional magnetic
phases in honeycomb-lattice models with competing interac-
tions [29,36,55,56]. The J1-J2 Heisenberg model Eq. (6), is a
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FIG. 4. Honeycomb lattice realized by triangular plaquettes of
spins in Ca10Cr7O28, cf. Fig. 1. Labelling of bonds identifies param-
eters of the effective spin-3/2 model, Eq. (6). Experimental estimates
of these parameters can be found in Table II.

special case of the J1-J2-J3 Heisenberg model on honeycomb
lattice, where third-neighbor interactions are also taken into
account. The classical ground states of this parent model are
distinguished by the competition between the different forms
of coplanar spiral order. And, for J3 = 0, where spirals with
different ordering wave vectors meet, a continuous manifold
of ground states is formed, with wave vectors belonging to a
ringlike locus of points in q space (Fig. 5).

Depending on parameters, this ring can be centered on the
� point at the center of the Brilluoin zone (BZ) [36,55,56], or
on the K point at the corner of the BZ [29]. Both of these
cases have already been studied for AF J1. In the case of
the “large” ring centered on �, spin liquids with “ring” or
“pancake” motifs are found at high temperatures, while at very
low temperatures, a phase transition is identified into a state

FIG. 5. Loci of degenerate classical ground states in the J1-J2

Heisenberg model on a honeycomb lattice, Eq. (6). Depending on
the ratio of parameters, these loci may take the form of “large” rings
centered on � [36,55,56], or “small” rings centered on K [28,29].
Here, results are shown for J2/J1 = −0.3 (red line), −0.5 (purple),
and −0.7 (green).

breaking the threefold rotation symmetry of the lattice [36].
Very similar results are found for the “small” ring centered on
K , where the transition into the ordered phase was identified
as a three-state Potts transition [29].

Biswas and Damle have extended the analysis of Eq. (6) to
the case of FM interactions J1 < 0, through a combination of
classical MC simulation, MD simulation, spin-wave theory,
and large-N calculations [28]. Considering the limit B = 0,
a ratio of parameters J1/J2 motivated by Ca10Cr7O28 (cf.
Table II), they find that fluctuations select a discrete set of
spiral states from the “small” ring of ground states centered
on q = K . Corresponding MC simulations of Eq. (6) reveal a
three-state Potts transition into a state breaking lattice rotation
symmetry at T ∗ ≈ 66 mK, consistent with Ref. [29]. This is
accompanied by critical slowing down in the dynamics found
in MD simulation, and a large but finite spiral-correlation
length. Close to T ∗, the equal-time structure factor S(q)
shows a locus of highly degenerate states near the K-points
of the Brillouin zone, consistent with the “small” ring. At
higher temperatures, S(q) instead shows a larger ring of scat-
tering, near the zone boundary, similar to that observed in
Ca10Cr7O28 [21].

Quantum effects within the J1-J2 honeycomb lattice model
have only been studied in detail for S = 1/2. In this case the
phase breaking lattice rotation symmetry is proposed to be
a valence bond solid (VBS) [29], and QSL states have been
proposed elsewhere for both FM [56] and AF J1 [56]. In the
case of S = 3/2, spin-wave estimates suggest that spiral order
is unstable for parameters relevant to Ca10Cr7O28 [28], but do
not reveal the nature of any competing QSL.

H. Open questions

While considerable progress has been made, the complex
phenomenology of Ca10Cr7O28 has yet to find any complete,
or microscopically grounded explanation. On the experimen-
tal side, further tests of spin liquid properties through, e.g.,
thermal transport, could bring new insights. And improve-
ments in the resolution of inelastic scattering would also be
very valuable, making it possible to better-constrain micro-
scopic or phenomenological models, and to more accurately
test proposals about the spin-liquid state.

Meanwhile, obvious challenges for theory include (i) con-
necting the finite-energy and finite-temperature properties of
Ca10Cr7O28 with the spin-1/2 BBK model, Eq. (1); (ii) ex-
tending the analysis of this model to finite magnetic field; (iii)
identifying the mechanism driving its low-temperature spin
liquid state; and (iv) identifying interesting properties of the
BBK model which may, as yet, be obscure in experimental
data for Ca10Cr7O28.

In this paper, and the one which follows [32], we continue
the project, begun in Ref. [30], of addressing the points (i)–
(iv) above. The results in this first paper are drawn exclusively
from (semi)classical methods: Monte Carlo simulation; linear
spin-wave theory; and numerical integration of equations of
motion for spins, which we refer to as molecular dynam-
ics (MD) simulation. And before embarking on this journey,
some comment is due on the validity of using classical meth-
ods to address questions such as these, in a quantum magnet.
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FIG. 6. (a) Finite-temperature phase diagram of the BBK model, Eq. (1), showing wide extent of spin liquid phase. Result are shown
as a function of x = Jeff/J0 [Eq. (7)], and all other parameters taken from experiment [Table II]. The temperatures at which inelastic neutron
scattering (INS) experiments were carried out on Ca10Cr7O28 are shown with white dots, at x = −1.25 [21,22]. (b) Classical ground-state phase
diagram of the corresponding honeycomb-lattice model, Eq. (6), as a function of x = J2/J1, following Refs. [29,55,56]. (c) Equal-time structure
factor S(q) at for x = −1.25, T = 220 mK; the boundary of the Brillouin zone (BZ) is shown with white lines. Strong correlations are observed
near the boundary of the first BZ, with the highest intensity centered on the K points at zone corners. Form factors associated with magnetic
correlations have the periodicity of the fourth BZ, shown here with red lines. (d) Equivalent results at x = −1.25, T = 90 mK, showing how
scattering from the “small” ring centered on K points becomes sharper at low temperatures. All results were obtained from classical Monte
Carlo (MC) simulation of Eq. (1), as described in Sec. III and Appendix A, for a cluster of linear dimension L = 48 (N = 13,824). Phase
boundaries in (a) were determined from the sharp peak in specific heat C(T ) associated with either the breaking of lattice-rotation symmetry,
or the onset of ferromagnetic (FM) fluctuations.

Ca10Cr7O28 is a highly frustrated, quasi-two-dimensional
system, with spin-1/2 moments, and a strong candidate for
a quantum spin liquid (QSL) [21]. So it might at first seem
that there was little to be learnt from classical techniques.
None the less, experience with other models that support
QSL, where exact (or numerically exact) quantum results are
available for comparison—notably the Kitaev model [57], and
quantum spin ice [20,58])—teaches that, suitably interpreted,
classical approaches yield a surprising amount of insight into
both the correlations, and dynamics of quantum spin liquids
at finite temperature. Moreover, classical simulations always
bring meaningful advantage in terms of the size of the system
that can be simulated, and the ease with which results can be
interpreted.

Our approach in this paper will therefore be to pursue clas-
sical simulations of the BBK model, cautiously, correcting for
bias where we can, and noting it where we can not. To this end,
we benchmark simulation results against both experiment,
and known soluble limits of the model. The strength of this
approach, as well as its ultimate limitations, will become ap-
parent in the second paper, when we compare explicitly with
the results of quantum simulations of the BBK model [32].

III. THERMODYNAMIC PROPERTIES OF HBBK

We begin our anlaysis of the spin-1/2 BBK model
[Eq. (1)], by exploring its thermodynamic properties in the
absence of magnetic field, using classical Monte Carlo (MC)
simulation. Here the goal is to better understand experiments

carried out at finite temperature on Ca10Cr7O28, as described
in Sec. II, and to link them with known theoretical results for
the honeycomb lattice model [Eq. (6)].

Except where otherwise stated, simulations were carried
out for parameters taken from Ca10Cr7O28 (Table II), for
rhombohedral clusters of

N = 6 × L2 (8)

spins, subject to periodic boundary conditions. Simulations
employed a local Metropolis update, within the heat-bath
method, augmented by both over relaxation and parallel tem-
pering steps. Further details of the numerical techniques used
can be found in Appendix A. Key results are summarized in
the finite-temperature phase diagram, Fig. 6.

A. Symmetry-breaking at low temperatures

The first obvious questions to address are (i) how the
different energy scales found in the BBK model manifest
themselves in thermodynamic properties, such as heat capac-
ity, and (ii) whether the model exhibits any kind of long-range
order at low temperature. This second question is very clearly
motivated by the work of Biswas and Damle on an effective
honeycomb-lattice model for Ca10Cr7O28, where a three-state
Potts transition into a state with broken lattice rotation sym-
metry is found for T ∗ ∼ 64 mK [28].

In Fig. 7, we present MC results for normalized specific
heat c(T ) = C(T )/N evaluated for parameters taken from
Ca10Cr7O28 (Table II). The dominant features of these results
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FIG. 7. Normalized specific heat c(T ) = C(T )/N of spin-1/2
BBK model, for parameters taken from Ca10Cr7O28 (cf. Table II),
with sharp peak at T ∗ ≈ 66 mK signaling a phase transition into
a low-temperature ordered state. Here c(T ) has been plotted on a
log-linear scale, for direct comparison with Ref. [28]. Inset: detail of
c(T ) near transition on a linear scale. Results are taken from classical
Monte Carlo (MC) simulation of Eq. (1), for clusters with linear
dimension L = 60, 72, 84, and 96, as defined in the text.

are a shoulder at T ≈ 500 mK, consistent with a crossover
into a phase with collective spin fluctuations, and a sharp
peak at T ∗ ≈ 66 mK, suggestive of a finite-temperature phase
transition.

These temperature scales should be compared with the
parameters of the BBK model (Table II). Both are less than
the scale of the FM coupling within triangular plaquettes
(J22 ∼ −2.3 K, J21 ∼ −6.5 K), but comparable with the inter-
actions between spins in different plaquettes (J0 ∼ −69 mK,
J31 ∼ 770 mK, J32 ∼ 950 mK). Thus we expect the thermody-
namics of the BBK model to be determined by the collective
excitations of groups of three spins on FM-coupled plaquettes
– the regime described the effective honeycomb-lattice model,
Eq. (6).

By analogy with earlier work on the honeycomb-lattice
model, reviewed in Sec. II G, we expect the peak at T ∗ ≈
66 mK to originate in a continuous transition into a state with
broken lattice-rotation symmetry. Closer examination, shown
in the inset of Fig. 7, reveals a nearly symmetric peak, whose
height has a weakly nonmonotonic dependence of system size.
The weakly nonmonotonic behavior seen in c(T ) presumably
reflects the difficulty of simulating the critical behavior of
a system with dynamics based on triads of spins, using an
update based on a single spin. Away from the critical region,
i.e., for T 
= T ∗, this does not present a problem. However
it does prevent us from analyzing the nature of any phase
transition on the basis of c(T ) alone.

Instead, we now turn to an order parameter sensitive to the
breaking of lattice rotation symmetry, of the type considered
in Refs. [28,29,36]. We write this as

φ =
∑

r∈�
φ(r), (9)

FIG. 8. Illustration of labels used in definition of lattice-nematic
order parameter, Eq. (13), associated with low-temperature ordered
phase. (a) Four neighboring triangular plaquettes of the BBK lattice,
here shaded green. (b) Equivalent set of neighboring sites within the
honeycomb lattice considered in Refs. [28,29].

where the sum upon r runs over all sites of a honeycomb lat-
tice (equivalently, all triangular plaquettes of the BBK lattice),

φ(r) = 1

S2
[SA(r)SB(r + ê0) + ωSA(r)SB(r + ê1)

+ω2SA(r)SB(r + ê2)], (10)

with

ω = ei2π/3 (11)

and

S(A,B)(r) =
3∑

δ=1

S(A,B),δ (r), (12)

is the total spin of an individual triangular plaquette, where the
label A (B) corresponds to the lower (upper) plane of the BBK
lattice. The vectors êi defining the bonds between plaquettes
in Eq. (10) are illustrated in Fig. 8.

In Fig. 9, we present results for the order-parameter sus-
ceptibility corresponding to Eq. (9),

χφ = 1

NT
(〈|φ|2〉 − 〈|φ|〉2). (13)

A sharp peak is found at T ∗ ≈ 66 mK, confirming that the
anomaly found in specific heat (Fig. 7), is associated with
a phase transition into a state with broken lattice-rotation
symmetry. For system sizes L � 60, χφ this peak shows a
regular scaling with system size,

χφ ∼ Lγ /ν γ /ν = 1.61 ± 0.13. (14)
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FIG. 9. Order-parameter susceptibility associated with breaking
of lattice-rotation symmetry, Eq. (13), showing evidence for a finite-
temperature phase transition at T ∗ ≈ 66 mK. Inset: maximum
value of susceptibility scales as χφ ∼ Lγ /ν , with critical exponent
γ /ν = 1.61 ± 0.13. Within error bars, this is consistent with a three-
state Potts transition (γ /ν = 26/15 ≈ 1.733), as discussed in Refs.
[28,29]. Results are taken from classical Monte Carlo simulation
of Eq. (1), for the same clusters used to determine heat capacity
(Fig. 7).

Within error bars, this is consistent with the critical exponent
of a three-state Potts model transition in 2D (γ /ν = 26/15 ≈
1.733), as already discussed for the effective spin-3/2
honeycomb-lattice model [28,29]. The critical temperature
Tc ≈ 65 mK is also consistent with the value, found for
the effective model [28]. Thus, while the BBK model of
Ca10Cr7O28, Eq. (1), is considerably more complicated than
the effective honeycomb lattice model, Eq. (6), for parameters
taken from experiment, Table II, it exhibits exactly the same
3-state Potts transition, at a very similar temperature [28].

Building on the analogy with the honeycomb lattice, we
can extend this analysis, from the parameters currently associ-
ated with Ca10Cr7O28, to a parameter set equivalent to varying
the ratio J2/J1 in Eq. (6). We do this by varying the ratio x =
Jeff/J0, where Jeff [Eq. (7)] plays the role of J2, and J0 plays
the role of J1. Doing so, we arrive at the finite-temperature
phase diagram shown in Fig. 6(a), where estimates of T ∗ have
been taken from the peak in heat capacity.

We find that the ordering temperature, T ∗, takes on a
significantly higher value for parameters associated with a
“small” ring of degenerate spiral states, for x < −1/2, than
for parameters associated with a “large” ring of spiral ground
states −1/2 < x < −1/6 (cf. Fig. 5). This appears to be con-
sistent with transition temperatures found in earlier studies of
the honeycomb lattice [28,29,36]. And, naively, it suggests
that the entropy associated with the “large” ring of spirals,
centered on �, is greater than the entropy associated with the
small ring of spirals, centered on K . We return to this point in
the context of the discussion of spin-liquid properties at finite
temperature, below.

We note that, for x > −1/6, the anomaly seen in c(T ),
and the corresponding estimate of a critical temperature in
Fig. 6, should be associated with the onset of strong FM
fluctuations, rather than lattice-symmetry breaking. However,
as this case does not appear to have any bearing on the physics
of Ca10Cr7O28, we shall not consider it further here.

Published estimates of the exchange parameters of
Ca10Cr7O28 (Table II) suggest a ratio of effective honeycomb-
model interactions x ≈ 1.25. This places Ca10Cr7O28 within
the region where the honeycomb model, Eq. (6), has a small
ring of ground states centered on q = K . However the rel-
atively large uncertainty in the estimated values of J1 and J2,
leads to considerable uncertainty in ratio, reflected in the error
bar in the placement of Ca10Cr7O28 in Fig. 6.

B. Correlations at finite temperatures

We next turn to the nature of spin correlations in the regime
T ∗ = 66 mK < T � 500 mK, where results for heat capacity
are suggestive of collective behavior. This is the range of
temperatures where spin-liquid behaviour is most likely to be
found in the classical limit of the BBK model. It is also the
temperature regime relevant to published neutron scattering
data for the quantum spin liquid in Ca10Cr7O28 [21–23].

In Fig. 6, we show MC results for the equal-time structure
factor S(q), calculated for parameters relevant to Ca10Cr7O28.
At a temperature of T = 220 mK, a broad “ring” of strong
fluctuations is observed for q near to the Brillouin zone (BZ)
boundary, with the strongest signal occurring near the K
points at BZ corners [Fig. 6(c)]. On lowering temperature
to T = 90 mK, spectral weight is transferred from the zone
boundary to diffuse, U-shaped structures at the zone corners
[Fig. 6(d)].

Very similar results for S(q) have been found in large-
N and classical MC calculations for the honeycomb-lattice
model at T = 100 mK [28]. The preponderance of scatter-
ing near the zone corners can be understood in terms of the
“small” ring of classical ground states in the honeycomb-
lattice model for |J1| ∼ J2 (cf. Fig. 5). Meanwhile the
asymmetry visible in S(q) near the BZ corners reflects the
form factor of the BBK lattice, which has the periodicity of
the fourth BZ, shown here with red lines.

When combined with the heat capacity (Fig. 7), these
results suggest that fluctuations of spins in Ca10Cr7O28 at
temperatures T � 500 mK are both collective and highly
structured, involving a set of q vectors which bears the im-
print of nearby (classical) ground state degeneracies. This is
consistent with a spin-liquid state at finite temperatures, where
entropy predominates. And it is broadly similar to what has
been observed in a number of models supporting “spiral spin
liquids” [35–40].

With this in mind, it is interesting to further explore the
analogy with the honeycomb lattice model, by varying the
values of the effective parameters J1 and J2, in such a way as
to tune between different kinds of ground state degeneracies.
In Fig. 10, we present results for the evolution of S(q) as a
function of x = Jeff/J0, [Eq. (7)], at temperatures well within
the spin-liquid phase, and just above the transition into the
ordered ground state (cf. Fig. 6). We consider a range of
parameters −0.7 � x � −0.1 which span both the “large”
and “small’ ring degeneracies of the honeycomb lattice model
(cf. Fig. 5).

At T = 220 mK (upper panels), for x < −0.3, correla-
tions are strongest near to the BZ boundary. Meanwhile, for
x � −0.3, they start to resemble the “pancake-liquid” iden-
tified in [36], with stronger scattering in the zone center. At
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FIG. 10. Evolution of the equal time structure factor S(q) as a function of x = Jeff/J0 [Eq. (7)], showing the impact of classical ground
state degeneracy on correlations. [(a)–(f)] Results at T = 220 mK, within the spin-liquid phase, showing structured diffuse scattering, with
correlations strongest on the zone boundary for x < −0.5. [(g)–(l)] Results at T = T ∗(x) + ε, just above the phase transition into an ordered
state, showing the imprint of the different “ring” degeneracies. The transition from a “large” ring of degenerate spirals centered on �, to a
“small” ring of degenerate spirals centered on K , occurs for x = −0.5. The asymmetry of scattering within the “small” ring, with suppression
of weight at large q, reflects the form-factor of the BBK lattice. All results were obtained from classical Monte Carlo simulation of Eq. (1), for
a cluster of linear dimension L = 60 (N = 21,600), with Jeff ≡ (J31 + J32)/2, and other parameters taken from experiment (Table II). Magnetic
scattering has the periodicity of the fourth Brillouin zone, shown here with red lines.

temperatures just above the peak observed in specific heat,
T = T ∗ + ε (lower panels), the imprint of the ground-
state degeneracy of the equivalent honeycomb-lattice model,
Eq. (6), is evident in rings of high intensity. These are centered
on K for x < −0.5 and on � for x > −0.5 (cf. Fig. 5).

Returning to experimentally motivated parameters, x =
1.25, it is interesting to compare these results with pub-
lished calculations of the structure factor of the BBK model
coming from PFFRG [21] and phenomenological parton ap-
proaches [23]. PFFRG results for the static structure factor
S(q, ω = 0) at T = 0 suggest strong correlations near to the
BZ boundary, with additional weight near to zone corners
K [21]. This is qualitatively very similar to MC results at
T = 220 mK, within the spiral spin liquid phase [Fig. 6(c)].
The T = 0 parton phenomenology, meanwhile, shows energy-
dependent ring-like structure in S(q, ω), centered on � [23].
And to meaningfully compare with this, it is necessary to
analyze dynamics.

IV. DYNAMICAL PROPERTIES OF HBBK

The thermodynamic properties of the BBK model, reported
in Section III, are consistent with the experimental observa-
tion that Ca10Cr7O28 enters a spin-liquid state at temperatures
T � 500 mK. To learn more about this spin liquid, we now
turn to dynamical simulations. These will provide us with a
basis for comparison with inelastic neutron scattering (INS)
experiments, which reveal dynamics at a range of different
energy scales [21–23].

We adopt a (semi)classical approach, in which spin config-
urations are drawn from a Boltzmann distribution, generated

by MC simulation, and then evolved according to the Heisen-
berg equation of motion [59–61]

dSi

dt
= i

h̄
[Si,HBBK] =

(∑
j

Ji jS j − Bzẑ
)

× Si. (15)

This approach to the dynamics of spin liquids was popularized
by Moessner and Chalker [31,59], who dubbed it “molecular
dynamics” (MD) simulation, by analogy with Monte Carlo
techniques used in the simulation of fluids.

We note that this “MD” approach has much in common
with the numerical solution of the Landau-Lifschitz-Gilbert
equation [62]

∂M
∂t

= −γ ∗M × H − α

M
M × ∂M

∂t
. (16)

However there are also some important differences, notably
the use of microscopic spin variables Si, rather than a course-
grained magnetization M; the absence of a phenomenological
damping term α; and the use of an ensemble of initial states
drawn from classical MC simulation. Further details of our
numerical methods can be found in Appendix A.

In the context of Ca10Cr7O28, the great advantage of the
MD approach is that it is possible to simulate the finite-
temperature spin dynamics of clusters of more than N =
10 000 spins, facilitating a quantitative comparison with ex-
periment, even in the absence of magnetic order, and in
models which would be subject to a sign problem in quantum
Monte Carlo simulation. And even though the MD method
fails to take into account either entanglement, or quantum
statistics of excitations, it has previously been found to give
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a good account of the qualitative features of quantum models
for problems as diverse as the Kitaev model [57]; quantum
spin ice [58]; the spin liquid phase of NaCaNi2F7 [63], and
the semiclassical dynamics of spin density waves [64].

A. Comparison of simulation with experiment

We start by comparing simulations of dynamics carried out
in the spin-liquid phase of the BBK model with results found
in experiment. Key results have already been summarized in
Fig. 2, where we show MD results for the dynamical struc-
ture factor S(q, ω), side-by-side with results from INS [21].
To facilitate comparison, simulation results have been con-
voluted with a Gaussian mimicking experimental resolution,
and a magnetic form factor appropriate for a Cr5+ ion (cf.
Appendix C). Both experiment and theory show rings of
scattering at low energy, consistent with the discussion in
Sec. III B. They also agree on a broad network of scattering
at intermediate to high energy, which is concentrated near to
the zone boundary, with hints of “bow-tie” like structures near
to (1, 0, 0). (Bright “spots” seen in INS near to zone centers
represent scattering from phonons, and do not form part of the
magnetic signal [21]).

Clearly, the MD simulations capture important elements of
the physics of Ca10Cr7O28. Moreover, the “ring” found at low
energies in MD simulation corresponds very closely to the
ring found in the static structure factor S(q, ω = 0) in PFFRG
calculations [21] and a related parton phenomenology [23].
This suggests that important aspects of quantum treatments of
the BBK model are reproduced. The question which remains,
is what this tells us about the nature, and origin, of the spin
liquid in Ca10Cr7O28 ?

B. Evolution of spin configurations in spin liquid as a function
of time (first animation)

One very direct route into this question is to look at the
evolution of spin configurations in real-space, as a function of
time. This is accomplished in the first animation provided in
Ref. [33]. The simulations shown in this animation were car-
ried out for N = 5400 spins at a temperature of T = 220 mK,
deep inside the classical spin-liquid regime [Fig. 6(a)], where
the equal-time structure factor S(q) reveals a diffuse “ring”
structure [Fig. 6(c)]. As the Animation shows, the spins con-
tinue to fluctuate, even at this low temperature. And on closer
inspection, the simulation reveals that the spins exhibit both
slow and fast dynamics, and they have very different charac-
ters. The slow precession of locally collinear spins is mixed
with fast fluctuations of seemingly uncorrelated spins. For
clarity, spins which rotate quickly have been colored red,
while spins which rotate slowly have been colored green;
further details of the animation can be found in Appendix B.

C. Correlations as a function of energy and momentum

To better understand the dynamics on different timescales
observed in the spin liquid, we now return to the dynamical
structure factor. This time however, in order to compensate
for the classical statistics of the MC simulations, we do not
plot the dynamical structure factor S(q, ω) directly, but rather
its first moment, divided by the temperature at which the

FIG. 11. Spin dynamics in zero field, showing the different cor-
relations found on different energy scales. The first moment of the
dynamical structure factor S̃(q, ω) [Eq. (17)] was obtained from
molecular dynamics (MD) simulation of the BBK model, Eq. (1),
at T = 220 mK, for a cluster of linear dimension L = 48 (N =
13, 824), with parameters taken from Experiment [Table II]. Results
are presented with energy resolution of FWHM = 0.02 meV, and no
Cr5+ form factor.

simulations are carried out [30,63,65]:

S̃(q, ω) = 1

2

ω

kBT
SMD(q, ω). (17)

Further details of this approach can be found in Appendix A 3.
In Fig. 11(a), we present results for parameters equiva-

lent to the first animation, for a cluster of N = 13 824 spins.
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Results are shown for the [2 + h,−2 + h, 0] plane in recip-
rocal space, considered in Ref. [22]; the atomic form factor
has been set equal to unity, in order to make it easier to
distinguish correlations over a broad area of reciprocal space.
Bands of excitations are observed with three different energy
scales, ω ∼ 0.0, 0.4 and 1.1 meV. The upper bands are dif-
fuse, with no sharp features, and only very weakly dispersing,
suggesting that excitations are nearly localized. The charac-
teristic energy scale of the upper (lower) “flat” mode is set by
the ferromagnetic coupling strengths J22 (J21), reflecting the
transition from a high spin to a low-spin state on an individ-
ual triangular plaquette. Each “mode” comprises two distinct
bands, with bandwidth determined by the antiferromagnetic
coupling J31 (J32).

These quasilocalized excitations are a robust feature of
the bilayer breathing-kagome (BBK) model of Ca10Cr7O28,
and are also seen in quantum simulations [32]. They are an
echo, at finite energy, of the “Coulombic” spin liquid found
in the Heisenberg antiferrmognet on a kagome lattice, and
support both “pinch-point” and “half-moon” features in neu-
tron scattering [41]. As required for a rotationally symmetric
Hamiltonian like Eq. (1), spectral weight vanishes for q = 0
at all finite E . The lower band, meanwhile, is much more
structured, with spectral weight predominantly found in high-
intensity patches centered around q = 0.

In Fig. 11(b), we show a cross section through S(q, ω)
for ω = 0.01 meV, once again choosing our plane in recip-
rocal space to match equivalent results in Refs. [21,22]. The
high-intensity patches centered around q = 0 are immediately
recognizable as the “ring” observed in S(q) [Fig. 6(c)] with
strong intensity near the K points at the zone corners. And
further “rings” are observed at (2, 0, 0), etc., reflecting the
periodicity of the fourth BZ. These are connected by a diffuse
web of scattering which preserves the overall sixfold rotation
symmetry of the lattice.

In Fig. 11(c), we present equivalent results for ω =
0.35 meV, the characteristic energy scale of the intermediate
band of excitations in Fig. 11(a). The structure observed is
utterly different. The “ring’-like features found in the lower
band are conspicuously absent, being replaced by a broad web
of correlations tracking the boundary of the extended (fourth)
BZ. Superimposed on this web, we find a blurred but regular
array of triangular features, which meet to form “bow-ties”
centered on reciprocal lattice points (1, 0, 0), etc.

Finally, in Fig. 11(d), we present results for ω = 1.13 meV,
the characteristic energy scale of the highest band of excita-
tions in Fig. 11(a). Here once again we find a broad web of
correlations tracking the boundary of the extended BZ. And
once again this has structure superimposed on it. But at this
particular energy, that structure takes the form of crescent
features centered on the same reciprocal lattice vectors as the
bow-ties described above, i.e., (1, 0, 0), etc.

D. Evolution of spin configurations in spin liquid as a function
of time, revisited (second animation)

From these results it is clear that (i) dynamics occur on
three different times scales and (ii) that the dynamics on
long timescales (low-energy band) is qualitatively different
from that on short timescales (intermediate- and high-energy

bands). With these lessons in mind, we can revisit the time
evolution of spin configurations in real space, and apply a
filter to separate dynamics into slow, intermediate and fast
bands of excitations.

In the second animation provided in Ref. [34], we show
the separate time evolution of slow, intermediate and fast spin
fluctuations, in three different panels. Viewed at “normal”
speed, only the slow fluctuations are clearly intelligible, as
collective rotation of spins which are locally collinear on
each of the ferromagnetic plaquettes of the BBK lattice. To
make comparison easier, in the second part of the animation,
we adjust the “clock” for each panel, speeding up the slow
fluctuations, and slowing down the fast ones, such that all
processes occur at (roughly) the same subjective speed. At
the same time, we reintroduce the color cues for speed, with
rapdily rotating spins appearing in red. Further details of the
entire procedure are given in Appendix B.

Once the time series coming from simulations has been
processed in this way, the contrasting character of excitations
at different timescales is obvious. Slow fluctuations, once
speeded up, are more obviously collective, with triads of spins
on neighboring FM plaquettes moving in unison. Intermediate
and fast fluctuations, meanwhile, are seen to have the same
character, and to comprise two, seemingly uncorrelated pro-
cesses. The first of these is the collective rotation of spins on
the AF plaquettes of the lattice, within each of which they
(approximately) maintain a condition of net zero spin, familiar
from the kagome-lattice AF [61,66,67]. Superimposed on this
are extremely fast spin flips of individual spins, which appear
to propagate in pairs around the lattice.

In summary, the dynamics of the classical spin liquid found
in the BBK model of Ca10Cr7O28 are complicated, unusual,
and interesting. The degree of complexity is perhaps not a sur-
prise, given the large unit cell and low-symmetry of the BBK
lattice. None the less, it is possible to interpret simulation
results for dynamics, through a combination of spectral func-
tions, and animations of real-space dynamics. What makes the
dynamics unusual, is that they appear to be qualitatively dif-
ferent on different timescales, and to combine aspects of two
very different spin liquids, the “spiral spin liquids” studied in
models with complex competing interactions [35–40], and the
celebrated spin liquid found in kagome lattice AF [61,66–68].
This multiple-scale dynamics would be interesting by itself,
but what makes it compelling is that many aspects of these
dynamics have already been seen in INS measurements on
Ca10Cr7O28, a point which we return to in Sec. VII, below.

V. THERMODYNAMIC PROPERTIES OF BBK MODEL IN
APPLIED MAGNETIC FIELD

Studies of Ca10Cr7O28 in applied magnetic field have al-
ready proved very useful in, e.g., providing estimates of the
microscopic exchange parameters of the BBK model (cf.
Sec. II E). In what follows, we use magnetic field as a tool
to learn more about the nature and origin of its spin-liquid
phase, starting with the thermodynamic properties found in
MC simulations, for parameters corresponding to Ca10Cr7O28

(Table II). Key results are summarized in the phase diagram,
Fig. 12.
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FIG. 12. Low-temperature phase diagram found in classical
Monte Carlo simulations of the bilayer breathing-kagome (BBK)
model of Ca10Cr7O28, for a cluster of N = 1944 spins. The closing of
a gap to transverse spin excitations at a critical field B � 1 T converts
the correlated paramagnet into a spiral spin liquid, with characteristic
“ring” in S(q) (Sec. VI). A small domain of lattice-nematic and
multiple-q orders is found at temperatures below 70 mK (Sec. V).
Results are taken from classical Monte Carlo simulation of HBBK

[Eq. (1)], as described in Sec. V. The temperature associated with
simulation results for dynamics, T = 220 mK, (Secs. IV and VI) is
shown with a white dashed line (cf. Fig. 2). The critical fields indi-
cating the closing of the energy gap to spin excitations, as obtained
from MD simulations at T = 90, 150, and 220 mK (cf. Fig 22), and
linear spin wave theory at T = 0, are shown with black squares (�).
Low-temperature anomalies in specific heat c(T ) are denoted with
green triangles (�); peaks in the nematic order parameter suscepti-
bility [cf. Eq. (20)], with blue triangles (�).

A. Magnetization in field

We consider first the magnetization, m(B). In Fig. 13,
we show MC simulation results for m(B), at temperatures
of T = 220 mK (within the spin liquid) and T = 1.8 K
and 3 K (within a high-temperature paramagnetic phase) (cf.
Fig. 12). MD simulations find a spin liquid which is gapless
in zero field [Fig. 11(a)], consistent with both expectations
for an O(3)-invariant classical model, and experiment on
Ca10Cr7O28 [21]. In keeping with this, simulations at T =
220 mK, reveal that the spin liquid has a finite magnetic
susceptibility, with a nearly linear behavior of m(B) up to
a field B ∼ 0.7 T. Interestingly, the susceptibility within the
spin liquid at this temperature is very close to the value
found by dividing the saturated moment m = 0.5 by the
zero-temperature saturation field found in spin wave theory,
B = 1.1 T (vertical dashed line). For B > 0.7 T, m(B) is
more “rounded” and tends towards the full saturated moment
(horizontal dashed line) for B ≈ 10 T.

Results for m(B) in the paramagnetic phase, for T = 1.8
and 3 K, also show a finite magnetic susceptibility, but no hint
of saturation up to the highest fields simulated. We note that
the failure of the magnetization to saturate at these tempera-
tures is an artifact of classical statistics, and is not reproduced
by quantum simulations [32].

B. Heat capacity in field

More can be learned by looking at the heat capacity, c(T )
under applied magnetic field. Results taken from MC simula-

FIG. 13. Magnetization of the classical BBK model of
Ca10Cr7O28 as a function of magnetic field, showing strong
dependence on temperature. At the lowest temperatures,
magnetization approaches saturation, |mz| → 0.5 (horizontal
dashed line) for |B| > 1.1 T, the saturation field predicted by
linear spin-wave theory at T = 0 (vertical dashed line). At
higher temperatures, very large fields are needed to saturate the
magnetization, consistent with a high density of thermally excited
spin excitations. Results are taken from classical Monte Carlo
simulation of HBBK [Eq. (1)], for a cluster of linear dimension
L = 48 (N = 13 824), with parameters taken from experiment
(Table II).

tions are shown in Fig. 14. Many of the large-scale features
observed in the absence of field persist; in particular, the
broad shoulder at T ∼ 500 mK (not shown) is little affected
by fields B � 1 T, suggesting that spin excitations below this
temperature scale remain collective. And, for magnetic fields
B � 0.7 T, we can identify a sharp peak in specific heat in
c(T ) which connects smoothly with the phase transition from
spin-liquid to Z3 lattice nematic observed in zero field (Fig. 7).

FIG. 14. Heat capacity of BBK model of Ca10Cr7O28 as a func-
tion of magnetic field. Results are shown for T < 100 mK, with
magnetic field ranging from B = 0 T (blue curve, top of panel) to
B = 1.0 T (orange curve, bottom of panel). A number of differ-
ent anomalies are observed, distinguishing different (quasi)ordered
phases, as described in the main text. Results are taken from classical
Monte Carlo simulation of HBBK [Eq. (1)], for a cluster of linear
dimension L = 18 (N = 1944), with parameters taken from experi-
ment (Table II).
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However, for fields B � 0.2 T, new features start to
emerge. In particular, for 0.225 < B < 0.375 T, the sharp
anomaly in c(T ) associated with the onset of lattice-rotation
symmetry splits into two peaks. Moreover for B � 0.5 T, a
further weak anomaly (shoulder) becomes visible in c(T ), at
a temperature higher than any sharp peak. This new feature
moves steadily to lower temperature with increasing field,
finally interpolating to T → 0 at the critical field found in spin
wave theory Bc = 1.1 T.

These features divide the low-temperature phase diagram
into several distinct regions, which we characterize below.

C. Evolution of Z3 lattice-nematic order in field

We first consider the phase found at low temperature and
low field, which connects with the Z3 lattice-nematic order
found for B = 0. The order parameter for lattice-nematic or-
der, Eq. (9), can be generalized for finite magnetic fields, as

φν =
∑

r∈�
φν (r), (18)

where

φ‖(r) = 1

S2

[
Sz

A(r)Sz
B(r + ê0) + ωSz

A(r)Sz
B(r + ê1)

+ω2Sz
A(r)Sz

B(r + ê2)
]
, (19)

φ⊥(r) = 1

S2
[S⊥

A (r)S⊥
B (r + ê0) + ωS⊥

A (r)S⊥
B (r + ê1)

+ω2S⊥
A (r)S⊥

B (r + ê2)], (20)

where the conventions for labeling sites within the plaquettes
A and B are given in Fig. 8, and

S⊥(r) = (Sx(r), Sy(r)) (21)

We find that the dominant contribution comes from φ⊥, and
the associated order parameter susceptibility, χ⊥

φ (T ), shows a
sharp peak which tracks the anomaly in c(T ), confirming that
this originates in the breaking of lattice-rotation symmetry
[Fig. 15(a)].

Meanwhile, for 0.225 < B < 0.375 T, where the heat-
capacity peak splits, the maximum in χ⊥

φ (T ) is found at the
same temperature as the lower peak in c(T ) [Fig. 15(b)],
consistent with the existence of a lattice-nematic state at low
temperatures.

D. Competing (quasi)ordered phases

At temperatures between the two peaks in specific heat
[Fig. 15(a)], we find a phase that lacks Z3 order [Fig. 15(b)],
but shows spin correlations very similar to those observed in
a triple-q state triangular lattice [69]; a known example of a
skyrmion lattice [Figs. 15(c) and 15(d)]. At higher tempera-
tures, these give way to the known correlations of the spiral
spin liquid [Figs. 15(e) and 15(f)].

For higher values of magnetic field, 0.375 < B � 1 T,
there is only a single sharp feature in c(T ), presaged by a
broad shoulder at (slightly) higher temperature [Fig. 16(a)].
The sharp peak is found at higher temperatures than the
anomaly in the Z3 order-parameter susceptibility [Fig. 16(b)].

FIG. 15. Thermodynamic properties of BBK model of
Ca10Cr7O28 at B = 0.3T showing evidence for a multiple-q state
separating the Z3-ordered lattice-nematic from the spiral spin
liquid. (a) Heat capacity C(T )/N , showing distinct peaks at 35(2)
and 58(2) mK. (b) Susceptibility associated Z3 order parameter,
χ⊥

φ (T ) [Eqs. (13) and (20)], showing sharp peak at 35(2) mK.
(c) Transverse structure factor S⊥(q) at T = 45 mK, within the
“multiple-q (I)” phase, showing a matrix of points associated with
a multiple-q state near to zone corners. (d) Longitudinal structure
factor S‖(q) at the same temperature. Zone-center peaks reflect
the finite magnetization of the system. (e) Transverse structure
factor S⊥(q) at T = 220 mK, showing diffuse scattering features,
as observed in zero field [see Fig. 6(c)]. (f) Longitudinal structure
factor S‖(q) at T = 220 mK, showing the same diffuse scattering
features as in (e) with additional Bragg peaks at Brillouin zone
centers, accounting for spin polarization in field. Results are taken
from classical Monte Carlo simulation of the BBK model Eq. (1), for
a cluster of linear dimension L = 18 (N = 1944), with parameters
taken from experiment (Table II). To distinguish multiple-q states,
simulations have been performed in absence of parallel tempering
(Appendix A).

For T → 0, the peak tends in c(T ) to a field B ∼ 0.9 T
(Fig. 14), setting the outer limits of Z3 order.

The weaker anomaly (shoulder), meanwhile, tracks to B ∼
1.1 T, the critical field found in LSW theory at T = 0 (Figs. 12
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FIG. 16. Thermodynamics of BBK model of Ca10Cr7O28 at
B = 0.8T. (a) Heat capacity C(T )/N , showing shoulder around
∼40 mK, associated with the onset of the “multiple-q (II)” phase,
and sharp peak at 11(2) mK, marking phase transition into Z3

lattice nematic. The transition between the correlated paramagnet
and spiral spin liquid is not accompanied by any visible anomaly
in C(T )/N . (b) Susceptibility associated with Z3 order parameter,
χ⊥

φ (T ) [Eqs. (13) and (20)], showing sharp peak at 11(2) mK.
(c) Transverse structure factor S⊥(q) at T = 25 mK within the
“multiple-q (II)” phase, showing points associated with a multiple-q
state near to zone corners. (d) Longitudinal structure factor S‖(q)
at the same temperature. (e) Transverse structure factor S⊥(q) at
T = 220 mK, showing diffuse scattering features, as observed in
Figs. 15(e). (f) Longitudinal structure factor S‖(q) at T = 220 mK,
showing qualitatively different features, compared to Fig. 15(f), em-
phasizing the correlated nature of the paramagnetic phase. Results
are taken from classical Monte Carlo simulation of the BBK model
Eq. (1), for a cluster of linear dimension L = 18 (N = 1944), with
parameters taken from experiment (Table II). To facilitate the under-
standing of order, measurements have been performed in absence of
parallel tempering.

and 14). This defines a new multiple-q (II) phase, colored
pink in Fig. 12, with correlations [Figs. 16(c) and 16(d)]
which are qualitatively different from those of the lattice ne-
matic or multiple-q (I) state found at lower field (Fig. 15).
Unfortunately, the precise nature of the phases found at low
temperature for this range of fields has proved extremely

difficult to determine on the basis of simulations based on a
local update, and further work would be needed to definitively
identify this state.

E. Summary of results

Putting these results together, we arrive at the phase dia-
gram shown in Fig. 12. Anomalies found in c(T ) and χ⊥

φ (T )
at low temperature are marked with triangular symbols. These
are taken from simulation results for a cluster of N = 1944
spins; some way from the thermodynamic limit, but large
enough to offer representative results. The single data point
at T = 220 mK [square symbol] is taken from studies of
dynamics, described in Sec. VI.

Five distinct phases are shown. The phase diagram is dom-
inated by two phases of direct relevance to experiments on
Ca10Cr7O28; a correlated paramagnet in which spins on trian-
gular plaquettes are ferromagnetically aligned (shaded green);
and the finite-field continuation of the “spiral spin liquid”
studied in Sec. IV (shaded blue); these phases extend up to
temperatures of order T ≈ 500 mK, where the three spins on
FM plaquettes start to fluctuate independently, and the heat
capacity rolls over into a paramagnetic behavior (Fig. 7).

We also identify three (quasi)ordered phases at low tem-
peratures; the finite-field continuation of the Z3 lattice nematic
studied in Sec. III A [shaded orange]; a “multiple-q (I)” state
[shaded magenta]; and a “multiple-q (II)” phase [shaded
pink], which have both multiple-q character. The shaded re-
gion separating the “multiple-q (II)” phase from the lattice
nematic is not identified as a new phase, but indicates the
splitting of anomalies in c(T ) and χ⊥

φ (T ), which is subject
to strong finite-size scaling.

Current results leave a number of open questions about the
nature of (quasi)ordered phases found in the classical limit
of the BBK model at low temperature. However, as these
do not appear to be of direct relevance to Ca10Cr7O28, and
are difficult to probe with current simulation techniques, we
leave them for future work. Here, a good first step towards
understanding these phases might be to extend simulations of
the equivalent S = 3/2 J1−J2 honeycomb-lattice model [28]
to finite magnetic field.

VI. DYNAMICAL PROPERTIES OF BBK MODEL IN FIELD

Having explored the thermodynamics of the BBK model
in field, we now turn to its dynamics, where it is possible to
make explicit connection with the inelastic neutron scattering
results of Balz et al. [21,22]. We start with results for high
field, where experiments were been used to parameterize the
BBK model of Ca10Cr7O28, before returning to the question
of how a spin liquid emerges from a field-saturated state.

A. Dynamics in high field

In simulation as in experiment, results are most easily
understood for high magnetic fields, where the magnetization
is saturated. Here, the fact that the BBK model is invariant
under rotations about the magnetic field, implies that linear
spin wave (LSW) theory provides an exact description of the
one-magnon excitations of a fully polarized state at T = 0.
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FIG. 17. Spin dynamics of Ca10Cr7O28 in the saturated state at B = 11 T. [(a), (d), and (g)] Results for inelastic neutron scattering (INS)
experiments, reproduced from Refs. [21,25], are compared to [(b), (e), and (h)] linear spin-wave (LSW) theory and [(c), (f), and (i)] molecular
dynamics (MD) results of the bilayer breathing-kagome (BBK) model HBBK [Eq. (1)], with parameters taken from Tab.II. (a)-(c) Gapped,
dispersing spin-wave excitations along the [h, −h, 0] direction. [(d)–(f)] Gapped, dispersing spin-wave excitations along the [2 + h, −2 + h,
0] direction. Constant energy cut at (g)–(i) E = 1.4 meV shows bright features corresponding to high intensities in the spin-wave dispersion.
In order to compare to INS data, results for LSW theory and MD simulations are presented with a Gaussian convolution of FWHM = 0.2 meV
and Cr5+ form factor. INS results were taken at T = 90 mK, while LSW theory corresponds to the T = 0 quantum case. MD simulations
have been performed at T = 10 mK, while presented in its temperature corrected form S̃(ω, q) [Eq. (17)], in order to compare to T = 0
LSW theory.

We start by exploring the properties of the six dispersing
bands of spin waves in this case.

In Fig. 17, we show results for the dynamical structure
factor S(q, ω) in a magnetic field of B = 11 T, well above
the saturation field B ∼ 1 T. For comparison we show re-
sults taken from MD simulation (T = 10 mK), LSW theory
(T = 0), and INS data (T = 90 mK). To aid comparison, both
MD and LSW results for S(q, ω) have been convoluted with
an experimental “resolution function” (a Gaussian of FWHM
�Esim = 0.2 meV), and with the atomic form factor for Cr5+

(Appendix C). In this limit, once thermal occupation factors
have been corrected for [cf. Eq. (17)], the agreement between
MD and LSW results is essentially perfect, establishing that
MD simulation also accurately describes these excitations.
Both LSW and MD results also offer a good account of the

main features of experiment, confirming that the parameters
found by Balz et al. [21,22], are a reasonable starting point
for describing Ca10Cr7O28.

B. Evolution of dynamics with reducing magnetic field

We now turn to the question of how the relatively simple
spin dynamics of the saturated state of Ca10Cr7O28, evolve
into the complex behavior of the spin liquid at zero field. We
take as a starting point Fig. 8 of Ref. [22], where INS results
measured at T = 220 mK are presented for magnetic fields in
the range 0 � B � 7.5 T. These data, for a cut through recip-
rocal space [2 + h,−2 + h, 0], are reproduced in Fig. 18(a).
They show a progressive evolution of the broad dispersing
features found at high field (cf. Fig. 17), towards the relatively
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FIG. 18. Evolution of spin excitations as a function of magnetic field at T = 220 mK, with high resolution in frequency space. (a) Inelastic
neutron scattering results for Ca10Cr7O28, reproduced from [22], for magnetic fields ranging from B = 7.5 to 0 T. (b) Predictions for inelastic
scattering taken from MD simulations of HBBK, as described in the Appendix A. Results are shown along the [2 + h, −2 + h, 0] direction,
integrated over ±0.2 r.l.u. perpendicular to the cut in reciprocal space, and convoluted with a gaussian in frequency space of FWHM ≈ 0.2
meV, and Cr5+ form factor to compare with experiments in (a). (c) Simulation results for the first moment of the dynamical structure factor
S̃(q, ω) [Eq. (17)], with better energy resolution of FWHM = 0.02 meV. (d) Contribution to S̃(q, ω) coming from transverse spin fluctuations
S̃⊥(q, ω) [Eq. (22)]. (e) Contribution to S̃(q, ω) coming from longitudinal spin fluctuations S̃‖(q, ω) [Eq. (23)].

diffuse scattering of the spin liquid at B = 0 T, with results
for E � 0.15 meV obscured by a strong incoherent elastic
background.

In Fig. 18(b), we present equivalent results for the dynam-
ical structure factor of the BBK model. These are taken from
MD simulations carried out at T = 220 mK, well above the
transition temperature for the lattice-nematic or multiple-q
states (Fig. 12). To facilitate comparison with experiment, the
magnetic form factor of Cr5+ has been taken into account,
and results have been integrated over ±0.2 r.l.u. perpendicular
to the cut in reciprocal space. They have also been convo-
luted with a Gaussian in frequency space of FWHM �E ≈
0.2 meV. Processed in this way, simulation results provide a
good account of experimental data for B � 1 T, and capture
many of the key features for B = 0 T (cf. Fig. 2). However,
because of the information lost in convolution, it is relatively
difficult to identify the six dispersing magnon bands of the sat-
urated state, or to disentangle the different types of fluctuation
within the spin liquid for B � 1 T.

To shed more light on these questions, in Fig. 18(c),
we show results at the native energy-resolution of the MD
simulations, with FWHM �E = 0.02 meV. In this case, no
attempt has been made to correct for the magnetic form
factor of Cr5+, experimental resolution, or the polarization
dependence of scattering. However, in order to compensate
for the classical statistics of the MC simulations, we plot
the temperature-corrected dynamic structure factor S̃(q, ω)
[Eq. (17)]. At high values of field, we can distinguish six

different branches of spin-wave excitations, in correspon-
dence with the results of linear spin-wave theory [22]. The
intermediate and high-energy spin-wave branches are quali-
tatively similar, containing flat bands of localized spin-wave
excitations, similar to those found in the Heisenberg antifer-
romagnet on the kagome lattice [61,67,70]. The low-energy
branches are qualitatively different, and it is the lowest of
these that encodes the “ring” characteristic of the spiral spin
liquid, in the form of a set of quasidegenerate minimima close
to the zone boundary.

In Figs. 18(d) and 18(e), we show equivalent results, sepa-
rated into transverse

S̃⊥(q, ω) = 1

2

ω

kBT
S⊥(q, ω) (22)

and longitudinal components

S̃‖(q, ω) = 1

2

ω

kBT
S‖(q, ω), (23)

as defined in Appendix A [Eqs. (A4)–(A7)]. At high fields,
S̃⊥(q, ω), clearly distinguishes the six branches of spin-wave
excitations, while S̃‖(q, ω) shows spectral weight at ω ≈ 0.5
and ≈1.2 meV, suggestive of bands of (highly localized)
longitudinal excitations. With reducing magnetic field, the
spin-wave branches decrease in energy, at constant intensity,
while longitudinal excitations remain fixed in energy, but gain
in spectral weight.
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FIG. 19. Detail of spin dynamics at B = 2 T, showing the qualitatively different character of excitations in the transverse and longitudinal
channels. (a) Temperature corrected transverse structure factor, S̃⊥(q, ω) [Eq. (22)], showing six distinct branches of spin-wave excitations.
(b) Temperature corrected longitudinal structure factor, S̃‖(q, ω) [Eq. (23)], showing weakly dispersing longitudinal spin excitations at three
distinct energy scales. (c) Transverse correlations at intermediate energy, ω = 0.55 meV, showing “half-moon” features overlaid on a lattice of
“bow-ties” (pinch points). (d) Longitudinal correlations at ω = 0.46 meV, showing a network of broad scattering. (e) Transverse correlations at
ω = 0.51 meV, showing sharp pinch-point features. (f) Longitudinal correlations at ω = 0.34 meV, showing evolution of the network of broad
scattering. (g) Transverse correlations at low energy, ω = 0.12 meV, showing the ringlike feature associated with the spiral-spin liquid. (h)
Longitudinal correlations at ω = 0.01 meV, showing the elastic peaks associated with finite magnetization in zone centers, and accompanying
broad, diffuse scattering. All results were obtained from molecular dynamics (MD) simulation of the BBK model, Eq. (1), at T = 220 mK,
with parameters taken from Experiment (Table II). System sizes are of linear dimension L = 48 (N = 13 824), while the energy resolution is
FWHM = 0.02 meV, in absence of the Cr5+ form factor.

At B = 1 T, transverse excitations show a small gap
[Fig. 18(d6)], while longitudinal excitations [Fig. 18(e6)] have
gained enough spectral weight for a zero-energy feature re-
sembling a small “volcano” to be distinguished in the zone
center. Finally, at B = 0 T, transverse [Fig. 18(d7)] and lon-
gitudinal [Fig. 18(e7)] excitations merge into the three diffuse
bands documented in Fig. 11.

C. Longitudinal and transverse modes at 2 T

In Fig. 19, we document the different types of correlation
associated with transverse and longitudinal modes, at B = 2 T
and T = 220 mK. This value of field lies well within the cor-
related PM (Fig. 12), and the expected six bands of transverse
spin-wave excitations are visible in S̃⊥(q, ω) [Fig. 19(a)].
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However the magnetization is not yet saturated (Fig. 13), and
significant spectral weight can also be found in the longi-
tudinal excitations probed by S̃‖(q, ω) [Fig. 19(b)]. In both
cases, excitations can be divided into low-, intermediate- and
high energy bands (cf. first animation [33]), with the structure
of intermediate- and high-energy correlations being broadly
similar. However, while transverse excitations form sharp dis-
persing bands, longitudinal ones are much more diffuse in
character. And, while transverse excitations show an energy
gap � ≈ 0.3 meV, longitudinal excitations are gapless.

When we examine the correlations at fixed energy, these
differences become more stark. At intermediate energy, the
transverse structure factor reveals characteristic “half moon”
features [Fig. 19(c)], dispersing out of bow-tie like “pinch
points” encoded on a flat band [Fig. 19(e)]. Both of these
structures reflect the existence of a local constraint [41], a
point which we return to below.

Longitudinal correlations at similar energies, meanwhile,
show a broad web of scattering near to the zone boundary
[Figs. 19(d) and 19(f)]. And at low energies, correlations look
even more different, with S̃⊥(q, ω = 0.12 meV) showing the
same “ring” of excitations near the zone boundary as the spiral
spin liquid Sec. III [Fig. 19(g)], while S̃‖(q, ω = 0.01 meV)
is dominated by a volcanolike structure near the zone cen-
ter [Fig. 19(h)]. Interestingly, a similar structure has been
reported within the parton-phenomenology of Sonnenschein
et al. [23], where gapless excitations arise from low-energy
particle-hole pairs spanning the Fermi surface, and is also seen
in exact-diagonalization studies [32].

D. Characterization of pinch points and half moons

The combination of pinch-point and half-moon features
observed in the spin-wave bands of the field-saturated state
(Fig. 19) is a ubiquitous feature of frustrated magnets
realising (or proximate to) a classical Coulombic spin liq-
uid [41,42,61,68,71–78], and is well-characterized in the case
of the kagome-lattice antiferromagnet [41,61,68]. While they
might at first sight appear different, pinch points and half
moons have a common origin, stemming from the local con-
straint associated with the (proximate) spin liquid [51]. In
what follows, we outline how it is possible to construct a the-
ory of these features by generalising the semiclassical analysis
given in Ref. [41] to the BBK lattice.

Before considering the BBK model of Ca10Cr7O28, it is
helpful to consider the simpler example of a kagome lattice
antiferromagnet whose magnetization has been saturated by
magnetic field, as studied in Ref. [41]. Here we specialize to a
single breathing-kagome (BK) layer, with parameters J22 and
J31 taken from the BBK model of Ca10Cr7O28 (Table II). The
primitive unit cell for this BK lattice is a triangle, containing
three sites, and the field-saturated state therefore supports
three bands of transverse spin-wave excitations, shown in
Fig. 20(a). We focus on the two upper bands of excitations,
one flat, and one dispersing, which touch in zone centers
[Fig. 20(b)]. What is interesting about these two magnon
bands is that the eigenvectors associated with the flat band
have a divergence-free character, while the eigenvectors asso-
ciated with the dispersing band have a curl-free character [41].
And within a (semi)classical evolution of spin configurations,

FIG. 20. Schematic illustration of the pinch points and half
moons coming from a single breathing-kagome layer in applied
magnetic field. (a) Spin-wave dispersion of field-saturated state. The
upper pair of bands correspond to excitations satisfying either a
zero divergence or a zero-curl condition. (b) Detail of dispersion in
zone center, where the upper pair of bands touch. The contribution
made by each band to the equal-time structure factor S(q) is shown
in color. (c) Correlations at fixed energy in the flat band, showing
the pinch point in the dynamical structure factor S(q, ω), coming
from the divergence-free condition. (d) Correlations at fixed energy
in the neighboring dispersing band, showing the pair of half moons
in S(q, ω), coming from the curl-free condition. Results are shown
for the upper layer of the breathing bilayer kagome (BBK) model of
Ca10Cr7O28 [Fig. 1, Eq. (1)], with parameters taken from experiment
(Table II), and magnetic field B = 2 T.

these two types of excitations entirely decouple from one
another [41,76].

When it comes to evaluation of equal-time structure fac-
tors S(q) [Fig. 20(b)], both zero-divergence and zero-curl
excitations exhibit “pinch points”, singular features resem-
bling a “bow tie” [79]. In the case of the zero-divergence
excitations, these pinch points are visible in the dynamical
structure factor S(q, ω) when ω is tuned to the energy of the
flat band [Fig. 20(c)]. Meanwhile, since the pinch points of the
zero-curl excitations are inscribed on a dispersing band, they
manifest as “half moons” in S(q, ω) [Fig. 20(d)].

We now return to the (weakly) localized bands of exci-
tations found at intermediate and high energies in the BBK
model of Ca10Cr7O28. The properties of these bands are not
very different from the kagome lattice model considered in
Ref. [41], with the obvious caveat that there are now two
copies of each type of excitation, and so four bands in to-
tal. The fact that these “duplicate” bands are not degenerate
reflects the fact that exchange interactions in the two kagome
layers of Ca10Cr7O28 are not identical (Table II), and that in-
terlayer coupling mixes the bands associated with each layer.
However, the key physics—decoupling of the curl-free and the
divergence-free excitations—remains valid, and gives rise to
pinch-point and half-moon features in S(q, ω) (Fig. 21).
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FIG. 21. Schematic illustration of the relationship between flat
and dispersing bands and pinch points in the bilayer breathing-
kagome (BBK) model of Ca10Cr7O28. (a) Spin-wave dispersion of
field-saturated state, showing pairs of bands at low, intermediate
and high energy. The two dispersive bands at intermediate and high
energy correspond to curl-free excitations on each layer, mixed by
interlayer interactions [Eqs. (35) and (36)]. Meanwhile, the adjoin-
ing flat bands correspond to the divergence-free excitations on each
layer, mixed by interlayer interactions [Eqs. (33) and (34)]. (b) Detail
of the upper pairs of bands near their zone-center touching points.
Pinch points are imprinted on all four bands as a consequence of
the curl- and divergence-free conditions [Eqs. (32) and (31)]. These
are visible as either pinch points or half moons in the dynamical
structure factor S(q, ω), as illustrated in Fig. 20. Results are shown
for the BBK model Eq. (1), with parameters taken from experiment
(Table II), and magnetic field B = 2 T.

Now let us develop the mathematics of this picture. We
start by constructing the long-wavelength fields that describe
the transverse excitations of a polarized state, and define
the vector field. We explicitly consider a single bilayer of a
breathing-kagome lattice (Fig. 1), as two (breathing) kagome
lattices, for each of which the primitive unit cell is a triangle,
labeling triangles in “top” and “bottom” layers of the lattice
“t” and “b” respectively. We then introduce fields describing
transverse spin excitations which transform with the E (vec-
tor) and A (scalar) irreps of the point group of a triangle

mt/b =
3∑

i=1

S−
t/b,iui, φt/b =

3∑
i=1

S−
t/b,i, (24)

where

S−
i = Sx

i − iSy
i (25)

are spin lowering operators, and

u1 = (0, 1), u2 = (−
√

3/2, 1/2), u3 = (
√

3/2, 1/2), (26)

are (unit) vectors pointing from the center towards the corners
of each triangle. mt/b are the vector fields and φt/b the scalar
fields of interest.

By evaluating the commutation relations between mt/b
and the BBK Hamiltonian [Eq. (1)], we obtain the equations
of motion (EoM) for mt/b. Their diagonalization exhibits
the dispersion relations for the bands involved, and also the

corresponding eigenstates. In the long wavelength limit, they
take the form

−i
∂

∂t
mt = −1

4
a2

0Jt+∇(∇ · mt)

+
(

Hz − 3Jt+ − 1

2
Jinter

)
mt

+Jintermb, (27)

−i
∂

∂t
mb = −1

4
a2

0Jb+∇(∇ · mb)

+
(

Hz − 3Jb+ − 1

2
Jinter

)
mb

+Jintermt, (28)

where we assumed a perfect bilayer kagome lattice with lattice
constant a0 for simplicity and

Jt+ = 1
2 (J31 + J22),

Jb+ = 1
2 (J32 + J21),

Jinter = J0. (29)

We have further simplified the equations of motion by ne-
glecting terms coupling the fields mt/b to the fields φt/b in
Eqs. (27) and (28). They can be included at the cost of a more
complicated description of the problem, but do not play any
significant role in the long wavelength limit.

Note that the first terms on the right hand side of the EoM is
curl-free. This means the EoM can be partially decoupled by
introducing a Helmholtz-Hodge decomposition of the vector
field

mt/b = mt/b,DF + mt/b,CF (30)

in terms of divergence-free components

∇ · mt/b,DF = 0 (31)

and curl-free components

∇ × mt/b,CF ≡
(

− ∂

∂y
,

∂

∂x

)
· mt/b,CF = 0. (32)

This leads to the decoupled EoM for divergence-free
components

−i
∂

∂t
mt,DF =

(
Hz − 3Jt+ − 1

2
Jinter

)
mt,DF

+Jintermb,DF, (33)

−i
∂

∂t
mb,DF =

(
Hz − 3Jb+ − 1

2
Jinter

)
mb,DF

+ Jintermt,DF. (34)

And the decoupled EoM for curl-free components are

−i
∂

∂t
mt,CF = −1

4
a2

0Jt,CF+∇(∇ · mt,CF)

+
(

Hz − 3Jt+ − 1

2
Jinter

)
mt,CF

+ Jintermb,CF, (35)
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−i
∂

∂t
mb,CF = −1

4
a2

0Jb+∇(∇ · mb,CF)

+
(

Hz − 3Jb+ − 1

2
Jinter

)
mb,CF

+ Jintermt,CF. (36)

Let us look at the EoMs for the divergence-free compo-
nents mb/t,DF first. We will find they are responsible for the
flat bands with pinch points. The EoM for them, Eqs. (33)
and (34), couple the divergence-free components between
themselves, but they decouple from all the other degrees of
freedom. In the absence of spatial derivatives on the right-
hand side of EoM, they describe a pair of flat bands, split by a
gap of

�DF = 2
√

9(Jb+ − Jt+)2 + 4J2
inter ≈ 0.7 meV, (37)

as found in MD simulation [Fig. 19(a)], and illustrated
in Fig. 21(a). Furthermore, the divergence-free condition,
Eq. (31), implies that correlations of these fields show an
(algebraic) singularity with the form of a “pinch point”

qαmα
DF = 0 → 〈mα

DF(q)mβ

DF(−q)〉 ∼ δαβ − qαqβ

q2
. (38)

This leads to a corresponding singularity in the dynamical spin
structure factor

S⊥
λ (q, ω) ∝ (1 − qλ

αqλ
β/q2)δ(ω − ωλ(q)), (39)

where ωλ(q) is a constant energy of the associated (flat) band.
This is the origin of the bow-tie like pinch point feature seen
in MD simulation results [compare Fig. 19(e) with Fig. 20(c)].

Very similar considerations apply to the EoM for curl-free
components of m, Eqs. (35) and (36). They are responsible
for the dispersive bands with pinch points [Fig. 21(b)]. In
zone centers, the two bands derived from these EoM are
degenerate with the two flat bands derived from divergence-
free components of m. However the presence of a term with
spatial derivative, ∇(∇ · mCF), leads to nonflat dispersion of
the bands. The gap between the flat and dispersive band opens
quadratically in zone centers [Figs. 19(a) and 21(a)].

The curl-free condition is also encoded in the correlation
function as a pinch point, but this time rotated by π/2 with
respect to those of the divergence-free bands

〈
mα

CF(q)mβ

CF(−q)
〉 ∼ δαβ − q̃iq̃ j

q2
p̃ = (−py, px ). (40)

Once again, the associated singularity is imprinted on the
dynamical spin structure factor

S⊥
λ (q, ω) ∝

(
1 − q̃iq̃ j

q2

)
δ(ω − ωλ(q)), (41)

where ωλ(q) is the energy of the associated (dispersing)
bands. However, because the bands associated with zero-curl
states have a finite dispersion, this singularity appears not as
a pinch-point but as a pair of half moons in cross-sections at
constant energy [compare Fig. 19(c) with Fig. 20(d)].

Comparing quantitative results for the BBK model
(Fig. 21) with those for a single BK layer (Fig. 20), we see

that interlayer coupling has relatively little effect on bands car-
rying pinch points and half moons. This reflects the fact that
the interlayer coupling J0 ≈ −0.08 meV is small compared
with the splitting of the bands �DF ≈ 0.7 meV [Eq. (37)].
This should be contrasted with the situation at low energies,
where interlayer coupling plays a crucial role in determining
the effective honeycomb lattice model, Eq. (6), and thereby
the spiral spin liquid ground state.

To summarize, the four bands of transverse spin excitations
found in MD simulation of the BBK model at intermediate
and high energy (cf. Secs. VI A–VI C) can be understood as
two sets of flat bands, satisfying a zero-divergence condition,
and two sets of (weakly) dispersing bands, satisfying a zero-
curl condition. Each of these bands support specific features in
dynamical structure factors—pinch points and half moons—
which are characteristic of the corresponding local constraint.
Elsewhere, equivalent features at finite energy have been char-
acterized as a “dynamical spin liquid” [73,76,78]. And it is
a special feature of the BBK model of Ca10Cr7O28 that the
dynamical spin liquid found at intermediate and higher ener-
gies ultimately coexists with a completely different from of
the spin liquid at low energy. It is the way in which this spiral
spin liquid emerges as the ground state, as magnetic field is
reduced, that we turn to below.

E. Closing of gap to transverse excitations

Since the correlations of the spiral spin liquid [Fig. 6(c)]
are encoded in the lowest lying transverse spin excitations
of the high-field paramagnet [Fig. 19(g)], we can identify
the onset of the spin liquid, with the closing of the gap to
these excitations. In Fig. 22, we show the gap �(B) to the
lowest lying excitations in S⊥(q, ω) evolves as a function of
magnetic field, as found in MD simulations carried out at
T = 220 mK. At higher values of field, where the magneti-
zation is (approximately) saturated, �(B) tracks the results of
linear spin wave theory at T = 0 [red line in Fig. 22(a)], which
would extrapolate to the gap closing at B = 1.0 T. However
for fields B � 2 T, �(B) starts to deviate from the spin wave
prediction [inset to Fig. 22(a)], finally closing for B � 0.7 T.
In Figs. 22(b) and 22(c), we show results for S⊥(q, ω) at
B = 0.5 T, just below, and at B = 1.0 T, a little above, the
closing of the gap. The corresponding estimates of the field
at which the gap closes, form the basis of the phase boundary
between correlated paramagnet and spiral spin liquid shown
in Fig. 12.

F. Summary of results for dynamics in field

In summary, the dynamics of the BBK model of
Ca10Cr7O28 in field reveals a number of interesting features.
Firstly, dynamics in longitudinal and transverse channels are
very different, with transverse dynamics showing a gap at high
fields, while longitudinal dynamics remain gapless at all fields
(Fig. 18).

Secondly, the lowest-lying transverse spin excitations in
high field show the same “ring”-like (quasi)degeneracy as
the classical spin liquid in zero field [cf Fig. 11(b) with
Fig. 19(g)]. We therefore associate the closing of the gap to
these excitations, at a value of magnetic field which depends
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FIG. 22. Evolution of gap � to low-lying transverse spin exci-
tations in applied magnetic field. (a) Results for �(B), as found in
molecular dynamics (MD) simulation at T = 220 mK (cf. Fig. 18).
Red line: linear behavior found for spin-wave excitations about the
field-saturated state at T = 0. (Inset) Detail of � for B � 2T . (b) De-
tail of MD results for transverse structure factor S⊥(q, ω) [Eq. (21)]
at B = 0.5 T, showing gapless spin excitations. (c) Equivalent results
for B = 1.0 T, showing gap to transverse spin excitations. Simu-
lations were carried out for a cluster of linear dimension L = 48
(N = 13 824), using the BBK model Eq. (1), with parameters taken
from experiment (Table II). Error bars in (a) and pixel size in (b) and
(c) represent the finite-energy resolution of MD simulations, δE =
0.01 meV.

on temperature with the onset of the low-field spin-liquid state
(Fig. 22).

Thirdly, transverse dynamics at high field also reveal flat
bands at intermediate energy, which carry pinch-point cor-
relations, resembling the “bow-tie” patterns observed in the
spin liquid [Fig. 19(e)]. These are accompanied by half-moon
motifs, inscribed on a dispersing band which intersects the flat
band at zone centers [Fig. 19(c)].

We return to each of these features where we discuss the
implication for experiments on Ca10Cr7O28, below.

VII. APPLICATION TO Ca10Cr7O28

In Sec. II H, we identified four open questions about the
BBK model of Ca10Cr7O28. We now return to these, address-
ing each in turn, before discussing some of the features of
Ca10Cr7O28which still remain to be understood.

The first challenge was to connect the finite-energy and
finite-temperature properties of Ca10Cr7O28 with the spin-1/2
BBK model, Eq. (1). When it comes to finite-temperature
properties, in the absence of magnetic field, our main re-
sults are summarized in the phase diagram, Fig. 6(a), and
the associated predictions for the equal-time structure factor,
Figs. 6(c), 6(d) and 10. We find that experimental param-
eters (Table II), place Ca10Cr7O28 within a “spiral spin
liquid” regime. This is characterized by ringlike correla-
tions in S(q), and occurs for temperatures ranging from
a lattice-nematic ordering transition at T ≈ 70 mK, to a
crossover into a high-temperature paramagnet, occurring for

T ∼ 500–1000 mK. This is consistent with experiment, where
a spin liquid, characterized by ringlike structures in S(q),
occurs in the same range of temperatures [21,22]. And the
low-temperature lattice-nematic (Sec. III A), while not ob-
served in Ca10Cr7O28, is consistent with earlier simulations
of an effective honeycomb lattice model [28]. Moreover, our
conclusions about spin liquids at finite temperature prove to be
robust for a wide range of parameters, and so are relatively in-
sensitive to the uncertainty in estimates of exchange coupling
taken from experiment [21,22].

Molecular dynamics (MD) simulations give further insight
into the nature of this spin liquid, through its finite-energy
properties. Results for the dynamical structure factor S(q, ω)
are summarized in Fig. 11, in the comparison with experi-
ment, Fig. 2, and in the two animations [33,34]. A key feature
is the separation of dynamics into three distinct timescales; a
long timescale associated with the slow, collective excitations
of groups of three spins on ferromagnetically correlated pla-
quettes, and intermediate and short timescales associated with
qualitatively different excitations. Correlations at low energies
echo the spin liquid, with ringlike features in S(q, ω), while
dynamics at higher energies show a diffuse web of scattering,
with bow-tie like features visible in a subset of zone centers.
Ring and bow-tie features would usually be associated with
qualitatively different spin-liquid states, and in this sense the
BBK model appears to support different spin liquids, on dif-
ferent timescales, at the same time.

Experiment on Ca10Cr7O28 also shows qualitatively differ-
ent correlations on different timescales, with hints of rings at
low energy, and bow-tie like features at intermediate and high
energies [21,22]. Where experiment and (classical) simulation
differ is in the extent to which higher-energy excitations form
a continuum, with MD results showing weakly dispersing
excitations at relatively well-defined energies.

The second challenge was to extend the analysis of the
BBK model to finite values of magnetic field. Here, key results
are summarized in the phase diagrams Figs. 3 and 12, and
the associated predictions for spin dynamics, Figs. 17–19. We
find that spin-liquid correlations persist up to a temperature-
dependent field B ∼ 1 T, but with dramatically different
correlations at different energy scales, and in the transverse
and longitudinal channels. At higher fields, classical simula-
tions find a highly correlated paramagnet, in which transverse
spin excitations are gapped, but longitudinal excitations re-
main gapless. Meanwhile, at low temperatures, the lattice
nematic gives way to a series of complex forms of order.

Once again, the phenomenology of the BBK model in field
has many similarities with experiments on Ca10Cr7O28. Fits to
the spin wave excitations of the saturated paramagnet have al-
ready been documented [21,22]. And the zero-field magnetic
susceptibility of Ca10Cr7O28 [22,27], is also very similar to
that found in the BBK model at low temperatures, with the
caveat that the classical statistics of our MC simulations lead
to a much stronger temperature dependence than is seen in
experiment (Fig. 13). Measurements of Ca10Cr7O28 at low
temperatures also exhibit a qualitative change in behavior
of C/T at B ∼ 1 T [22], consistent with the opening of a
gap found in MD simulations. No sign has yet been seen,
however, of the complex competing orders found in classical
MC simulations at the lowest temperatures.
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The third challenge was to identify the mechanism driving
the low temperature spin liquid state. Here simulations of
the BBK model offer a number of new insights. Firstly, they
show a clear separation of dynamics within the spin liquid,
between slow collective rotations of FM polarized triangular
plaquettes, and fast excitations of individual spins (second
animation [34]). This confirms the validity of modeling the
low-energy dynamics of Ca10Cr7O28 in terms of spin-3/2
moments on a honeycomb lattice, a construction which has
played an important role in existing classical [28] and quan-
tum [23] theories of Ca10Cr7O28. Secondly, the correlations
found at low energy are consistent with a spiral spin liquid,
while those at higher energies resemble those of a kagome
anitferromagnet (Figs. 2 and 11). And thirdly, the onset of
spiral spin liquid behavior can be identified with the closing
of the gap to transverse excitations at B ∼ 1 T (Fig. 22). A
key feature of this transition is the (quasi)degeneracy of the
“ring” of excitations at the bottom of the spin-wave spectrum,
all of which participate in the resulting spin liquid. While
the equivalent quantum theory remains an open problem, this
scenario has much in common with the formation of a chiral
spin liquid through the condensation of hard-core bosons in a
system with a continuous, “moat”-like degeneracy [80].

The fourth challenge was to identify interesting properties
of the BBK model which may, as yet, be obscure in experi-
mental data for Ca10Cr7O28. Here, MD simulations reveal a
number of features of the dynamics of the BBK model which
it would be rewarding to look for in experiment. In particular,
they suggest that the application of a magnetic field could
offer new insights into the spin liquid, by separating longi-
tudinal and transverse dynamics with dramatically different
character (Figs. 18 and 19). This is something which could
be probed using polarized neutron scattering. Our results also
suggest that Ca10Cr7O28 is a suitable system for investigating
the physics of pinch points and half moons [41], which play a
prominent role in the excitations at finite energy. These could
most easily be studied in the high-field, saturated paramag-
netic state, cf. Fig. 19(c).

Taken together, these results represent significant progress
in understanding Ca10Cr7O28. None the less, there are a num-
ber of features in experiment which remain to be understood.
One is the presence of spectral weight at finite energies for
wave vector q = 0 in the absence of magnetic field [22],
something which is forbidden for a spin-rotationally in-
variant model like HBBK [Eq. (1)]. A likely explanation is
the presence of anisotropic exchange interactions, including
Dzyaloshinskii-Moriya (DM) terms. These are allowed by the
symmetry of the lattice, and would endow the magnon bands
of the field-saturated state with a topological character [81].
They would also contribute to the finite lifetime of excita-
tions [82], which could help to explain their relatively broad
character in experiment [22].

Another area where further investigation is merited, is the
question of how the thermodynamics and spin dynamics of the
BBK model of Ca10Cr7O28 change once quantum statistics,
and entanglement, are taken into account. Exact diagonaliza-
tion (ED), and thermal pure quantum state (TPQ) studies of
the BBK model, will form the subject of a second paper [32].
However we can already make some comparison with pub-
lished results from other quantum approaches [21,23,27],

which suggest that the role of quantum and thermal fluctua-
tions in this problem may not be very different.

The biggest difference appear to arise in the zero-field
ground state, where PFFRG calculations finds static corre-
lations [characteristic “ring” in S(q, ω = 0)] consistent with
a spin liquid [21]. Meanwhile, tensor-network calculations
report a vanishing average magnetic moment per site, cou-
pled to a finite magnetic susceptibility, also consistent with a
QSL [27]. In contrast, our MC simulations show a concen-
tration of weight in S(q) at the discrete set of wave vectors
associated with a lattice-nematic state (Sec. III) and, by their
nature, always exhibit a finite moment on each site. However,
the ordered states found in simulation only occur at very low
temperatures. And given that the model is two-dimensional
and spin excitations are (quasi)degenerate on linelike loci, its
is highly likely that quantum fluctuations would eliminate the
ordered moments at the level of individual sites at zero tem-
perature, cf. Ref. [83], just as thermal fluctuations do at higher
temperatures. Whether the Z3 symmetry breaking would sur-
vive in the absence of an ordered moment is a separate, and
interesting, question [29].

Even at a classical level, there are intriguing similarities
in the thermodynamics, with tensor-network calculations of
magnetization suggestive of phase transitions at B ≈ 0.3 T,
B ≈ 0.8 T and B ≈ 1.0 T [27], scales similar to the transitions
between different ordered states found in MC simulation at
low temperature (Sec. V). And when it comes to dynamics,
it is encouraging to note the extent to which MD simula-
tions reproduce features seen in the spinon phenomenology of
Sonnenschein et al. [23]. In particular the “volcano” feature
observed in the structure factor associated with longitudinal
fluctuations S‖(q, ω) (Sec. VI) is very reminiscent of the
low-energy cone of particle-hole excitations about the Fermi
surface.

Needless to say, (semi)classical simulations, by them-
selves, cannot be used to argue for the existence of spinons in
Ca10Cr7O28. A method with access to quantum entanglement
is required [32]. However, the congurence of experiment,
simulation of the BBK model, and parton approaches does
suggest that, phenomenologically, a spinon picture may not be
so wide of the mark. And, as a general comment on the present
state of theory of Ca10Cr7O28, it is interesting to note that the
picture advanced by Sonnenschein et al. [23] is essentially that
of a heavy Fermion superconductor [84–86], but with spinons,
rather than electrons, as heavy quasiparticles.

In both heavy Fermion superconductors, and the parton
phenomenology of Sonnenschein et al. [23], low-energy prop-
erties are dictated by the existence of a Fermi surface, with
heavy quasiparticles that become unstable against pairing
at low temperatures. An immediate implication is that the
specific heat coefficient γ , and magnetic susceptibility χ

are strongly enhanced, as observed in Ca10Cr7O28 (Table I).
However an important difference between the parton theory,
and conventional (heavy) Fermi liquids, is that long range
interactions between neutral spinons are not screened in the
same way as interactions between electrons. In (2 + 1)D,
this inexorably drives U(1) QSL towards a strong-coupling
fixed point [53,54,87–92], as exemplified by the Z2 QSL
ground state conjectured by Sonnenschien et al. [23]. And
it follows that, if Ca10Cr7O28 really does have (emergent)
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heavy Fermi quasiparticles, these should show signs of strong
correlation.

A common cross-check on the degree of correlation within
a heavy Fermion system is to calculate the Wilson ratio
RW , a dimensionless number formed from the (para)magnetic
susceptibility χ0, and the linear coefficient of specific heat
γ [85,86]. By construction the Wilson ratio of a free electron
gas RW = 1, while for highly correlated electron bands, it
takes on higher values. Substituting experimental parameters
for Ca10Cr7O28 (Table I), we find

RW = π2

μ0

χ0

μ2
eff

k2
B

γ
≈ 16.2, (42)

where details of the estimate are given in Appendix D. This
value is substantially greater than the RW ≈ 4 observed for
the heavy Fermion system CeCu6 [49,50], and would place
Ca10Cr7O28 in a strongly interacting Fermi-liquid regime.

We conclude the spinon phenomonlology of
Ca10Cr7O28 [23] remains an interesting conjecture, that does
not suffer from any obvious contradiction with experiment,
and is therefore worthy of further investigation. And in this
context it could be interesting to investigate other properties
usually controlled by the Fermi surface in metals, such as
(thermal) transport, and NMR 1/T1 relaxation rates. All of
this, however, lies outside the scope of the present article.

VIII. CONCLUSIONS

Ca10Cr7O28 is a remarkable magnet, in which spin-1/2
Cr5+ ions form a bilayer breathing-kagome (BBK) lattice with
complex, competing exchange interactions [25]. A combina-
tion of heat-capacity, magnetization, μSR, neutron-scattering,
and AC susceptibility experiments reveal Ca10Cr7O28 to be
a gapless quantum spin liquid (QSL), showing no sign of
magnetic order down to 19 mK [21,22]. This spin liquid is
charcaterized by spin fluctuations which show qualitatively
different character on different timescales.

To better understand the nature and origin of the spin liquid
in Ca10Cr7O28, we have carried out large-scale semiclassical
molecular-dynamics (MD) simulations of the minimal model
of Ca10Cr7O28, a Heisenberg model on the BBK lattice, with
parameters taken from experiment [21,22]. These simulations
reveal a state where spins continue to fluctuate at very low
temperatures, but the character of these fluctuations depends
strongly on the timescale on which the dynamics are re-
solved, as shown in the animations [33,34]. This persists up
to a (temperature-dependent) critical field Bc ∼ 1 T (Fig. 12),
for temperatures ranging from an ordering temperature T ∼
70 mK, to a crossover into a high-temperature paramagnet for
T ∼ 500 mK (Fig. 3).

Within this state, we identify fluctuations at low energies
with a “spiral spin liquid”, characterized by a ring of scattering
in q space, and formed when the gap to a (quasi)degenerate
set of excitations closes at B � 1 T (cf. Fig. 22). This spi-
ral spin liquid can be described by an effective spin-3/2
Heisenberg model on a honeycomb lattice, formed by three
spin-1/2 moments on the triangular plaquettes of the BBK
lattice in Ca10Cr7O28 (cf. Figs. 1 and 4). The FM correlations
of spins within these plaquettes are evident in the collective

motion resolved at low energy in MD simulation (cf. second
animation [34]).

Meanwhile, fluctuations at higher energy inherit their char-
acter from the kagome-lattice antiferromagnet, and for B �
1 T, are characterized by sharp pinch-points in scattering
Fig. 19(e). These pinch points are encoded in spin fluctua-
tions perpendicular to the applied magnetic field and can be
resolved in MD simulations as collective rotations of anti-
ferromagnetically correlated spins on shorter timescales (cf.
second animation [34]). In the limit B → 0 T, pinch points
ultimately merge with excitations in the longitudinal channel
to give rise to the broader “bow-tie” features observed in
inelastic neutron scattering at higher energy (cf. Fig. 2).

These simulations capture many of the features of
Ca10Cr7O28; correctly reproducing the value of the critical
field, B � 1 T [21,22]; providing insight into the different
structures seen in inelastic neutron scattering [21,22]; and re-
solving the origin of the ring features found in pseudofermion
functional renormalization group (PFFRG) calculations [21].
To the best of our knowledge, they also provide the first
theoretical example of a system which behaves like different
types of spin liquid on different timescales.

Given this disparity of behavior, it is tempting to ask
just how many spin liquids there are in Ca10Cr7O28? Since
a quantum system should have one, unique, ground state,
at low temperature the answer to this question must, ulti-
mately, be “one”. None the less, the success of semiclassical
simulations in describing experiment suggests that this one
ground state must incorporate two different types of corre-
lations; one described by effective spin-3/2 moments on a
honeycomb lattice; and one corresponding to antiferromag-
netic fluctuations of individual spin-1/2 moments on a bilayer
breathing-kagome lattice. Unraveling the properties of this
single, massively entangled QSL, represents an exciting chal-
lenge for theory and experiment alike. And in a second paper,
we will return to this in the context of quantum simulations of
the BBK model of Ca10Cr7O28 [32].
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APPENDIX A: NUMERICAL METHODS

1. Classical Monte Carlo

All of the results presented in this paper are based on spin
configurations drawn from classical Monte Carlo simulations
of HBBK [Eq. (1)]. Monte Carlo simulations were performed
by using a local heat-bath algorithm [93,94], in combi-
nation with parallel tempering [95,96], and over-relaxation
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techniques [97]. Here, we chose the heat-bath algorithm,
which automatically adjusts the solid angle for updated spins
at their given temperatures. In this way, this method is re-
jection free and therefore outperforming the conventional
single-spin flip METROPOLIS algorithm [98] at very low tem-
peratures.

Within simulations, a single MC step consists of N local
heat-bath updates on randomly chosen sites, and two over-
relaxation steps, each comprising a π rotation of all the spins
in the lattice about their local exchange fields. Simulations
were performed in parallel for replicas at a range of different
temperatures, with replica-exchange initiated by the parallel
tempering algorithm every 102 MC steps. Results for ther-
modynamic quantities were averaged over 106 statistically
independent samples, after initial 106 MC steps for simulated
annealing and 106 MC steps for thermalization.

2. Semiclassical molecular dynamics

To interpret the INS data for Ca10Cr7O28 [21,22], we rely
on molecular dynamics (MD) simulations. These are based
on the numerical integration of the Heisenberg equations of
motion

dSi

dt
= i

h̄
[HBBK, Si] =

(∑
j

Ji jS j − Bzẑ

)
× Si, (A1)

where j accounts for all nearest-neighboring sites of i and Ji j

is given in Table II.
Spin configurations for MD simulation were taken from the

thermal ensemble generated by classical MC simulations of
HBBK at T = 220 mK, for parameters taken from experiment
(cf. Table II). Numerical integration of Eq. (A1) was then
carried out using a fourth order Runge-Kutta algorithm, as
described in Refs. [99,100]. Simulations were performed for
Nt = 600 time steps, with a time increment δt of

δt = tmax

Nt
= 2π

ωmax
(A2)

setting a maximum resolvable frequency of ωmax = 6 meV.
The dynamical structure factor

S(q, ω) = 1√
Nt N

N∑
i, j

eiq(ri−r j )
Nt∑
n

eiω nδt 〈Si(0) · S j (t )〉,

(A3)
was calculated using fast Fourier transform (FFT) [101], and
averaged over spin dynamics obtained from 500 independent
initial spin configurations. Where simulations were carried out
in applied magnetic field, this was resolved in to contributions
coming from transverse and longitudinal fluctuations, i.e.,

S(q, ω) = S⊥(q, ω) + S‖(q, ω), (A4)

where

S⊥(q, ω) = 1√
Nt

Nt∑
n

eiω nδt 〈S⊥
q (t ) · S⊥

−q(0)〉, (A5)

S⊥
i = (

Sx
i , Sy

i

)
, (A6)

and

S‖(q, ω) = 1√
Nt

Nt∑
n

eiω nδt
〈
Sz

q(t ) · Sz
−q(0)

〉
. (A7)

To avoid numerical artifacts (Gibbs phenomenon [102]),
coming from discontinuities of the finite time window at
t = 0 and t = tmax, the time sequence of spin configurations
has been multiplied by a Gaussian envelop prior to Fourier
transform, imposing a maximally possible Gaussian energy
resolution of FWHM = 0.02 meV, on the numerically ob-
tained S(q, ω).

3. Correcting for classical statistics

The MD simulations described above inherit the classical
statistics of the classical MC simulations from which spin con-
figurations are drawn. At low temperatures, where spins are
treated as classical O(3) vectors, it is possible to decompose
the excitations about a given ground state into 2N individual
harmonic modes. (This approach can also be generalized to
the ensemble of ground states found in classical spin liq-
uids [103]). Each of these modes functions like a (classical)
harmonic oscillator, with amplitude

〈x2〉 ∼ T

ω
(A8)

and at low temperatures, the spin excitations found in classical
MC simulation follows this distribution of amplitudes.

MD simulations evolve spin configurations in time ac-
cording to the Heisenberg equation of motion [Eq. (A1)],
with eigenenergies equivalent to those found in linear spin
wave (LSW) approximation. However, while the harmonic
excitations of a LSW theory are quantized as Bosons, with
amplitude determined by a Bose factor, MD simulations in-
herit the classical statistics of MC simulations which, at low
temperatures, are described by Eq. (A8). It follows that MD
simulations function in a “mixed ensemble”, with classical
statistics, but semiclassical dynamics. And to obtain a valid
prediction for semiclassical dynamics in the limit T → 0,
that can be compared directly with LSW theory at T = 0, it
is therefore necessary to “divide out” the classical statistical
factor, Eq. (A8).

A careful analysis of the dynamical structure factor
SMD(q, ω) found in MD simulation of a spin-1/2 moment,
taking into account the mixed ensemble, leads to the result
quoted as Eq. (17) of main text

S̃(q, ω) = 1

2

ω

kBT
SMD(q, ω), (A9)

where S̃(q, ω) is the corresponding prediction for quantum
(semiclassical) dynamics in the limit T → 0. Details of this
calculation will be reported elsewhere [65].

APPENDIX B: REAL-TIME ANIMATION

Here we provide technical details of the animations of MD
simulation results discussed in Secs. IV B and IV D. Both
animations were prepared using the open-source software
package BLENDER [104].
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1. First Animation

In the first animation [33], we show a “fly through” of spins
on the breathing bilayer-kagome (BBK) lattice, for a cluster
of N = 5400 sites, at a temperature of T = 220 mK. The total
number of time steps in the simulation was Nt = 6000, and
in order to obtain a smooth rotation of spins in the animation,
the time step for each frame has been set to δt ≈ 0.1 h̄ meV−1

[cf. Eq. (A2)], which is of the order of a femtosecond. To
emphasize the dynamics on different timescales, spins have
been color-coded according to their speed of rotation, with
red indicating fast rotation, and green denoting slow rotation.

2. Second animation

In the second animation [34], we show results taken from
a single MD simulation of HBBK, equivalent to that shown in
the first animation. However in this case, the time sequence
for the spin dynamics has been separated into slow, inter-
mediate and fast components, to emphasize the dynamics on
different timescales. This is accomplished by first performing
a fast Fourier transform (FFT) on the time sequence of each
spin, then filtering the resulting signal in frequency space,
using a digital analog of a “band-pass” filter. The frequen-
cies used for this band-pass filter are equivalent to energies
of 0.750–1.500 meV (fast fluctuations); 0.225–0.750 meV
(intermediate fluctuations); and 0.00–0.225 meV (slow fluc-
tuations). After filtering in frequency, a second FFT is used to
reconstruct separate time sequences for slow, intermediate and
fast fluctuations. The final result for each of these is presented
in the three panels of the second animation.

In the second part of the second animation, the speed of
playback for three time sequences has been adjusted, so as to
match the characteristic speed of the relevant fluctuations. To
accommodate this, a much longer sequence of Nt = 130 000
time steps has been generated from MD simulation, using a
much shorter time increment of δt ≈ 0.035 h̄−1meV−1. The
adjustment of playback speed has been accomplished within
BLENDER [104], by adjusting the number of frames included
for each time sequence. Viewed in this way, the very different
dynamics on different timescales is self-evident.

APPENDIX C: COMPARISON WITH EXPERIMENT

Predictions for inelastic neutron scattering are plotted as

d2σ

d�dE f
∝ I (q, ω), (C1)

where we calculate

I (q, ω) = F (q)2
∑
α,β

(
δαβ − qαqβ

q2

)
Sαβ (q, ω). (C2)

Here F (q) is the atomic form factor appropriate to a Cr5+ ion
and following Ref. [105], we write

F (q) = 〈 j0(q)〉 +
(

1 − 2

g

)
〈 j2(q)〉. (C3)

We consider gyromagnetic ratio g = 2, implying that 〈 j2(q)〉
plays no role. The remaining function, 〈 j0(q)〉 can be
parameterized as

〈 j0(q)〉 = Ae−a(|q|/4π )2 + Be−b(|q|/4π )2 + Ce−c(|q|/4π )2 + D,

(C4)
where, be consistent with earlier work [106], coefficients are
taken to be

A = −0.2602, B = 0.33655, C = 0.90596, D = 0.0159
(C5)

a = 0.03958, b = 15.24915, c = 3.2568. (C6)

For comparison with experiment, following Refs. [21,22],
MD results for S(q, ω) have further been convoluted in energy
with a Gaussian of FWHM = 0.2 meV.

APPENDIX D: ESTIMATE OF WILSON RATIO

The Wilson ratio is a dimensionless ratio of the
(para)magnetic susceptibility of a metal χ0 to the linear co-
efficient of its specific heat γ with parameters chosen such
that the ratio takes on the value one in a free electron gas. It is
defined to be [85,86]

RW = π2

μ0

χ0

μ2
eff

k2
B

γ
, (D1)

where the effective magnetic moment

μeff =
√

j( j + 1)gμB. (D2)

For comparison with experiment on Ca10Cr7O28, we take

j = 1/2 and g = 2. (D3)

The remaining parameters, in cgs units, are given by

kB = 1.381 × 10−16 erg

K
, (D4)

μB = 9.274 × 10−21 erg

G
, (D5)

μ0 = 1
G

Oe
. (D6)

Taking values of χ0 and γ from experiment (Table I),

χ0 = 3
emu

mol Oe
= 3

erg

mol Oe G
(D7)

and

γ = 1.35 × 104 mJ

mol K2 = 1.35 × 108 erg

mol K2 , (D8)

we obtain an estimate of the Wilson ratio of Ca10Cr7O28

RW ≈ 16.2. (D9)

For completeness, we note that taking j = 1/2 and g = 2
leads to two other commonly quoted expressions for the Wil-
son ratio

RW = 4π2

3μ0

χ0

g2μ2
B

k2
B

γ
= π2

3μ0

χ0

μ2
B

k2
B

γ
. (D10)

It should also be noted that in some literature the units are
chosen such that μ0 can be omitted.
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