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We use the functional renormalization approach for quantum spin systems developed by Krieg and Kopietz
[Phys. Rev. B 99, 060403(R) (2019)] to calculate the spin-spin correlation function G(k, w) of quantum Heisen-
berg magnets at infinite temperature. For small wave vectors k and frequencies @ we find that G(k, ) assumes
in dimensions d > 2 the diffusive form predicted by hydrodynamics. In three dimensions our result for the
spin-diffusion coefficient D is somewhat smaller than previous theoretical predictions based on the extrapolation
of the short-time expansion, but is still about 30% larger than the measured high-temperature value of D in the
Heisenberg ferromagnet Rb,CuBr, - 2H,0. In reduced dimensions d < 2 we find superdiffusion characterized
by a frequency-dependent complex spin-diffusion coefficient D(w) which diverges logarithmically in d = 2, and
as a power-law D(w) o< ™/ in d = 1. Our result in one dimension implies scaling with dynamical exponent
z =3/2, in agreement with recent calculations for integrable spin chains. Our approach is not restricted to the
hydrodynamic regime and allows us to calculate the dynamic structure factor S(k, w) for all wave vectors. We
show how the short-wavelength behavior of S(k, ) at high temperatures reflects the relative sign and strength

of competing exchange interactions.
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I. INTRODUCTION

Calculating the dynamic spin-spin correlation function of
quantum Heisenberg models in the paramagnetic regime is
a challenging problem which requires advanced many-body
techniques or large-scale numerical simulations. Even in the
limit of infinite temperature the spin dynamics remains non-
trivial. Hydrodynamic arguments suggest that for sufficiently
small wave vectors k and frequencies w the Fourier transform
G(k, ) of the retarded spin-spin correlation function of spin-
rotationally invariant Heisenberg magnets has the diffusive
form [1,2]
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where G(k) = G(k, 0) is the static (i.e., zero-frequency) limit
of the spin-spin correlation function, and D is the spin-
diffusion coefficient. In the regime where the temperature 7 is
large compared with the exchange energy, the static correla-
tion function G(k) can be approximated by the susceptibility
of an isolated spin S,
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where the spin operator is normalized such that §* = S(S +
1). However, the calculation of the spin-diffusion coefficient
D remains highly nontrivial even in the limit 7 — oo. For
three-dimensional Heisenberg magnets with nearest-neighbor
exchange J the spin-diffusion coefficient is expected to ap-
proach a constant of order |J| at high temperatures. Note
that at infinite temperature D is independent of the sign
of J, indicating that a simple expansion in powers of J is
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not possible. In the 1960s and 1970s several approximate
calculations of the numerical value of D at high temper-
atures have been published [3—11]. Thereafter, the interest
in this problem has waned (see, however, Refs. [12,13]),
although a convergence of the results for D has not been
achieved. Surprisingly, an experiment [14] measuring D in the
three-dimensional Heisenberg ferromagnet Rb,CuBr,4 - 2H,O
at high temperatures produced a result which was consis-
tently smaller (by a factor ranging between 0.5 and 0.7)
than theoretical predictions [4-6,8]. As far as we know, this
discrepancy between theory and experiment has never been
resolved. The authors of Ref. [14] speculated that methods
based on the extrapolation of the short-time expansion of
the spin-spin correlation function to long times [3-5,7,10—
13] tend to overestimate the magnitude of the spin-diffusion
coefficient. A numerical simulation [15] for classical Heisen-
berg models at infinite temperatures revealed long-time tails
in dimensions d = 1,2,3 which are incompatible with a
frequency-independent spin-diffusion coefficient assumed by
hydrodynamics. It is not clear, however, whether in d = 3 the
simulated systems are large enough to eliminate finite-size
effects.

Ind = 1 the problem of infinite-temperature spin-transport
has recently been studied by several authors [16-24] us-
ing insights from the Bethe ansatz for integrable chains and
state-of-the-art numerical methods. Most authors found that
for T = oo the spin transport in isotropic spin chains is su-
perdiffusive and can be described by a frequency-dependent
diffusion coefficient D(w) o w~!/3. However, contrary to
that, recent numerical simulations [22] based on tensor
network methods predict at 7 = oo normal diffusion for
nonintegrable spin chains with S > 1/2. At this point the
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conditions for the persistence of superdiffusive spin dynamics
in nonintegrable spin chains are not completely understood
[23,24].

In this work we use recent advances in the application of
functional renormalization group (FRG) methods to quantum
spin systems [25-28] to calculate the dynamic spin-spin corre-
lation function of Heisenberg magnets in the high-temperature
limit. By integrating the truncated FRG flow equation for the
suitably defined irreducible part of the spin-spin correlation
function G(k, w) we derive an integral equation in momentum
space which determines G(k, w) in the entire paramagnetic
phase of a Heisenberg magnet on a d-dimensional Bravais
lattice with arbitrary exchange interaction. We explicitly solve
this equation in the limit of infinite temperature in dimensions
d =1,2,3. In three dimensions we find normal diffusion
and explicitly calculate the numerical value of the spin-
diffusion coefficient D for Heisenberg magnets with nearest-
and next-nearest-neighbor coupling on a simple cubic lattice.
We also calculate D for a body-centered cubic lattice de-
scribing the material Rb,CuBry4 - 2H,O where experimental
high-temperature data for D are available [14]. It turns out that
our result for D is somewhat closer to the experimental value
than previous theoretical predictions based on the extrapo-
lation of the short-time expansion, although the measured
value of D is still smaller than predicted by theory. In two
dimensions we find anomalous diffusion in the sense that the
hydrodynamic form (1) should be generalized by replacing
D with a frequency-dependent function D(w) which diverges
logarithmically for @ — 0. Ind = 1 we find that the singular-
ity is even stronger, D(w) o« w™'/3; the usual dynamic scaling
D(w)k* o w o k? then implies the dynamical exponent z =
3/2, in agreement with the established result for integrable
spin chains [16-24].

The spin functional renormalization group (SFRG) ap-
proach developed in this work also allows us to calculate
G(k, w) for all wave vectors k, including the short-wavelength
regime which cannot be described by hydrodynamics. There-
fore, we parametrize the retarded spin-spin correlation func-
tion in the form

Ak, w)
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and explicitly calculate the dissipation energy A(k, w) at infi-
nite temperature for all wave vectors k in the first Brillouin
zone. For a three-dimensional nearest-neighbor Heisenberg
model on a cubic lattice we find that A(k, 0) assumes a global
maximum at the corners of the Brillouin zone. For Heisen-
berg magnets with interactions beyond nearest neighbors the
momentum dependence of A(k, @) in the first Brillouin zone
leads to characteristic features in the dynamic structure factor
which put constraints on the relative sign and strength of
competing exchange interactions.

The rest of this article is organized as follows: In Sec. II we
present a specific variant of the SFRG approach [25] which
enables us to calculate the dynamic spin-spin correlation
function in the paramagnetic regime of quantum Heisenberg
models. We also write down exact flow equations for the
suitably defined irreducible static self-energy (k) and the
irreducible dynamic susceptibility I1(k, @) which is inversely
proportional to the dissipation energy A(k, w) defined via

Eq. (3). In Sec. III we use constraints on the irreducible three-
point and four-point vertices imposed by Ward identities and
a continuity condition due to ergodicity to derive a truncated
flow equation for IT(k, w). We then integrate this flow equa-
tion to obtain an integral equation for the dissipation energy
A(k, ) which depends on the static spin-spin correlation
function G(k). Using the fact that in the high-temperature
limit G(k) can be obtained from a controlled expansion in
powers of 1/T, in Sec. IV we explicitly solve the integral
equation for A(k, ») in the limit of infinite temperature and
calculate the resulting dynamic spin-spin correlation function
G(k, w) in different dimensions. In Sec. V we discuss the
behavior of the dissipation energy A(k, w) defined via Eq. (3)
and the corresponding dynamic structure factor as a function
of k in the first Brillouin zone. In the concluding Sec. VI we
summarize our results and give an outlook on future appli-
cations of our method. Finally, in two appendices we present
technical details of the solution of the integral equation for
A(k, w) on different lattices.

II. SFRG WITH CLASSICAL-QUANTUM
DECOMPOSITION

In this section we shall develop a variant of the SFRG
approach proposed in Ref. [25] which is specially tailored to
the problem of calculating the dynamic spin-spin correlation
function in the paramagnetic phase of spin-rotationally invari-
ant quantum Heisenberg models with Hamiltonian

1
H:E;Jijsi-sj. @

Here S; are spin-S operators localized at the sites R; of a
d-dimensional Bravais lattice with lattice spacing a, where
the index i = 1, ..., N labels the lattice sites. The exchange
couplings J;; are assumed to depend only on the difference
R; — R; so that they can be expanded in a Fourier series,

1 ik-(Ri—R;)
hj=~2.e J(k), )
k
where the k-sum is over the first Brillouin zone.

A. Subtracted exchange interaction and irreducible
dynamic susceptibility

The basic idea of Ref. [25] is to replace the exchange
couplings J;; in the original Heisenberg model Eq. (4) by some
continuous deformation J/ and to derive a formally exact
flow equation describing the evolution of the imaginary-time
ordered connected spin correlation functions under changes
of the deformation parameter A. For classical spin models
this strategy has been implemented previously by Machado
and Dupuis [29]. A related strategy has also been adopted
for bosonic quantum lattice models [30-34]. Starting point
is the deformed generating functional of the imaginary-time
ordered connected spin correlation functions of our deformed
quantum spin model,

Guih] = el e mrese-is s o8l g
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where 8 = 1/T denotes the inverse temperature, h;(7) is
fluctuating source magnetic field, 7 denotes time-ordering in
imaginary time, and the imaginary-time label t of the spin
operators S;(t) keeps track of the time-ordering. By simply
differentiating both sides of Eq. (6) with respect to the defor-
mation parameter A we obtain the exact flow equation [25],

1 A A 82Galh]
0aGalh] = —5/(; dt % (8Aﬁj)[m
f;i;\ [h] 59;\ [h] } 7
(1) Shj(l’)

where o = x,y, z labels the three Cartesian components of
h;(t). In principle, we can now introduce the (subtracted)
Legendre transform of G, [k] in the usual way [35-39] and
derive the corresponding Wetterich equation [40]. The prob-
lem with this procedure is that in a deformation scheme where
at the initial value A = 0 of the deformation parameter the
deformed exchange interaction vanishes the Legendre trans-
form of Gx—o[h] does not exist [27,34] because for vanishing
exchange couplings the spins do not have any dynamics.
As already noticed in Refs. [25,27,28], this problem can be
avoided by introducing a hybrid functional which generates
amputated correlation functions where the external interac-
tion lines are removed. In this work we further develop this
idea by noting that in the classical approximation where the
time-dependence of all operators is simply neglected the Leg-
endre transform of G, [h] does exist. It is therefore useful to
decompose the source field &;(7) into classical and quantum
components. Technically, this can be achieved by expanding
h;(t) in frequency space and identifying the zero-frequency
component with the classical source A,

hi(t)=TY e hi,=h{ +h{(r), (8)
where
kS = Th; o0, (9a)
R()=TY e h,. (9b)
w#0

In frequency space this decomposition is equivalent with
hiw = BSwohi + (1 — 8,0k . (10)

Since in the classical sector the Legendre transform of G, [h€]
is well defined even for vanishing exchange coupling, it is
convenient to introduce a hybrid functional I", [m°, »?] which
for vanishing quantum source n? = 0 reduces to the Legendre
transform of the generating functional G [h°] with classical
sources. To construct such a functional, recall that in the para-
magnetic phase the imaginary-frequency spin-spin correlation
function can be written as
Ik, iw)

14+ JI)T(k, iw)’

where I1(k, iw) is the interaction-irreducible part of G(k, iw).
We shall refer to Il(k, iw) as the irreducible dynamic sus-
ceptibility. In the spin-diagram technique developed by Vaks,
Larkin, and Pikin [41,42] (see also the textbook by Izyumov
and Skryabin [43]) the function [1(k, iw) is the sum of all

Gk, iw) = (11

diagrams contributing to G(k, iw) which cannot be separated
into two parts by cutting a single interaction line representing
J (k). For our purpose, it is more convenient to parametrize the
spin-spin correlation function in a slightly different way,
Mk, iw)
L+ TGOk, i)’
where the subtracted exchange interaction is defined by
Jk) = J(k)+ 1" (k, 0). (13)
Combining this with the definition of G(k,0)= G(k) in
Eq. (11) we find
1 1 . I1(k, 0)
J) — JU)+T1-1(k,0) 1+ J(k)I(k,0)

Gk, iw) = (12)

= G(k),

(14)
i.e., our subtracted exchange interaction J(k) is the inverse of
the static spin-spin correlation function G(k). Using the defi-
nition Egs. (11)—(13), we conclude that for finite frequency the
irreducible susceptibility I1(k, iw) and its subtracted counter-
part are related as follows:

[Tk, iw) = T7 ' (k, iw) — I (k, 0). (15)

For vanishing exchange interaction the imaginary fre-
quency spin-spin correlation function has a nonanalytic
frequency dependence,

b/
Go(k, i) = Tlo(k, i) = 80,0, (16)
where
S +1
by = % a7

is the first-order coefficient in the Taylor expansion of the
spin-S Brillouin function

b()—<s+1> th|:<S+l>]—l th[z]
Y= 2)° 2 )7 T 2% 2
= by + O(?). (13)

Whether or not such a nonanalytic contribution proportional
to 8,0 survives for finite exchange coupling is closely related
to the ergodicity of the system and the distinction between
the isolated (Kubo) susceptibility and the isothermal suscep-
tibility [45—49]. Note that for k = 0 the zero-frequency limit
of the finite-frequency thermal spin-spin correlation function
Gk =0, iw) gives the isolated (Kubo) susceptibility, which
in general does not agree with the isothermal susceptibility
defined via the derivative of the magnetization with respect
to an external magnetic field at constant temperature [45-49].
However, as recently shown by Chiba et al. [49], under condi-
tions similar to the eigenstate thermalization hypothesis [50],
at finite momentum k # 0 all static susceptibilities agree. This
rules out a nonanalytic contribution to the thermal spin-spin
correlation function G(k, iw) similar to Eq. (16) for finite
exchange coupling and finite k. Consequently, in this case
the irreducible susceptibility IT(k, iw) is expected to be a
continuous function of w, so that for finite exchange coupling
and finite momentum we conclude from Eq. (15) that in the
zero-frequency limit the inverse of the irreducible subtracted
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susceptibility defined via Egs. (12) and (13) vanishes,

Mk #0,0) = lim Mk #0,iw)y=0. (19)

We shall to refer to Eq. (19) as the continuity condition.

B. Hybrid functional and generalized Wetterich equation

Let us write the deformed exchange interaction in momen-
tum space in the form

Jalk) = J(k) + Ra(k), (20)

where R, (k) is some momentum-dependent regulator which
vanishes at A = 1 where we recover our original model. The
deformed spin-spin correlation function can then be written in
two equivalent ways,

o [Tk, iw)
Gtk i) = T O A k. ) (21a)
- [ (k, iw) (21b)

1+ JA()IAk, iw)’

where the deformed subtracted exchange interaction is de-
fined analogously to J(k) in Eq. (13),

Jatk) = Jpa(k) + T, (k,0) = G' (k,0) = G, ' (k). (22)

The subtracted irreducible susceptibility therefore satisfies by
construction the continuity condition

'k #0,0)=0 (23)

which generalizes the condition Eq. (19) for all values of the
deformation parameter A.

Our aim is to derive exact FRG flow equations for the static
self-energy

Talk) =1, (k, 0) (24)

and for the subtracted irreducible dynamic susceptibility
I, (k, iw) defined via Eq. (21b). To construct the correspond-
ing generating functional, we first introduce the auxiliary
functional

Falh®, 57 = Galh® — Tas?] — (57, Jas9),

which depends on the classical component A; of the source
field h;(t) defined in Eq. (9a) and on a quantum field siq(r)

which is introduced via the following substitution of the quan-
tum component h?(t) of the source field defined in Eq. (9b),

(25)

hl(t) = —[Jas)e = — > JhsU(T). (26)

J |

1 _
OnTalme, 1] = STr([(T30m*, 1] + Ry) :

B
- % > (aAzf})/ dtdt'89(c —
ij 0

where

| wmn
= = D RIS (k) (35)
k

+J4]R

In Eq. (25) the symbol J, represents an infinite matrix in the
site label i and imaginary time t,

(Talir o = 8(x — T}, (27)
and the last term in Eq. (25) is a short notation for
5 B
(s, Jas?) = /0 dty Ihsi(r)-si(r).  (28)

ij

Differentiation of the auxiliary functional F,[h€, s7] defined
in Eq. (25) with respect to the source fields generates con-
nected correlation functions which are partially amputated in
the quantum sector. The corresponding two-point function at
finite frequencies can then be interpreted as an effective, sub-
tracted exchange interaction, while higher-order correlation
functions can be obtained from their connected counterparts
by multiplying the quantum legs by factors of — J,. A related
auxiliary functional has been introduced in Ref. [27]. Our
hybrid functional with the desired properties is now given
by the subtracted Legendre transform of the above auxiliary
functional F [h€, s9],

1—‘A[Incv ”q] = (mC’ hC) + (nq3 sq) - ]:A[hcv s(l]
— L(m, Rme) — L(n%, RGn9),  (29)
where on the right-hand side we should substitute h¢ =

h[m¢, n7] and s7 = s9[m°, 7] as functionals of m* and 5 by
inverting the relations

. SFAlRC,s9]
— —Aah" , (30)
SFALR, s7]
0! = —Aasq . G1)

The regulator matrices in Eq. (29) are in the momentum-time
domain given by

[R% ]y, e = 8t — )8k + KRS (k). o = c.q, (32)
with
Ry (k) = Ja(k) — J(k) = Ry (k), (33a)
1 1
RI(k) = —= + =—. (33b)
: Jatk) ~ J(k)

Here the § symbol in wave vector space is defined by

8(k) = Nég -

After some standard manipulations similar to those out-
lined in Ref. [27] we find that the hybrid functional
I'A[m€, 7] defined in Eq. (29) satisfies the generalized Wet-
terich equation

2}

r’)((SF +[J! ‘1])-((S +[J! ‘1]>
q() N lic q(/) ”j‘[

(34)

(

is the real-space Fourier transform of the flowing static
self-energy, the finite-frequency part of the periodic
imaginary-time §-function 8(r) =T ), €“" is denoted

024423-4



DISSIPATIVE SPIN DYNAMICS IN HOT QUANTUM ...

PHYSICAL REVIEW B 104, 024423 (2021)

by

§(r)=T) " =5(r)—T, (36)
w#0
and the matrix I'{ [m¢, 59] of second functional derivatives of
I"'A[m€, n7] is explicitly given by
82T plme, 7]

8@?‘(1)8@‘]’."(1:/)' (37)

(r/z/\ [mcv nq])ira,jr’a’ =

Here we have combined the components of m{ and niq(r) into
a six-component field:

@ (7) m;

" (1) ms,;

@™ (1) me . me

i = S = L. 38
o’ (1) 1y (T) (n?(r)) %)
@ (1) n(7)

CD?Z(‘L') 77;{,‘(7:)

The regulator matrix R and the matrix J% in the generalized
Wetterich Eq. (34) have the following block structure in the
space of field components,

(R, 0 . (0 0
e 8) G )

and the matrix R, is defined by

5 _ (9ada 0
RA:( 0 jxl[aAJA]jxl)’ (40)

where the deformed exchange interaction matrix
Falizjo =8(x — ) (41)

is defined analogously to its subtracted counterpart in Eq. (27).
Note that R, # 95,R,, because by taking the A-derivative

J

of I'x[m°, n?] in Eq. (29) we generate only terms involv-
ing derivatives d,J, of the deformed bare coupling; due
to the A-dependent subtraction HXl(k, 0) in the definition
Eq. (22) of Jj(k), the quantum sector of the matrix R, is
therefore in general different from 9, R . Diagrammatically,
the vertices generated by I' s [m€, n?] are classical propagator
irreducible, i.e., the diagrams contributing to the vertices can-
not be separated into two parts by cutting a single classical
propagator line representing G, (k, 0). Moreover, for finite
frequencies the vertices generated by ', [m€, n?] are also
interaction-irreducible, which means that diagrammatically
the vertices generated by expanding I's[m€, y?] in powers
of p¢ cannot be separated into two parts by cutting a single
effective interaction line representing J, (k). Note that the last
term on the right-hand side of Eq. (34), which is absent in
the usual Wetterich equation [40], is generated by the scale-
dependent subtraction Hxl(k, 0) = XA (k) in the definition
(22) of JA (k). This term gives rise to local tree contributions
to the flow equations for the vertex functions which do not
contribute to the flow of X (k) or any other static irreducible
vertices, due to the subtraction of the time-independent con-
tribution in the second line of Eq. (34).

C. Vertex expansion

The generalized Wetterich Eq. (34) implies an infinite
hierarchy of exact FRG flow equations for the irreducible
vertices which can be obtained by expanding the functional
I'A[m€, 7] in powers of the fields. Let us first consider the
vertex expansion in the classical sector, which is obtained
by setting ¢ = 0. To simplify our notation, let us rename
m¢ — m. In the paramagnetic regime the classical magnetiza-
tion field m vanishes for vanishing external magnetic fields, so
that the first few terms of the vertex expansion in the classical
sector are

[alm, 0] = T4[0, 0] + g / U (K) + Ta()lm_g - my
'k

1
—i—ﬁ////5(161—i-kz-i-k3-i-kzl){(2,)21—‘11_4%(/61,]62,ks,k4)mk_lm,:z’",:’";t1
ky Jky Jk3 Jky .

1 |
4 5FX+ZZ(k] , k27 k3’ k4)ml;lm,j2mlzﬁmli4 —+ 47F;'\22~(k1 N k2, k3, k4)mi]mizmi3mi4} + ..., (42)

where fk = 1lv >, the interaction vertices are given in the spherical basis with m,f = (my = imi) /~/2, and we have omitted
vertices with five and more external legs. Note that by adding to the coefficient of the quadratic term in Eq. (42) the regulator
R (k) we obtain

J(k) + Zpk) + Ru(k) = Ja (k) + Ba(k) = Ja (k) + T3 (k. 0) = G (k, 0) = G} (k), 43)
which can be identified with the inverse of the deformed static spin-spin correlation function defined via Eq. (21a). In a cutoff
scheme where for A = 0 the deformed exchange coupling vanishes, Jy—o(k) = 0, we see from Eq. (16) that the classical self-
energy X, (k) satisfies the initial condition

Sok) = T/b), (44)

with b, = S(S + 1)/3; see Eq. (17). To determine the initial values for the classical four-point vertices in Eq. (42) in a cutoft
scheme with initially vanishing exchange interaction, we use the tree expansion [37] to relate these vertices to the corresponding
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four-spin correlation functions [28,37],

GiT (ki ko, k3, ky) = —Ga(k1)GA(k2)G A (k3)G A (k)T ™ (—ky, —ka, —k3, —ky), (45a)
G\ %k, ko, k3, ks) = —Gp(k1)Gp(k2)Gp(k3)Ga (k)T y 5 (—ky, —ko, —k3, —ks), (45b)
Gy, ko, s, ky) = —Gp (k)G (k)G (k3)Go (ka)T55 (k1. —hea, k3, —ks). (45c)
(
For vanishing exchange coupling Go(k) = Bbj, and The initial values of the classical four-point vertices in
e R Eq. (42) in a cutoff scheme where for A = 0 the exchange
Gy (k1. ko, k3, ks) = 587Dy, (462) interaction is completely switched off are therefore
G (k1 ko, k3, ky) = 18Dy, 46b 2T by
0 (k1, k2, k3, kq) 3ﬂ ( ) F()__++(k1,k2,k3,k4) — __/_04, (49a)
G5 (et koo, s, ea) = BB (460) 5 (o)

T b///
where bj is the third order coefficient in the Taylor expansion Ly Tk, ko ks k) = —— /O 7 (49b)

of the spin-S Brillouin function b(y) given in Eq. (18), 3 (by)

b///

1 2222 _ 0
bO) = by + 3607 + 007, ) fotle ko =-Tgs @9
Explicitly, To calculate correlation functions at finite frequencies, we
have to include also the quantum vertices in the expansion
b — Q2S+1)2 -1 _ SIS +1) (482) of our generating functional I'a[m, 5], where for notational
0= 12 - 3 a simplicity we have renamed the quantum field ¢ — 5. Apart
4 from pure quantum vertices involving only the n-field, the ver-

i (2S + l) l 6 / / l . . . . .
by = 1 - _gbo by + 5) (48b)  tex expansion contains also various types of mixed vertices,

J

1 (.. 3
Calm. 1] = Calm, 0] - Ef [ + A0k - i
K
+n 'ty 1+ l[nznznz] + L[n‘n‘n*n*] + l[n‘n*nznz] + l[nzn‘"‘nznz]
3] 212 2! 41
1
+m 1+ Im* 'y 1+ Iy ] + LGN
+[m m 1+ L[Wt*m*n‘n‘] + ;[m‘m‘nﬂ?*] + L[mznffnznz]
(21? @1n? (21?
1 1 ) .
+ E[m’mﬂfnz] + 5[mzmzn*n+] + [m~m*n 0l + [mTm*n ]
+ [mnnn]-vertices + terms with n > 4 fields. (50)

Here f K= # Zk,w and K = (k, iw) is a collective label for wave vector and Matsubara frequency. For later reference we have

marked the vertices by various colors which match the colors in Fig. 1 and in the exact flow Egs. (53) and (54) given below. We
have also introduced the short notation

_ —ntn? _ .
[ n*nz]=/ f / 5Ky + Ky + K" (Ky. Ky, K it 51)
K, 2 VK3
ot = / / / / 8Ky + Ka + Ks + KT " 7 (Ko, Ko, Ko, K)o (52)
Ky 2 VK3 JK3

where §(K) = BN & 0d,.0- The other terms are defined similarly with the convention that in all expressions involving classical
fluctuations we should set mg = B, oMy, so that the frequencies associated with the classical magnetization field mg vanish.
Note that there are no vertices of the type [mmn] and [mmmn] because the m-field does not transfer any frequency. The initial
value of the vertices in Eq. (50) in a cutoff scheme where the exchange interaction is initially switched off are rather complicated
and will be discussed in Sec. IIT A.

D. Exact flow equations for the two-point vertices

Substituting the vertex expansion Egs. (42) and (50) into the generalized Wetterich Eq. (34) we obtain FRG flow equations
for the vertices. In particular, the classical self-energy X 4 (k) appearing in the quadratic part of Eq. (42) satisfies the exact flow
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’ . i
1
@ 3

(b) .

- W - "2

FIG. 1. The upper diagram (a) represents the exact flow Eq. (53) for the classical self-energy X, (k), while (b) represents the exact
flow Eq. (54) for the subtracted irreducible dynamic susceptibility [T, (k, iw). We use the same color coding for the vertices as in the flow
Egs. (53) and (54). Here the dotted bubbles represent the scale derivatives 9, X5 (k) and 9,1, (k, iw), the solid arrows and lines represent
the transverse and longitudinal classical propagator G,* (k) and G5 (k), while wavy arrows and lines represent the corresponding quantum
propagators Gy *(k, iw) and G (k, iw). Slashed lines represent the corresponding single-scale propagators, and crosses inside loops mean
that each of the propagators forming the loop should successively be replaced by the relevant single-scale propagator. Note that spin-rotational
invariance implies G}~ (k) = G5 (k) = G, (k) and G} '™ (k, iw) = G} (k, iw) = G (k, iw). The above diagrams describe also the FRG flow
in the presence of an external magnetic field where transverse and longitudinal correlation functions should be distinguished.

equation

1
InZak) = /GA(q)[ T (—k, —q, q,k)+ TR A (kK —q, q)}

+TZ/G"<Q>['“'"*""<kk ~0.0)+ 5 r’"’"””(kk QQ)}

«'#0

—TZ/G"(Q)G"(Q+k)] Ty "7 (—k, —Q.Q + KTy " (k. 0. —Q — k), (33)

' #0

while the interaction-irreducible subtracted dynamic susceptibility [T, (K ) in the quadratic part of Eq. (50) satisfies

—OATIA(K) = TZfG”(Q)[F””””( K.~0.0.K)t5; r””””( K.K, QQ)]
w'#0

1 Zmin—nt
fGA(q)[ m o ( q.9, K’K)+5F21mn ! (_q7q’ _KaK)]
q :
—T/{[GA(Q)G"((I-FK)] Ty (—q. —K.q+ K" " (q.—q — K.K) + (K > —K)}
q
—TZ/ [GLOGL (@ +K)] Iy (—K.K+ Q. -0} " " (-K — 0. K. Q)

' #0

— I3 (KA Za (k). (54)

(

Here the external momentum-frequency label is denoted (g, i®'), and the symbol g + K represents (g + k, iw) where
by K = (k,iw), the loop momentum-frequency is Q = the frequency w belongs to K. The deformed classical
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propagator
1
k =
Gall) Jatk) + X (k) (5

has already been defined in Eq. (43), and the corresponding
single-scale propagator is

Gatk) = =GR (K)rJa(k) = =G (k)oaRA (k). (56)

The quantum propagator and its single-scale counterpart are

n _ _ jA(k)
A I EI AN
1K) = —Fp(K) = —— ) (57b)

[1+ Ja(k)TTA (K2

Graphical representations of the flow Egs. (53) and (54) are
shown in Fig. 1.

III. TRUNCATED FLOW EQUATIONS AND INTEGRAL
EQUATION FOR THE IRREDUCIBLE
DYNAMIC SUSCEPTIBILITY

We now specify our cutoff scheme. For our purpose, it
is sufficient to work with an interaction cutoff [25] where
the exchange interaction is initially switched off at A =0
and assumes the physical value J(k) at the final value A = 1
of the deformation parameter. Formally, this scheme can be
implemented via the regulator

Ratk) = (A —1)J(k), A €]0,1], (58)

so that the deformed exchange interaction is

Jatk) = AJ(k), A €][0,1]. (59)

A. Truncation with bare interaction vertices

In the simplest truncation, we neglect the flow of the
three-point and four-point vertices in Eqgs. (53) and (54). This
amounts to neglecting the effect of the exchange interaction on
the higher-order spin correlations, which are then determined
by the on-site SU(2)-algebra of a single noninteracting spin.
Although this truncation is too simple to give physically cor-
rect results for the low-energy spin dynamics, it is instructive
to work out the explicit form the three-point and four-point
vertices because it gives us a hint for more accurate trunca-
tions.

Using the initial values of the classical four-point vertices
given in Eq. (49) we obtain for the relevant combination in
Eq. (53)at A =0,

1
Lo~ (k. ~.q.0) + 5T (k. k. ~q.9)

T by + ! (60)
S\ 6)

Next, consider the initial conditions for the three-point ver-
tices for vanishing exchange couplings. In this limit the pure
quantum vertices in the last line of Eq. (54) vanish, while the
mixed three-legged vertices with one classical leg are related
to the corresponding Fourier transform of the imaginary-time

ordered three-spin correlation function via the tree expansion
[27,37]

Ja )T\ (k3)GL 5 (—ky, — K2, —K3)

= —GA(kl)GZ?\(Kz)GZ(K3)F7\1_"+"Z(k1, K>, K3), (6la)
Jn(ka)Tp (k3)G L 3(— K2, —k1, —K3)

= —G (k)G (K)G\ (KT " 7 (ky, Ka, K3), (61b)
Jak)Ip (k3)G L (—Ka, —K3, —k1)
= —GA(kl)GZ(Kz)GnA(KﬁFnAMiW(kl, K>, K3). (61c)

In the limit A — 0 where G} (K) — 0 and G (k) — Bb),
these equations imply the initial conditions

—ntn? 1
ng e (kh KZ? K3) = _ﬂb/ Ga__z(()’ —wy, (Uz), (623)
0
- 1
Ty " k1, Ko, K3) = ———G{ 7 (=.,0, @), (62b)
Bbj
in—nt 1
Ly 7 ki, Ko K3) = ———G§ (=2, 02,0).  (62¢)

by,

Explicit expressions for the imaginary-time ordered con-
nected spin correlation functions in frequency space have first
been derived by VLP [41,42], see also Refs. [26,27,43]. In the
zero-field limit of the mixed three-spin correlation function is
(26]

Gy (w1, 2, 03) = Bby(1 = 80y,08,,0803,0)

x |:5601,0 Swz,O 5(4)3,0

+——+ =

iwy iws iwg

]. (63)

We conclude that

—ntn? +n—n?
0y "k, Ky, K3) = =T " 7 (ky, Ky, K3)

e 1
=17 kKo K = . (64)
lwy

so that for the relevant momentum-frequency labels in the
flow Eq. (53) we obtain

—ntnt tn—nt 1
Ty " (—k~Q.0+k) =Ty " "k, Q. -0~ k)= —,
—lw
(65)
and in the flow Eq. (54) for the irreducible dynamic suscepti-
bility the relevant initial vertices are

me Tt m*n~nt 1
rg" " (—4,-K.q+K)=T¢"" (@ -¢-KK)=—.

(66)
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Let us now consider the quantum four-point vertices in to the connected four-spin correlation function via the tree
the first line of Eq. (54) which are irreducible with respect  expansions [27],
to cutting a single interaction line. These vertices are related

J

4 4
[]‘[Jl(k»} Gt (—Ki. —Ky. —Ks, —Ky) = — []‘[ Gﬂl@)} [T (K, Ka. K3, Ka)

i=1 i=1
—[aniw(—kl — k3, K1, K3)80,4+0,,0GA (=K1 — k3)F’,(lZ”7”+(—k2 — k4, K>, Ky) + (K3 < K4)]
—[C5 7 (K1, K, —Ki = KGR (—Ki = K)T) "7 (Ko, Ku, =Ko = Ko) + (Ks < K]} ©7)

and
4

4
[]‘[ fA(ki)} G (=K1, —Kz, —K3, —K4) = —[]‘[ G”A(Ki)} {077 Ky, Ko, K3, Ky)

i=1 i=1

— [T (kg = k3 Kt K3)uy o 0G (—ky — kD07 (—ky — kay Koy Ki) + (K3 <> K3
— [T (K1, —Ki — s, K3)G (—Ky — KT (=Ky — K, Ko, Ki) + (K3 < K3)]
— T3 (K3, Ka, =Kz = Ka )G (—Ky — KT} "7 (K1, Ko, =Ky — Ko)}. (68)
Taking the limit A — in Egs. (67) and (68) we obtain the initial conditions
T 7T Ky, Ky, Kay Ky) = =G (=1, —w, —03, —w3)

+[F6"Znin+(—kl — k3, K, K30, 10y, 08B T T (—ky — kg, Ko, Ka) + (K <> Ky)]

1 .
= _GE)|—+__(_CL)] , T2, —Ws3, _CU4) + W(8w1+w3,0 + 8w1+a)4,0)G3__z(_w1 , W1, O)G(_)F_M(_a)27 w3, 0)
0
++—— bb
=—Gy " (—wi, —wy, —w3, —w4) — m(%.m}.o + 80y 404,05 (69)

and
ngnwnz(lﬁ, K>, K3, Ky) = =G (= w1, —wp, —w3, —y)

F[T0 T (kg — K, K1y K3)Sun 4 0BT T " (—ky — ka, Ko, Ky) + (K3 < K2)]

_ 1 _ _
= —Gi ¥ (~wi, —wy, —w3, —w4) + W(alerw;,O + 801 4:,0)Gy (0, —w1, ©1)G§ H(—w2, 0, w2)
0
— Bby
= -Gy Y (~w1, —w2, —w3, —wy) + E@wﬁm,o + 8wy +ws.0)- (70)
102

(

For the frequency combinations needed in the first line of  and
Eq. (54) we obtain

2
+4+—— / / = Z8%" ifw=aw = . 1
G, (w, 0, —0', —w) 3,3 by ifw=w 0, (71a) a__zz( ’ o, ) §,33b6/ it =0, (72a)

B o )
= @) if o =0and o # 0, 22(/630/;)2 ifw=0and o 0,
(71b)
(72b)
Zﬂ—bb ifo#0andw =0 Bb,
w? ’ 2220 ifw#£0andw =0,
>
(71¢)
(72¢)
S L ifo=aw #0, (71d) BB,
w? ’ =__20 if|a)|=|a)/|7é(),
w
L / 72d
=— ifwo=—w" #0, (7le) (72d)
w
=0 else, (71f) =0 else. (72¢)
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Keeping in mind that both Matsubara frequencies in the
first line of Eq. (54) are nonzero, the initial condition of the
relevant linear combination is

[ 1 —ntpind
T (—K, -0, 0, K)+§Fg TTT(—K, K, —Q, Q)

by[5 1
= & _811) o _(Sa) —w'
w? 277 21"

,Bbo Bby

((Swa) 1) 2 2’(8wa)’+8u) a))
b b,
ﬂ O(Swa) _(Sa),fa)’) - ’3_0/
ww'

J

b/
- f) 2 G 80 = 1. (73)

Noting that this is an odd function of @’ while in the paramag-
netic phase the single-scale propagator G"A (g, i®) in the first
line of the flow Eq. (54) as an even function of @', we conclude
that the contribution from the quantum vertices in the first line
of Eq. (54) vanishes if we approximate the vertices by their
initial values.

Next, consider the four-point vertices with two classical
and two quantum fields in Eqgs. (53) and (54). The relevant
tree expansions are

Tn(ke3)Tn (ks)G LT~ (—ky, —K3, —kz, —K3) = =G (k1)G (k2)Gy (K3)G) (Ka){T) " (ke ke, K3, Ka)

T ey, Ka, —ki — K3)G) (—k,y

In(k3)Ta (k)G (—ky, —ka, —K3, —K3) = —G (k)G (k2)Gy (K3)G (K){Ty " ey, ke, K3, Ky)

— [T ke, —ky — K, K3)G'\ (—k;

Ta(ke3)p (k)G (=Ks, =Ky, —ky, —k2) = —Ga (k)G (k2) G (K3)G (K){T ™" "k, ko, K3, Ka)

— [T (ky, K3, —ky — K3)G\ (—k,y

- K4)Ff " (ko K3, —ky — K3}, (74a)
- IQ)F’X T (ky, —ky — Kq, Ky) + (K3 <> K»l]}, (74b)
- Ks)rxﬁn m (ky, —ky — K4, Ku) + (k) < k2)]}~ (74¢)

Using the initial condition Eqgs. (64) for the three-point vertices and the fact that for vanishing exchange coupling G (K) =

—Jo(k) = —1/(Bbj,) we obtain from Eq. (74) for A — 0,
m-m*tn” 1 — m- N mtnn*
o T e, Ko K = By, )ZG(J)FJr 0, —w3,0, w3) — Bb, Ty "y, K~y — K4)1"0+" " k2, K3, —k2 — K3)
0 0
L 0 (75a)
= — =0, a
ﬂbow% Bbyw3
m-mtnnt 1
FO nn(klak27K37K4)= (ﬁb/)zG?)» ZZ(O O (1)3,6()3)
- ﬂT[FgfnJrnz(kl» _kl - K3» KS)Fgﬁninz(kQ, —kz - K4, K4) + (K3 <> K4)]
0
L R S (75b)
B ﬂbo“’% Bbyw3 o
ZpZn—nt 1
mtm _ +—2z
FO o (klak27K37K4)—_(ﬁb6)2G() Z(_w37w370’0)
1 men~ men~
- ,BT[FO ! n+(k1, K3, —ki — K3)I'y' " n*(kz, —ky — K4, Ky) + (k) < kz)]
0
2 2

ﬂbows ,3b6w§

In summary, if we approximate the three-point and four-point vertices in the exact flow Egs. (53) and (54) by their initial
values for vanishing exchange couplings, we obtain the following truncated system of flow equations,

2
oA Zpk) =

NIk, iw) =

where the effective dynamical interaction F (g, iw) =
we have introduced the notation

T (. 1\ [ 1 . N

i (b 6) /q GA<q>+T2(j)E fq [Fa(q. i)Fa(g + k. )] (76)

T

= i@ @G+ 107 + e ko] + e iz )
q

—G'(q, iw) is the negative of the n-propagator defined in Eq. (57a), and

[FA(q, i®)GA(q +K)]* = FA(q, i@)Ga(g + k) + FA(g, i0)Ga(g + k). (78)
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Unfortunately, the truncated flow Eq. (77) violates the Ward
identity [T (k = 0, iw # 0) = 0 due to the conservation of
the total spin, see Eq. (81) below. Moreover, the last term
I:If\(k, iw)dp X (k) leads to a violation of the continuity
condition Eq. (23), which is obvious by writing the corre-
sponding contribution to the flow equation as 9, I:IX1 (k,iw) =
—dpXa(k) + .. .. Given the fact that the constraints imposed
by Ward identities are expected to be essential for a correct
description of the spin dynamics, we conclude that the trun-
cation in this subsection with bare three-point and four-point
vertices is not sufficient to obtain reliable results for the spin
dynamics.

B. Vertex corrections

In principle, we could now write down flow equations
for the three-point and four-point vertices in Egs. (53) and
(54) which depend in turn on various types of higher-order
vertices. We thus obtain an infinite hierarchy of the flow
equations for the vertices generated by I' [m¢, h?]. The con-
struction of sensible approximation schemes for this infinite
hierarchy is one of the main technical challenges of our
SFRG approach. A powerful strategy to construct truncation
strategies for FRG flow equations is based on the use of
Ward identities providing exact relations between vertices of
different order. This strategy has been adopted previously in
different contexts in Refs. [37,51,52] and we will use it again
in this work to express the four-point vertices in the FRG flow
equations for the irreducible spin susceptibility in terms of
two-point vertices.

1. Equations of motion

Ward identities for imaginary-time ordered spin correla-
tion functions of different order can be derived using the
Heisenberg equations of motion of the spin operators and the
resulting equations of motion for the correlation functions, as
described in Ref. [27]. After transforming the equations of
motion to momentum-frequency space, we find that the two-
spin correlation function G(K) = G(k, iw) is related to the
mixed three-spin correlation function G*~*(Q + K, —Q, —K)
via the integral equation

iwG(K) = /Q[J(q) ~J(g+0IGTHQ + K, —0, —K),

(79)
where we assume that the spin-rotational invariance is not
spontaneously broken. Setting k = 0 for finite frequency w #
0 we obtain

Gk=0,i ;AO)—M—O (80)
— T T ORO, i)
and hence
[1(k =0, iw # 0) = 0. 81)

Similarly, we can derive the following equation of motion for
the mixed three-spin correlation function,

iwGT Q0+ K, —0, —K) = G(Q) = G(Q +K)
+1/(g) — J(g +K)IGQ)GQ + K)

— | U@)—J@ +k)]
Ql

xGTT(Q+K, -0 K, 0, -0, (82)

which depends on the connected four-spin correlation func-
tiOn G++__(Q + Ky _Q/ - K9 Q/s _Q)

2. Fixing four-point vertices via Ward identity
and continuity condition

By approximating the three-point and four-point vertices in
Eq. (54) by their noninteracting limits we have neglected the
contribution from the finite-frequency (quantum) four-point
vertex

(K, K, —Q, Q) = ]"Xinfnﬂ#(_l(, -0,0.K)

1 —ntninpd

Il el BUAL A AV _
T (=K. K, -0, 0), (83)
as well as the contribution from the mixed classical-quantum
four-point vertex

mm m-m*n~nt
FA nn(_qaqa _KvK)ZFA h (_qaqa _KvK)
1 m:m:nfn+
+5FA (_qa q, _Ka K)
(84)

Although for A = 0 these vertices do not contribute to the
flow of the irreducible susceptibility, for finite A this is not
true any more, which is the reason for the violation of the
Ward identity Eq. (81) within a truncation where all higher-
order vertices are approximated by their initial values. To
restore the Ward identity, we should therefore take the flow
of at least one of the above vertices into account. For sim-
plicity let us still approximate the quantum four-point vertex
" (=K, K, —Q, Q) by its initial value given in Eq. (73),

1—*7[7\’]77'7(_[(, K’ _Q’ Q) I Fg’mn(_[(, K’ _Qr Q)
b/
= P st b0 — 1) (85)
ww

so that this vertex does not contribute to the flow of [T, (K).
This leaves us with the mixed classical-quantum vertex
""" (—q, q, —K, K) to restore the Ward identity Eq. (81).
To simplify the algebra, let us also neglect the dependence of
this vertex on the momentum ¢ of the classical field,

Fy""(~q.q. —K.K) ~ T""(0,0, —K.K).  (86)

With these approximations, the exact flow Eq. (54) for the
subtracted irreducible susceptibility reduces to

InTTA(k, iw) = T3 (k, i@)dp Za (k)

7 / Ga@T™™(0,0, —K, K)
q

T
+ 5 [ 1R i0Gatg + kT
w™ Jgq

+(k — —k)}, 87)

which replaces Eq. (77). Instead of writing down an additional
flow equation for I'"\""""(0, 0, —K, K), we now fix this vertex
by demanding that the solution of the flow Eq. (87) satisfies
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the Ward identity Eq. (81) as well as the continuity condition
Eq. (23) for all values of the deformation parameter A, i.e.,

14 (0, iw # 0) = 0, (88)

1 (k #0,0) = 0. (89)

The simplest way to satisfy these constraints which is com-
patibe with the initial conditions at A = 0 is to choose the
scale-dependent mixed four-point vertex as follows:

1
0,0, —K, K) = —Wa(io) + Calk, )], (90)

where the Ward identity Eq. (88) is enforced by the contribu-
tion

2 [, [FA(q, io)Ga(@)]*

Wi (iw) = - , 1)
A fq Ga(q)
while the continuity condition Eq. (89) is enforced by
T2 (k, iw)dp o (k
Cutk. i) = w15 (k, iw)op X4 (k) ©92)

T [,Gal@)

Note that Cy (k, iw) cancels the term ﬁf\(k, iw)opXa (k) on
the right-hand side of Eq. (87) which would otherwise violate
the continuity condition Eq. (89). It is important to note that
our choice Eq. (90) of the mixed four-point vertex is consistent
with the initial condition Eq. (75) at A = 0 where the de-
formed exchange coupling J5—( (k) and hence also the vertex
7070, 0, —K, K) vanish. This follows from the fact that for
small J, the expressions in the numerator of Egs. (91) and
(92) vanish as J2 while the integral fq Ga(g) in the denomi-
nator vanishes as J,, implying Wy_o(iw) = Cp—o(k, iw) = 0.
Substituting Egs. (90), (91), and (92) into the flow Eq. (87) we
obtain the following flow equation for the dynamic irreducible
susceptibility,

- T
DTk, i) = / [FA(q. i)[Ga (g + )
q

+Galg — k) = 2GA(]T". 93)

The vanishing of the integrand on the right-hand side for
k = 0 guarantees that the solution of Eq. (93) satisfies the
Ward identity Eq. (88). The fact that the solution of Eq. (93)
satisfies also the continuity condition Eq. (89) is guaranteed
by the prefactor of 1/w? which implies that the inverse of
1A (k # 0, iw) vanishes for v — 0.

3. Renormalized three-point vertex

It turns out that the flow Eq. (93) still does not include
all vertex corrections which are necessary to calculate the
dynamic spin susceptibility for finite momentum k. To see
this, consider the equation of motion Eq. (82) for the mixed
three-spin correlation function. The approximation Egs. (85)
and (86) are consistent with neglecting the momentum de-
pendence of the four-spin correlation function G™~~(Q +
K,—Q — K, Q, Q) in the last line of Eq. (82). By shifting
the loop momentum ¢’ — ¢’ + k it is then easy to see that
this term does not contribute to the equation of motion, which

therefore reduces to
iwGTH(Q + K, -0, —K)
=G(Q) -G +K)
+[J(q) — J(g + ©)IG(Q)G(Q + K)

- G(Q)[l e K)]
~G(Q + K)[l + WG(Q)} (94)
Taking the limit J/ — 0 and assuming w # 0 this reduces to
BbY

Gy (@ +K,—Q,—K)= [8er,0 = 8wr4w0l,  (95)

iw
where again K = (k, iw) and Q = (g, iw'). Equation (95) is
equivalent with the zeroth-order approximation Eq. (64) for
the mixed three-point vertices which we have used to derive
Egs. (77) and (93). To construct an approximation consistent
with the equation of motion Eq. (94) for finite J, we retain
the terms in the square braces in the last two lines of Eq. (94)
neglecting the frequency dependence of the propagators. Then
Eq. (95) should be replaced by
%[Sw’,OYA (q.9+k)
iw

— 8w +0,0Ya (g + k. g)], (96)
with scale-dependent vertex correction factor

Jalg+k)—Jr(q)
2

Using the tree expansion Eq. (74c) to calculate the corre-
sponding irreducible three-point vertices and defining

Za(g. k) =Y. (g +k. q). (98)

we obtain instead of Eq. (93) for the flow of the irreducible
dynamic susceptibility,

_ T
alIA(k, iw) = Pl /{[FA(q’ i0)Ga(g +k)I*Zr(q. k)
q

Gy (Q+K, -0, -K) =

Ya(g+k. g =1+ Galg). o7)

+[Fa(q, iw)Ga(q — K)I*Za(q, —k)
—2[Fp(q, iw)GA(@)]*). 99)

Moreover, taking into account the flow of the purely classical
four-point vertex

Fxt)(_kv kv _qv q) = FX_++(_k7 _qv q1 k)
1
+ 51“;*“(—& k. —q.q). (100)

as well as all vertex corrections discussed above we obtain
instead of Eq. (76) for the flow equation of the static self-
energy,

IWZpk)=T / Ga@T (—k, k, —q, )
q

F .
41y [PLE o) - Cutg. o)
w#0 Y4 @

+Fa(qg —k, iw)Zx(—k, q)]. (101)
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Here the energies Wy (iw) and C,(q,iw) are defined in
Egs. (91) and (92); these terms are due to the mixed classical-
quantum four-point vertices in the second line of the exact
flow Eq. (53) which we approximate again by Eq. (90).

We conclude this subsection with three remarks:

(1) To obtain a closed system of flow equation, we
should add a flow equation for the classical four-point vertex
Fff)(—k, k, —q, g) which contributes to the flow of the static
self-energy in Eq. (101). In the simplest approximation we can
replace this vertex by its initial value given in Eq. (60).

(2) Keeping in mind that Z,(q, 0) = 1, we note that the
solution of the flow Eq. (99) satisfies the Ward identity
14 (0, iw # 0) = 0 for all values of the deformation param-
eter A.

(3) Within our truncation the flow Eq. (99) for the irre-
ducible dynamic susceptibility does not involve any frequency
summations. The Matsubara frequency iw therefore plays the
role of an external parameter so that the analytic continua-
tion to real frequencies can be trivially performed. Obviously,
within our truncation only elastic scattering processes are
taken into account for the calculation of [1(k, iw). However,
our flow Eq. (101) for the static self-energy (k) involves a
frequency summation, so that it takes also inelastic scattering
processes into account.

C. Integral equation for the irreducible dynamic susceptibility

Although Eqgs. (99) and (101) can be used to calculate
the static self-energy ¥(k) and thus detect possible magnetic
instabilities, in this work we will focus on the finite-frequency
spin dynamics in the paramagnetic phase at high temperatures.
To this end, it is sufficient to simplify the above system of flow
equations by ignoring the flow Eq. (101) for the static self-
energy, assuming that the static two-spin correlation function
G(k) = G- (k) can be determined by some other method. In
fact, at high temperatures, we can simply calculate G(k) via an
expansion in powers of J/T, as will be discussed in Sec. IV.
The vertex correction factor

J(g+k)—J(g)

2
> G(q)}

(102)

2(q. k) =Yg +k q) = [1+

is then independent of the deformation parameter A so that
our flow Eq. (99) for the dynamic susceptibility reduces to

. T .
IAlIA(k, iw) = Pl /FA(q, i0)[G(q +k)Z(q, k)
q

+G(q — k)Z(q, —k) — 2G(g)]. (103)

To convert this integrodifferential equation into an integral
equation we use the Katanin substitution [53], which amounts
to replacing the single-scale propagator F) (g, iw) by a total
scale-derivative d, F (g, iw). The right-hand side of Eq. (103)
is then a total A-derivative so that by integrating both sides
over A we obtain an integral equation for the irreducible
dynamic susceptibility [1(k, iw) = [T1p—;(k, iw). The lower
limit A =0 does not contribute because for finite w the
function ITo_o(k, iw) vanishes. Then Eq. (103) reduces to
the following integral equation for the subtracted irreducible

dynamic susceptibility,

ik, iw) = —/L:q)
7 w? J, Glg) + T(gq, iw)’

where the dimensionless kernel V (k, q) is defined by

Vik,q)=TI[G(q+k)Z(q, k)+ G(g — k)Z(q,—k)— 2G(q)].

(105)
It is convenient to parametrize the subtracted irreducible dy-
namic susceptibility in terms of an energy A(k, iw) as follows:

(104)

Ak, iw)
o]
Substituting this definition into Eq. (12) relating [1(k, iw) to
the dynamic spin-spin correlation function G(k, iw) and using
the fact that by construction J(k) = G~'(k), we obtain
Ak, iw)
Ak, iw) + ||
After analytic continuation to real frequencies iw — w + i0"
this reduces to Eq. (3). We call A(k, w) the dissipation energy,
because a purely real value of this energy implies a pole of the
retarded spin-spin correlation function G(k, w) on the imagi-
nary axis in the complex frequency plane. The energy A(k, w)
can then be identified with the energy scale associated with
the dissipative decay of spin fluctuations with wave vector k.
Substituting the definition Eq. (106) into the integral Eq. (104)

we find that within our truncation of the FRG flow equations
the dissipation energy A(k, iw) satisfies the integral equation

A, iw) = / _ Ve
¢ A, i) + o]

where the kernel
Vk,q) =G (k)G (qV(k,q)=TG ' k)G (g)
x [G(q +k)Z(q,k)+ G(g—k)Z(q,—k)— 2G(q)]
(109)

[(k, iw) = G(k) (106)

Gk, iw) = G(k) (107)

(108)

has units of energy squared. Here the vertex renormalization
factor Z(q, k) is defined in Eq. (102). Assuming that for small
wave vectors the dissipation energy A(k, iw) can be expanded
as

Ak, iw) = D(io)k* + OK*), (110)

we conclude that if the dynamics is indeed diffusive, then the
spin-diffusion coefficient is given by

Ak, 0)
k2
The nonlinear integral Eq. (108) can be solved for the

dissipation energy A(k, iw) if the static spin-spin correlation

function G(k) has been determined by some other method.

We could now go back to the system of flow Eqgs. (99) and

(101) to determine both the dynamic susceptibility [k, iw)

and the static self-energy X, (k). However, the explicit solu-

tion of this system of equations requires extensive numerical
calculations which are beyond the scope of this work. In the
rest of this work we will focus on the dissipative dynamics at
high temperatures where the static spin-spin correlations can

D =D(0) = lim . (111)
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be obtained by means of an expansion in powers of J/T which
can then be used to determine the kernel V (k, ¢) in the integral
Eq. (108).

To conclude this section, let us point out that within the
framework of the so-called mode-coupling theory [54] (see
Refs. [55,56] for reviews) a similar parametrization of the
retarded spin-spin correlation function is used. Typically, in
mode-coupling theory one starts from a generalized Langevin
equation for the Kubo relaxation function [57], where the
memory kernel, involving higher-order correlations, is closely
related to the dissipation energy A(k, w) used by us. After
applying several approximations to the kernel, one arrives
at a closed integro-differential equation for the relaxation
function, which has been extensively studied in the literature
[9,54-56,58]. However, in contrast to our integral Eq. (108),
the integro-differential equation for the relaxation function
obtained in mode-coupling theory is nonlocal in frequency-
space.

IV. DISSIPATIVE SPIN DYNAMICS AT INFINITE
TEMPERATURE

The problem of spin diffusion in quantum Heisenberg
magnets at infinite temperature has been discussed by many
authors. Older works focused on three-dimensional systems
[3-12], while recently the high-temperature spin dynamics
in one-dimensional Heisenberg magnets has attracted con-
siderable attention [16-22,24]. Even at T = oo the problem
of calculating the dynamic spin-spin correlation function of
Heisenberg magnets is nontrivial and requires nonperturbative
resummation and extrapolation schemes. In fact, up until now,
a resummation scheme based on the diagrammatic approach
to quantum spin systems developed by Vaks, Larkin, and
Pikin [41-43] which generates a diffusive pole in the spin-spin
correlation function has not been found. We now show that by
solving the integral Eq. (108) we obtain such a nonperturba-
tive resummation. Although in this work we focus on the limit
of infinite temperature, we have preliminary evidence [44] that
our approach gives sensible results in the entire paramagnetic
regime, including the temperature range in the vicinity of the
critical point.

Once we have calculated the dissipation energy A(k, iw)
by solving the integral Eq. (108), we can obtain the retarded
spin-spin correlation function by analytic continuation to real
frequencies, iw — w + i0, which amounts to the replacement
|w| — —iw. From Eq. (107) we then obtain the retarded spin-
spin correlation function in the form of Eq. (3), where the
retarded dissipation energy A(k, @) is in general a complex
function which we decompose into real and imaginary part,

Ak, w) = Ar(k, w) + iA[(k, ®). (112)
The dynamic structure factor can then be obtained with the
help of the fluctuation-dissipation theorem,

| 1
+eﬁu)_

_ oGk 1 Ar(k, @) 113
Cl—ePom Al(k, ) + [0 — Ak, )]

Sk, w) ] i| %ImG(k, )

In the limit of infinite temperature this reduces to
A Ar(k, ®)

S0 = N @)+ 0 — A

(114)

A. General strategy

At temperatures 7 > J it is sufficient to approximate the
static self-energy by its truncated expansion in powers of 1/T
up to order J2/T,

k 3
Sk) = bz/ p2-i O(J—),
0

T 72 (115)

where
mak) = [r@sa+io+ (b + 4 / P(g). (116)
12 J, "6/, '
The kernel V (k, q) defined in Eq. (109) then reduces to

b/
Vik,q)= ZO[[J(q) —Jg+ R +1J(g) —J(g— k)]

J3
+250(g) — Ta(g@ +K) — g — k) + o<7).

(117)

Note that at high temperatures V (k, ¢) is a nontrivial function
of order J? satisfying V (0, g) = 0. To explicitly solve the
integral Eq. (108) for the dissipation energy A(k, iw), we note
that for exchange couplings J;; with finite range the kernel
V(k, q) can be expanded as

Vik.q) =Y " V,(g),

a=1

(118)

where R}, R, ..., R, is a finite set of vectors of the underly-
ing Bravais lattice which depends on the precise form of J (k)
and on the geometry and dimensionality of the lattice. The
solution of Eq. (108) is then of the form

Ak, i) =Y e**e A, (iw),

(119)
a=I1
where the n coefficients A|(iw), ..., A,(iw) satisfy the fol-
lowing system of nonlinear equations,
Ve
Aa(ia))zf - (“I)R —, a=1,...,n
g ol + D 0 TR Ay (i)

(120)

To obtain an explicit solution of these equations, let us
assume here for simplicity that the spins are located on a
d-dimensional hypercubic lattice with spacing a and that
the exchange couplings J;; connect only pairs of nearest
neighbors. In Sec. IVC and in Appendix B we will dis-
cuss more general models including next-nearest-neighbor
exchange. Denoting by J the strength of the nearest-neighbor
coupling, the Fourier transform of the exchange couplings on
a d-dimensional hypercubic lattice is

Ty =17 " =2din.
8

(121)

where the sum is over the 2d vectors § with length |§| = a
connecting a given site to its nearest neighbors. For later
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convenience we have introduced the normalized nearest-
neighbor hypercubic form factor

d
1 ks _ 1
"= 28: 0=~ ; cos(k,a). (122)

Using

143
_ Y 123
/qVthH—k 2d (123)

the integral X, (k) defined in Eq. (116) is easily evaluated,

Ve

5 (124)

(k) = 2dJ2|: g

+ by +1}
0 .

We conclude that for nearest-neighbor exchange on a hyper-
cubic lattice

2%5(q) — Za(g + k) — Xa(q — k)
2

= ?[23/‘1 = Yag+k — Vg—kl. (125)

At this point it is convenient to measure all energies in units
of |J|,/bj,, defining the dimensionless quantities

Ak, iw) w

—— @ :
1y UNCH

B. Spin-diffusion coefficientind > 2

Ak, iw) =

(126)

The cubic symmetry and the condition A(k =0, iw) =
0 imply that for nearest-neighbor coupling the expansion
Eq. (119) can be expressed in terms of only three independent
form factors. In dimensionless form the expansion is therefore

Ak, iw) = (1 — y) A (i0) + (1 — yy) A (iw)

+ (1 = %) Ay (i), (127)
where we have introduced the off-diagonal next-nearest-

neighbor form factor

2

VkL =S

i L costkacosihya.

ISpu<pw'sd

(128)

In d dimensions we find from Eq. (120) that the three ampli-
tudes in Eq. (127) satisfy the following system of equations,

-~ 1 d Vq
Af(iw)=2d | ————+ 5 | ————=.
¢ 10| + A(g, iw) 3b0 q 10| + Ag, iw)
—2Al(iw) = 245 (iw), (129a)
Alliw) = %/#, (129b)
g ¢ @]+ Adg, iw)
yJ_
Al(iw) = —2d(d — 1)/+. (129¢)
: ¢ & + Adg, io)

It turns out that for d > 2 the self-consistent solution
of these equations have a finite limit for v — 0, implying
that the static dissipation energy A(k, iw = 0) is finite [59].
According to Eq. (111) the spin-diffusion coefficient D can
then be obtained from the quadratic term in the expansion of

TABLE 1. Spin-diffusion coefficient D of the nearest-neighbor
spin-S Heisenberg model on a cubic lattice with lattice spacing a at
infinite temperature obtained from Eq. (130). Note that for § = 1/2
the normalization factor \/4b) = \/45(S + 1)/3 is unity. The quan-
tum term proportional to d/(3b;) in Eq. (129a) gives rise to some
additional spin-dependence which vanishes for § — oo. For large S
we obtain D = 0.193 S|J|a? to leading order.

S : 1 2 2 00
D
Illazm 0.217 0.189 0.179 0.175 0.167

A(k, 0) for small k. From Eqs. (126) and (127) we obtain

NN

D= 130
2d (130)

[A1(0) + 4A}0) + 245 (0)].

In the limit of high dimensions the solution of Egs. (129)
simplifies because to leading order in 1/d the first term on
the right-hand side of Eq. (129a) without form factor dom-
inates. In this limit we obtain A,(0) = +/2d and Al(0) =
Ay (0) =0, implying D = |J|a>\/b,/2d. In the physically
relevant case of three dimensions we have to solve Egs. (129)
numerically to obtain the value of D. In Table I we present
our numerical results for D in three dimensions for different
spin quantum numbers S. In the special case of S = % our
result D & 0.217|J|a? is roughly 30% smaller than theoretical
results obtained by extrapolating the short-time expansion of
suitable correlation functions to long times [3-8,10-13]. Sur-
prisingly, controlled numerical results for the spin-diffusion
coefficient of the three-dimensional Heisenberg model at in-
finite temperature are not available. Note, however, that there
is experimental evidence [14] that extrapolations based on the
short-time expansion tend to overestimate the numerical value
of D. In the following subsection we will use our method to
calculate the high-temperature value of D for a Heisenberg
model on a body-centered cubic lattice relevant to the experi-
ment of Ref. [14].

C. Spin diffusion on a body-centered cubic lattice including
next-nearest-neighbor exchange

The measurement of the spin-diffusion coefficient D in
the ferromagnetic insulator Rb,CuBr, - 2H,0O by Labrujere
et al. [14] seems to be the only published experimental de-
termination of D in a three-dimensional Heisenberg magnet
at high temperatures. The magnetic properties of the copper
ions in this material can be described by a ferromagnetic spin
S = 1/2 Heisenberg model on a body-centered cubic (bcc)
lattice with nearest-neighbor exchange [14,60] |J;]/2 ~ 0.49
K and next-nearest-neighbor exchange |J>|/2 =~ 0.29 K, as
illustrated in Fig. 2. The spin-diffusion coefficient was mea-
sured at two different temperatures 7 =20 K and 7 = 77
K, which are two orders magnitude larger than the energy
scales |J1|S? and |J»|S? associated with the exchange cou-
plings. Since the bcc lattice is a Bravais lattice, we can use
the formalism developed in this work to calculate the spin-
diffusion coefficient. To explicitly solve the integral Eq. (108),
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*
FIG. 2. Conventional unit cell of the body-centered cubic lattice
with lattice spacing a. The black dots represent the magnetic copper
ions in Rb,CuBry - 2H,O which are coupled by nearest-neighbor

exchange J; (red lines) and next-nearest-neighbor exchange J, (blue
lines). The nonmagnetic atoms of Rb,CuBry - 2H,0 are omitted.

we need the Fourier transform of the exchange couplings for
the geometry shown in Fig. 2,

J(k) = Ji(k) + J»(k), (131a)
Ji(k) = 87y, (131b)
Jok) = 61y (131c¢)
Here the normalized bcc form factor is
k.a k,a k.a
bee _ >z e el
Vi —cos(z)cos(z)cos(z), (132)

and the normalized cubic form factor y; can be obtained by
setting d = 3 in Eq. (122), i.e.,

Ve = %[cos(kxa) + cos(kya) + cos(k,a)]. (133)

As in the calculation of the dissipation energy A(k, 0)
for the cubic lattice described in Sec. IV B, we decompose
A(k, iw) into a finite number of form factors and solve the
resulting nonlinear equations for the amplitudes at w =0
numerically. For a bec lattice with nearest-neighbor and next-
nearest-neighbor exchange six independent form factors are
necessary to obtain a closed system of equations. Technical
details of the calculation are given in Appendix A. In the
simplified case of only nearest-neighbor exchange we obtain
D220 ~ 0.18|J;|a? for S = 1/2, which is roughly a factor of
5/6 smaller than our result on a cubic lattice for the same
value of J;. Our result for the ratio Dyc./Deypic agrees with
the corresponding ratio obtained by Morita [10,11] using a
different method. According to Ref. [14], in the experimen-
tally studied material Rb,CuBry4 - 2H,O the ratio of exchange
couplings is J/J; = 0.6; with this value we obtain on a bcc
lattice

DI~ 0.23)0)|a® = 0.461J] a2, (134)
where we have set |J{| = |J1]/2 to facilitate the comparison
[60] with Ref. [14], where the experimental result

Dexp ~ (0.31 £0.03)|J;|a* (135)
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FIG. 3. Spin-diffusion coefficient D, for a spin 1/2 Heisen-
berg magnet with nearest-neighbor exchange J; and next-nearest-
neighbor exchange J, on a bcc lattice at infinite temperature as a
function of the ratio J,/J;. The blue curve is our result obtained
from the solution of the integral Eq. (108) for the dissipation energy
A(k,0). The black cross at J,/J; = 0.6 with error bar marks the
experimental result of Labrujere et al. [14] obtained in the high-
temperature regime of the magnetic insulator Rb,CuBr, - 2H,O; the
shaded area represents the experimental uncertainty assuming that
the true value of J,/J; is not known.

is presented in terms of Jj. Our theoretical prediction
Eq. (134) for the high-temperature spin-diffusion coefficient
in Rb,CuBr4 - 2H,0 is about 30% larger than the correspond-
ing experimental result in Eq. (135). With the exception of the
method developed by Bennett and Martin [5] [which gives a
prefactor 0.40 instead of our 0.46 in Eq. (134)] other theo-
retical approaches [4,6,8] predict even larger values for Dy..
We conclude that at high temperatures the measured value of
the spin-diffusion coefficient in the ferromagnetic insulator
Rb,CuBry - 2H,0 is significantly smaller than all available
theoretical predictions.

A possible explanation for this discrepancy is that at high
temperatures the relevant value of the next-nearest-neighbor
coupling J; is not given by J,/J; = 0.6 but has a value some-
where in the range —0.4 < J,/J; < 0. As shown in Fig. 3,
in this range Dy, exhibits a broad minimum as a function
of J»/J; which is reasonably close to the experimental value.
Although this agreement might be accidental, a possible rea-
son for the deviation of J,/J; from the value 0.6 used in Ref.
[14] could be a significant temperature-dependence of J, in
the high-temperature regime probed in the experiment. This
hypothesis is supported by the fact that in the related com-
pound K,CuCly - 2H,0 a strong temperature-dependence of
the nearest-neighbor exchange interaction has been observed
[61], which decreases by a factor of five when raising 7' from
77 to 300 K. As a possible reason the authors of [61] identified
a low-lying optical phonon.

D. Anomalous spin diffusion in reduced dimensions

We now come back to the nearest-neighbor spin-S Heisen-
berg model on a hypercubic lattice and consider the case d <
2. Then it is not allowed to approximate A(q, iw) ~ A(q, 0)
in Eq. (129) because the frequency-dependence of A(q, iw)
is essential to cut the infrared divergence of the integrals. For
small frequencies |o| < |J |\/bT) the leading behavior of the
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relevant integrals can be obtained by expanding the integrands
to leading order in ¢,

A(g, iw) = Diw)g* + . . ., (136)
where

D(iw)
1B,
The leading singular part of the integrals in Eq. (129) can then
be obtained by approximating,

f(@)
q @]+ Adg, lw)

D(iw) = (137)

0) / —_— (138)
o] + D( i0)g?

where f(q) is any of the enumerators in Eq. (129). Note that

from Eq. (127) we find that the coefficient of order k? in the

expansion of A(k, iw) satisfies

2 1—yy
¢ 10| + A(g.iw)
(139)
From this expression we conclude that the singular part of
the spin-diffusion coefficient is completely determined by the
self-energy contribution 2¥,(q) — X»(q¢ + k) — X2(q — k) x
1/b;, to the high-temperature expansion Eq. (117) of the kernel
V(k, q) of the integral Eq. (108). In dimensions d < 2 the
leading singular part of the generalized diffusion coefficient
can therefore be obtained from the solution of

~ Cl2
D(iw)= — | ——F——+a
() 6b6/q|&)|+A(q, iw)

~ Clz
Pliw)=+— [ ——
(i) 60, /q @] + Dliw)g?

In terms of dimensionful quantities this can also be written as

J22

(140)

D(iw) =

/ (141)
lo] + D(lw)q

Consider first the case of one dimension, where the solu-
tion of Eq. (141) yields for the singular part of the generalized
diffusion coefficient

7 !
Pliw) = (14|4|| |> e’

To obtain the retarded spin-spin correlation function and the
dynamic structure factor, we should analytically continue
D(iw) to real frequencies, iw — w + i0, which amounts to
replacing |w| — —iw. The correct branch of the multi-valued
function (—iw)~'/? is determined by the condition that the real
part of D(w) must be positive to guarantee the positiveness
of the dynamic structure factor in Eq. (114). This implies a
complex anomalous diffusion coefficient,

1
MRSV
D =(—) |J R i
(@) (144|a)| la”\ 7 + sene
where the real part ReD(w) = ﬁImD(a))sgna) has the same
order of magnitude as the imaginary part. The corresponding
dynamic structure factor S(k,, w) defined via Eq. (114) has, as

a function of k,, a broad maximum at k, = k, determined by
the condition

d=1. (142)

(143)

D)k = o, (144)

50+ ®=1x103

0 0.02 0.04 0.06 0:08 0.1
kea/n

FIG. 4. Momentum dependence of the dimensionless dynamic
structure factor S(k,, w) = S(k,, a))|]|\/b>6 for small momenta
|k,| < 7 /a and frequencies & = a)/(|J|\/bT)) = 1073 (violet curve),
2 x 1073 (green curve) and 5 x 10~ (blue curve) of a spin 1/2
Heisenberg chain with nearest-neighbor exchange J at infinite
temperature.

implying
ke oc 0?3, (145)

In Fig. 4 we show the momentum dependence of the dy-
namic structure factor S(k,, w) for small momenta and three
different frequencies. The dynamic exponent z = 3/2 im-
plied by Eq. (145) and the superdiffusive singularity D(w) o
|w|~1/3 are in agreement with recent calculations for in-
tegrable isotropic Heisenberg chains with nearest-neighbor
coupling [16-24]. However, for nonintegrable chains with
larger spin S > 1/2 the situation is less clear [24]: some
authors obtained normal diffusion [22], recognizing broken
integrability as its cause, while others found that superdif-
fusion persists even for nonintegrable chains [19]. The fact
that for nonintegrable chains our approach yields the same su-
perdiffusive high-temperature spin dynamics as for integrable
chains might be related to the fact our integral Eq. (108) takes
only elastic scattering into account, as pointed out at the end
of Sec. III B. While for integrable chains this approximation
seems to be justified, in the case of nonintegrable chains it
might break down at very low energies.

Let us now consider the marginal case of d = 2 where the
integral in Eq. (141) has a logarithmic singularity which is cut
by the frequency |w|. Retaining only the leading logarithm we

obtain
n <D(ta))> |J|a? =2
a’lo| ) 24r"

The solution of this implicit equation can be expressed in
terms of the so-called Lambert W-function (product loga-
rithm) [62] which satisfies W (x) = In[x/W (x)]. Here we are
interested only in the leading logarithm, which can be ob-
tained by a simple iteration of the self-consistency Eq. (146).
After analytic continuation to real frequencies we obtain for
lw] < J,

_ le? /1 T
D(w) = |: In (m) + lzsgnw:|. (147)

D(iw) = (146)
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Note that for @ — 0 the real part of D(w) is logarithmically
larger than the imaginary part, whereas in d = 1 the real- and
imaginary part of D(w) in Eq. (143) have the same order of
magnitude.

V. DISSIPATION ENERGY AND DYNAMIC STRUCTURE
FACTOR FOR ALL WAVE VECTORS

So far we have focused on the leading term in the expan-
sion A(k, iw) = D(iw)k> + O(k*) of the dissipation energy
for small wave vectors which determines the frequency-
dependent spin-diffusion coefficient D(iw). However, the
solution of the integral Eq. (108) gives the dissipation energy
A(k,iw) and hence the dynamic structure factor for arbi-
trary wave vectors. The momentum dependence of A(k, iw)
is of particular interest for Heisenberg magnets with ex-
change interactions beyond nearest neighbors because in this
case A(k, iw) and the corresponding dynamic structure factor
S(k, w) defined via Eq. (113) can have characteristic features
in the first Brillouin zone which can be used derive con-
straints on competing exchange interactions. As far as we
know, this effect has not been noticed before. To illustrate
this effect, we have solved the integral Eq. (108) for A(k, iw)
in the low-frequency limit |w| < |J;| for a Heisenberg model
with nearest-neighbor exchange J; and next-nearest-neighbor
exchange J, on cubic lattices in dimensions d = 1, 2, 3. Tech-
nical details of the calculation are given in Appendix B. For
convenience we measure energies in units of |J; |\/l7 , defining

_ Ak, 0)

Ak, w) = , (148a)
11/By
w
o= , (148b)
FANZS
Sk, w) = Sk, w)|J;| by. (148c¢)

For a discussion of the dynamic structure factor S(k, w)
as a function of the wave vector k in the first Brillouin zone,
we note that for small frequencies and for ka = O(1) we may
approximate

o by Aglk, )

BT e

which allows us to deduce the qualitative behavior of S(k, w)
from A(k, @) and vice versa. In particular, we see that minima
of A(k, w) correspond to maxima of S(k, w), while maxima
of A(k, w) correspond to minima of S(k, ).

A. One dimension

Let us first consider the case d = 1, where according to
Eq. (B3) the dimensionless dissipation energy can be written
as

4
Alky, i) =Y [1 = cos(jk,a)]Aj(iew).
j=1

(150)

The dimensionless amplitudes A j(iw) at T = o0 can be
obtained analytically in the low-frequency limit by apply-
ing the approximation Eq. (138) to the integrals in the
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FIG. 5. Contour plot of the momentum-dependent part A(k,) of
the dimensionless dissipation energy defined in Eq. (151) for a J;-J,
chain with spin 1/2 as a function of the coupling ratio u = J,/J; in
the interval —1 < u < 1.

self-consistency Eqgs. (B4). In Fig. 5 we show the momentum-
dependent part

~ 2 L

= —|m|3 1

Aky) ﬁ|a)| ReA(ky, w + i0) (151)
of the dimensionless dissipation energy of a J;-J, chain with
spin 1/2 as a function of J,/J;. In a range of negative
coupling ratios starting at J,/J; = u, &~ —0.67 and extending
beyond J,/J; = —1, the function A(k,) exhibits a two-peak
structure, with one maximum located at k,a = 7, a second
maximum at kya < /2, and a minimum somewhere in the
interval [ /2, m]. If the coupling ratio u = J,/J; is smaller
than a certain value pu_ < —1 (not shown in Fig. 5), the
second maximum at k,a < /2 becomes the global maxi-
mum. However, for positive coupling ratio J,/J; > 0 such a
structure cannot be observed. For values of J,/J; larger than
the threshold p4 = 0.28 the peak at k,a = m evolves into the
global maximum in the interval [Z, 7] and a local minimum
at kya = . This nontrivial momentum dependence gives rise
to a two-peak structure in the dynamic structure factor, which
according to Eqgs. (148c¢), (149), and (151) can for small fre-
quencies |w| < |J;| and large wave vectors |k,a] = O(1) be
written as

_ 3bjlal
27 Aky)

The momentum dependence of the dynamic structure factor
in this regime is therefore given by the inverse of the function
A(k,) defined in Eq. (151), which we plot in Fig. 6 for three
different values of J/J;, chosen as —1,0, 1 to display all
qualitative features. Note that in Fig. 6 we draw a different
momentum range than in Fig. 4, so that the dominant peak for
small wave vectors is not visible. The lineshape in Fig. 6 ex-
hibits a second peak at short wavelengths, which moves from
kca = m for J,/J; = 1 to a value in the interval k,a € [%, ]
for J,/J; = —1. In the latter case the peak is surrounded by
two local minima which is a direct consequence of the two
maxima of A(k,) which emerge for J,/J; < pup, = —0.67.

S(ky, ) (152)

B. Two dimensions

Next, consider the case of two dimensions, where
the dissipation energy A(k,iw) exhibits a logarithmic
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FIG. 6. Inverse of the momentum-dependent part A(k,) of the
dimensionless dissipation energy defined in Eq. (151) for a spin 1/2
chain for large momenta k,a > 7 /4 and J,/J; = —1,0, 1 (green,
orange, blue). According to Eq. (152), for |w| < |J;| this quantity
is proportional to the dynamic structure factor.

dependence on the frequency w, which in the long-wavelength
limit can be expressed in terms of the anomalous diffu-
sion coefficient D(iw) defined in Eq. (146). The asymptotic
limit @ — 0 of A(k, iw) can be calculated analytically from
the self-consistency Eqs. (B14) for the amplitudes of its
Fourier expansion Eq. (B11), using again the approximation
Eq. (138). Since the logarithmic frequency-dependence sur-
vives also at short wavelengths, it is convenient to scale out the
frequency-dependence by defining the momentum-dependent
dimensionless dissipation energy:

- _ ReA(k, w + i0)

A(k)
I 203
n (it

(153)

Our results for A(k) in the first quadrant of the Brillouin zone
for different values of J,/J; are shown in Fig. 7. For suffi-
ciently large negative values of J,/J; starting at J,/J; = u, =
—0.52 and extending again beyond J,/J; = —1, the function
A (k) then exhibits two peaks atka = (0, 7) and ka = (1, 7).
Similar to the case of one dimension, for negative J,/J,
the global maximum is located at the corner ka = (i, ) of
the Brillouin zone for much larger values of |J;| than for
positive J>/J;. However, for J,/J; > 0 the function A(k) is
more sensitive to the presence of J,; at J,/J; = puy ~ 0.52
the wave vector where A (k) exhibits a maximum shifts from
ka = (;, ) to ka = (0, ). For o — 0 and large wave vec-
tors |ka| = O(1) the dynamic structure factor can be obtained

from
V25w

V247w | mAk)

S(k, (,()) =

(154)

As in one dimension, the momentum dependence of Sk, w)is
proportional to the inverse of A(k) which is plotted in Fig. 8
along the path ka = (0, 7) — (7w, w) for J,/J; = —1,0, 1.
One sees that for J,/J; =1 the short-wavelength peak is
located at ka = (7, ), while for J,/J; = —1 the dynamic
structure factor exhibits a maximum on the path connecting
the two local minima at ka = (0, ) and (7, 7).
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FIG. 7. Momentum-dependent part of the rescaled dissipation
energy A(k) at infinite temperature of a spin-1/2 J,-J, Heisenberg
model on a square lattice; see Eq. (153). The contour plots are
for J,/J; = —1,—-0.5,0, 0.5, 1 (counterclockwise, starting from top
left).

FIG. 8. Inverse of momentum-dependent part A(k) of the di-
mensionless dissipation energy for a spin-1/2 square lattice J,-J>
Heisenberg model at infinite temperature. The three curves repre-
sent the momentum dependence along the path k(p) = = (p, 1) for
J»/Ji = —1,0,1 (green, orange, blue). According to Eq. (154) the
curves are proportional to the low-frequency limit of the dynamic
structure factor.
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C. Three dimensions

In d = 3 the dimensionless dissipation energy A(k, @) has
a finite limit A(k, 0) for @ — 0, which can be obtained by
numerically solving the system Eq. (B20) of equations for the
amplitudes introduced in Eq. (B18). Our results for A(k, 0)
are shown in Fig. 9 as a function of k, k, > 0 in the plane
k, = m /a for different values of J,/J;. The main qualitative
features of the momentum dependence are similar to the be-
havior in reduced dimensions discussed above. For J,/J; < 0
the maximum of A(k, 0) at the corner R = Z(1, 1, 1) of the
Brillouin zone is more stable than for J,/J; > 0. Furthermore,
a two-peak structure emerges at R and X = 7(0, 0, 1) with
M = %(0,1, 1) remaining a saddle point. The degeneracy
point where the peaks at X and R have equal height is J,/J; =
u_ ~ —0.97, in contrast to low dimensions where u_ < —1.
For positive J,/J; a simple crossover from R to M takes place
at Jo/J1 = pny ~ 0.32. Using Eq. (149) the low-frequency

limit S(k, 0) of the dynamic structure factor becomes

~ by
Sk,0)= ————, (155)
7 Ak, 0)

which is shown in Fig. 10 for J,/J; = —1,0, 1 along the
closed path X —M — R —X. For J,/J; =1 we obtain a
second peak at R. However, for J,/J; = —1 the dynamic
structure factor exhibits local minima at R and X while as-
suming intermediate maxima on the paths X — R and M — R.

D. Common features in all dimensions

To conclude this section, let us summarize the robust
features of the dissipation energy A(k,iw) and the result-
ing dynamic structure factor S(k, @) at infinite temperature
which are independent of the dimensionality of the system.
For negative J,/J; these quantities are less sensitive to the
next-nearest-neighbor coupling J, than for positive J,/J;. In
particular, for J,/J; < 0 the corner of the Brillouin zone R =
(w/a,...,m/a) remains a maximum of A(k, w)-and hence
a minimum of S(k, w)—in a larger range of |J,/J;| than for
J»/J1 > 0. For sufficiently large negative J,/J; < pa(d) <0
the function A(k, iw) develops a second local maximum at a
wave vector Q distinct from R. The corresponding dynamic
structure factor S(k, w) then exhibits a local maximum some-
where on a path connecting R to Q. This structure also persists
for J,/J; < —1. In the case of J,/J; > 0 the position of
the global maximum of A(k, iw) changes at J,/J; = u4(d),
which leads for J,/J; > py to a short-wavelength peak of
Stk,w)atR = (7 /a, ..., w/a). We conclude that for positive
Jo/Ji > ui(d) the dynamic structure factor exhibits in all
dimensions a second peak at the corner R of the first Bril-
louin zone. This peak is absent for negative J,/J;, where in
the regime J,/J; < pa(d) < O the dynamic structure factor
exhibits local maxima along lines connecting local minima.

VI. SUMMARY AND CONCLUSIONS

In this work we have studied the spin dynamics of quantum
Heisenberg models with arbitrary spin-rotationally invari-
ant exchange couplings by means of a new variant of the
functional renormalization group approach to quantum spin
systems proposed in Ref. [25] and further developed in
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FIG. 9. Dimensionless dissipation energy A(k,w = 0) in the
plane k, = 7 /a of the spin-1/2 J;-J, Heisenberg model on a sim-
ple cubic lattice at infinite temperature. The contour plots are for
Jo/Ji = —1, ..., 1 in steps of 0.25 (counterclockwise, starting from
top left).
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FIG. 10. Dimensionless dynamic structure factor S(k,0) =
Sk, 0)|J; |\/bT) given in Eq. (155) for a three-dimensional spin-1/2
Heisenberg magnet in a simple cubic lattice with nearest-neighbor
exchange J; and next-nearest-neighbor exchange J, at infinite tem-
perature. The plot is along the closed path in the first Brillouin zone
X —M — R — X described in the text for J,/J; = —1,0, 1 (green,
orange, blue); see also Fig. 9.

Refs. [26-28]. In our quest to establish the SFRG as a useful
tool for calculating the spin dynamics of Heisenberg magnets
without long-range magnetic order we have encountered a
number of challenging technical problems which required
nontrivial modifications of the established FRG formalism
[35-39]:

(1) First, we have avoided the problem of the nonexistence
of the Legendre transform of the generating functional of
the connected correlation functions of an isolated spin by
introducing a hybrid functional I's[m€, 7] [see Eq. (29)]
where the static (classical) fluctuations associated with the
magnetization field m® are treated differently from the dy-
namic (quantum) fluctuations associated with the exchange
field #?. Our construction is motivated by the fact that in
the classical sector the Legendre transform of the generating
functional of static spin correlation functions is well-defined
even for vanishing exchange couplings. Moreover, we know
from previous calculations [25] that a Legendre transform to
classical propagator-irreducible vertices yields better results
for thermodynamic quantities than a formulation in terms of
interaction-irreducible vertices [41-43].

(2) Another technical subtlety of our approach is that
at finite frequencies we define the notion of irreducibility
with respect to the flowing inverse static propagator J, (q) =
le (¢) instead of the deformed bare exchange coupling. This
results in a convenient parametrization of G(k, iw) which is
crucial for implementing the restoration of ergodicity for any
finite value of the exchange couplings.

(3) To obtain a closed system of FRG flow equations for
the static self-energy and the irreducible dynamic susceptibil-
ity which is compatible with the Ward identities due to spin-
rotational invariance and the ergodicity for finite exchange
couplings, we had to take the flow of the three- and four-spin
vertices into account. We have done this with the help of
the Ward identity G, (k = 0, iw # 0) = 0 and the continuity
condition G (k # 0, iw — 0) = G (k, 0) due to ergodicity.

(4) By assuming that the static spin correlations can be
determined by some other method (such as a controlled high-

temperature expansion) we have been able to transform the
flow Eq. (99) for the irreducible dynamic susceptibility into a
closed integral Eq. (108) for the dissipation energy A(k, iw)
which determines the dynamic spin-spin correlation function
via Eq. (3).

Although we have preliminary evidence [44] that our in-
tegral Eq. (108) can be used to calculate the low-frequency
spin dynamics in the entire paramagnetic regime, in this work
we have focused on the high-temperature regime 7 > |/|
where the static spin-spin correlation function G(k) can be
obtained via a controlled expansion in powers of J/T. We
use the resulting G(k) as an input for our integral Eq. (108)
for the dissipation energy A(k, iw). We emphasize that our
approach does not make any a priori assumptions regarding
the existence of normal spin diffusion, nor does it rely on an
extrapolation of a high-frequency (short-time) expansion.

We have used our approach to calculate the spin-diffusion
coefficient D in three-dimensional Heisenberg magnets with
nearest-neighbor and next-nearest-neighbor exchange on sim-
ple cubic and body centered cubic lattices. Our numerical
results for D are by a factor of up to two smaller than older
predictions based on the extrapolation of the short-time ex-
pansion [3-5,7,10-13], although the experimental result for
D reported in Ref. [14] is still somewhat smaller than our
prediction. Furthermore, contrary to these older approaches
[3-5,7,10-13], our method predicts anomalous diffusion in
reduced dimensions d < 2. In particular, in d = 1 our result
D(w) o |w|~'/3 for the frequency-dependence of the gener-
alized diffusion coefficient agrees with recent investigations
of spin chains [16-24], at least in cases where convergence
of different numerical and analytic approaches has been
achieved. Finally, we have also used our approach to cal-
culate the full k-dependence of the dynamic structure factor
S(k, w) at high temperatures, which allows us to relate the
short-distance behavior of S(k, w) to the nature of competing
exchange interactions.

The methods developed in this work can be extended in
many directions. Although here we have focused on the so-
Iution of the integral Eq. (108) for the dissipation energy
A(k, iw) at high temperatures, we have preliminary evidence
[44] that Eq. (108) gives sensible results in the entire param-
agnetic regime. In particular, by solving this integral equation
for temperatures slightly above the critical temperature we
can investigate the critical spin dynamics of Heisenberg mag-
nets. Our method can also be used as an unbiased approach
to frustrated quantum spin systems where even the calcu-
lation of thermodynamics like the phase diagram poses a
serious challenge. In this context FRG approaches employing
representations of the spin operators in terms of Abrikosov
pseudofermions [63—68] have been successfully used to cal-
culate static ground state properties of quantum spin systems.
However, dynamic properties such as the dynamic structure
factor have so far not been calculated within the pseud-
ofermion FRG; in fact, at this point it is not clear whether the
corresponding technical problems will be solved in the near
future. Moreover, at finite temperatures the pseudofermion
FRG becomes inaccurate because it introduces unphysical
Hilbert space sectors. Although this problem can be ele-
gantly avoided using an SO(3)-symmetric representation of
the spin operators in terms of Majorana fermions [69], this
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pseudo-Majorana FRG exhibits an unphysical divergence in
the limit of vanishing temperature. In contrast, our SFRG
approach allows us to calculate the spin-spin correlation
function G(k, w) for vanishing and finite frequencies at all
temperatures where the spin-rotational invariance is not spon-
taneously broken. In fact, by numerically solving the flow
Egs. (99) and (101) we can in principle obtain both the static
spin self-energy X (k) and the dynamic dissipation energy
A(k, iw). Although the direct numerical solution of the flow
Egs. (99) and (101) is beyond the scope of this work, we
believe that the numerical solution of these equations will
be very rewarding because it will allow us to obtain the dy-
namic structure factor S(k, w) of frustrated spin systems at
low temperatures T < |J|, a quantity which is not accessible
with pseudofermion FRG methods [63—69].

For completeness it should be mentioned that the idea of
working directly with physical spin correlation functions is
also central to the equation of motion approach for quan-
tum spin systems pioneered by Bogolyubov, Tyablikov et al.
[70-72]. In this approach the infinite hierarchy of equations of
motion for the spin correlation functions is closed by some de-
coupling procedure for correlation functions involving more
than two spins, resulting in a closed self-consistency equation
for the spin-spin correlation function. A notable example is
given by the Tyablikov-decoupling [70-72] which for S =
1/2 Heisenberg ferromagnets amounts to approximating a
mixed three-spin correlation function by a product of a trans-
verse two-spin correlation function and the magnetization.
While in the ordered phase this seems to be a reasonable
approximation, it is only of limited use in the paramagnetic
zero-field limit, especially when we are interested in the dy-
namics. An important difference between our SFRG approach
and methods based on the decoupling of equations of motion
for spin correlation functions is that SFRG is formulated in
terms of irreducible vertices, which provide a more compact
parametrization of higher-order spin correlations and allow
for sophisticated truncation strategies compatible with the
constraints imposed by the Ward identities and the ergodicity
of the system.

Experimentally, the dynamic structure factor can be mea-
sured via inelastic neutron scattering. Moreover, the nuclear
spin-lattice relaxation rate in magnetic insulators measured
in nuclear magnetic resonance (NMR) experiments is propor-
tional to a weighted Brillouin zone average of S(k, wy ), where
the NMR frequency wy is usually much smaller than the
exchange couplings [73]. Our results for S(k, w) presented in
Sec. V can therefore be used to calculate the high-temperature
behavior of the NMR relaxation rate in Heisenberg magnets.
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APPENDIX A: HIGH-TEMPERATURE SPIN DIFFUSION
ON A BCC LATTICE

In this Appendix we give some technical details of the
solution of the integral Eq. (108) for the dissipation energy

A(k, iw) on a body-centered cubic lattice at T = oo includ-
ing next-nearest-neighbor exchange. The geometry is shown
in Fig. 2. The self-energy contribution to the relevant high-
temperature limit of the kernel V (k, ¢) in Eq. (117) can then
be written as

2%5(q) — To(g + k) — Ea(g — k)

2J}
= 5[ — v~ ]

]2
+ ?2[2%1 — Yotk — Va—k), (A1)

where the form factors y,:’“ and yy are defined in Egs. (132)
and (133). Analogous to Eq. (126), it is convenient to
introduce again the dimensionless quantities Ak, iw) =
Ak, iw)/(J1]\/by) and & = w/(|J1|,/b}). The solution of
our integral Eq. (108) can then be expressed in terms of six
independent form factors,

Ak, iv) = (1 — y) A (iw) + (1 — y) AT (iw)
+ (1 = i) A lio) + (1 = yH)AS (o)
+ (1= ) AF (i) + (1 — ya) A (i),
(A2)

where the off-diagonal form factor ykL can be obtained by
setting d = 3 in the general definition Eq. (128),

1
v = 3 [cos(kea) cos(kya) + cos(kya) cos(k.a)

+ cos(k.a) cos(k.a)], (A3)
and the mixed form factor y,}’cc'sc is given by
.1 3k k k;
J/zlm’sL — | cos [ 22 ) cos (22 ) cos [ =2
3 2 2 2
+(x<—>z)+(x<—>y):|. (A4)

Introducing a short notation for the ratio of exchange cou-
plings,

=D/,

the system Eqs. (120) of self-consistency equations then re-
duces to the following six coupled equations,

Ao (i) = — / S/ A— / 143y + 3,
: 36 Jy @] + Adg. iw)  Jy @] + Ag. i)

(A5)

— A (i) — 285 (i), (A6a)
ybcc
Arel(i) = —4 / SR B (AGb)
q @] + Ag, iw)
Abcc SC/ - 24 y‘IbCC,SC A6

At (i) = —12/ S
q 1] + Ag, iw)

bee
+24 / —1  _ AY(jw
“e T A 2 @
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+M_2/L
by Jq 1@ + Alg, iw)

1+ o + 47,
+ 642 f SRR L b (AGd)

¢ |0+ Alq, i)

1
Ario) = —12(1 + 4?) / T (ake)

¢ 1@ + Ag, iw)

A¥liw) = —3u2 / S E— (A6D)

: ¢ @] + Adq, io)

According to Eq. (111) the spin-diffusion coefficient D can
then be obtained from the term of order k” in the expansion
of Ak, 0) = |J1|,/B,A(k, 0) in powers of the momentum, so
that we finally arrive at the following expression for the spin-
diffusion coefficient in the limit of infinite temperature,

NG
- 6
+ A%(0) + 4451 (0) + 2&;‘:4(0)].

3. ~ 11 .
I:Z ?CC(O) + 3Al2)cc,|| (O) + ZABCC,SC(O)

D

(AT)

APPENDIX B: HIGH-TEMPERATURE SPIN DIFFUSION
ON HYPERCUBIC LATTICES

Here we give some technical details of the solution of
the integral Eq. (108) on hypercubic lattice in dimensions
d =1, 2, 3 for a Heisenberg model with nearest-neighbor ex-
change J; and next-nearest-neighbor exchange J;.

1. One dimension

Setting again u = J,/Ji, the Fourier transform of the ex-

change interactionind = 1 is
J(k) = 2J [cos(kya) + wcos(2k.a)]. B1)

At high temperatures the self-energy contribution to the kernel
V(k, q) in Eq. (117) can then be written as

2%5(q) — Xo(g +k) — Xo(qg — k)
2
= %(2 cos(gxa) — cos[(gx + ky)a] — cos[(gx — ky)al

+1*{2 cos(2g.a) — cos[2(qy + ky)al
— co8[2(gx — ky)al}).
The solution of the integral f]q. (108) in d = 1 can then be
written as A(k, iw) = |J1|byA(ky, iw), where the dimension-

less function A(ky,iw) can be expressed in terms of four
different form factors,

(B2)

4
Ak, iw) = Z[l — cos(jka)]A (iw).

J=1

(B3)

With the abbreviations fq = af”/” 44 and @ = w/(|J1|b})

—n/a 2w

the self-consistency Eqs. (120) for the amplitudes reduce to

5 . cos(qya)
A(iw) = 3D

0 Yqx |&)| + A(‘Ix’ l(l))
1 + cos(2g.a)

- e—— A3(la)),
g @] + Algy, iw)

(Bda)

A, (i) = w2 B cos(~2qxa)
3b, 0 1@ + Agy, iw)
cos(gxa) + 1

o [ ESEDF R ) 2R,
+2u %+ A, i) 3(iw) 4(iw)
(B4b)
_ 3q,
As(io) = —2p / __costigua) (B4c)
o &)+ Algy. i)
- 44,
Ayliw) = —p? cos(g.a) (B4d)

o 1@ + Agy, i)

For small frequencies |@| < 1 we obtain for the amplitudes
to leading order

- 1 3b}, 13
A(iw)=(4+ — +2 _ , B5
(i) ( T M)[2(1+4u2)|5)|} (B32)
2 / 1/3
- " 2 3b0
As(io) = I+ 4P Ap )| —20
(i) (3% MG )[2<1+4u2>|@|]
(B5b)
. 3b) 1
Aw) = 2u| —m8M B5
i) = =2 |:2(1+4M2)|5)|:| (B39)
3 N
As(iw) = — _— B5d
siw) =~ [2<1+4u2>|a>|} (B>

Substituting these expressions into Eq. (B3) and expanding
to second order in k, we obtain the anomalous spin-diffusion
coefficientind = 1,

;2
D(iow) = M[Al(id)) + 44, (o)
+9A5(i®) + 16A4(id)]

il +4e??7
T R

[ 7'
ST +45 2 2 2
Y | rtans

B6
144|w| (B6)

2. Square lattice

On a square lattice the Fourier transform of the ex-
change couplings with nearest-neighbor exchange J; and
next-nearest-neighbor exchange J, = uJj is

J(k) = 411 [y + ), (B7)

where now
Vi = 3lcos(kea) + cos(kya)l, (B8)
y,} = cos(kca) cos(kya). (B9)

The self-energy contribution to the high-temperature kernel
V(k, q) defined in Eq. (117) can then be written as

2%5(q) — 22(q +k) — Tao(qg — k)
JZ
= ?1[2)4, — Yark — Yok + W2V — Yook — Vo))

(B10)
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The solution of the integral Eq. (108) can be expressed in
terms of five different form factors,

Ak, io) = (1 — ) A (io) + (1 — yu) Al (iw)
+(1 = yHAS (i) + (1 — ysp)AL (i)
+(1 = &) Ay i (i), (B11)
where we have introduced the mixed form factor
v = Lcos(2k.a) cos(kya) + cos(k.a) cos(2kya)]. (B12)

The self-consistency Eqgs. (120) for the amplitudes can then
be written in the following form

A(iw) = —f~~—q
: 3b, J, 1ol + Adq. i»)

1+ y + 2y,
¢ 1@+ Ag, iw)

Ag(ia)) =-2(1+ 2#2)/|6)|+2ﬁ,
q )

2 1
3by, ¢ 10| + Ag, iw)

Yq 2 1
+8M/~~—. +4u /~~—
q 1@l + Ag, iw) ¢ 10| + A(g, iw)
)/Zq
+8M2/~~—. -
q 0]+ Ag, iw)

— Ay (iw), (B13a)

(B13b)

Asi(iw) — 2R} ,(iw),

(B13c)
)’2L
Al (iw) = —2u2/~—"., (B13d)
22 ¢ 10l + Adg, io)
_ yq(Z 1)
As(iw) = —su/f. (B13e)
2! ¢ 10l + Alg, io)

For small frequencies |w| < |J;| the solution of the above
equations is to leading logarithmic order given by

/1522
300 (7 o)

A(iw) = 2(L + 8 —|—4,u)

30, 21 (1 + 242)
(Bl4a)
3b) In (LL L2l
Alio) = —2(1 + 242 VAzlol T (B14b)
2 2 (1 4 2u?)
2
A%‘(ia)) = 2(8/,L +8,LL + y - 2>
VAN
3b0 In (m—ﬂlwl)
, (Bl4c)
270 (1 + 2u2)
AN
AL () = —2u2 | 2 i) (B14d)
2.2 2 (1 +2u2)
AN
Ao (i) = —8 b1 (i) (Blde)
2T =T T on (1 + 202)

The resulting anomalous diffusion coefficient on a square
lattice is

2
D(iw) = @ [A1(iw) + 4A)(i0) + 245 (io)
+8AL ,(iw) + 54,1 (iw)]

n \Jl\«/1+2p~)
«/2471|w|

V1 + 2u2d?

Keeping in mind that |J; |«/1 +2u? = \/le + 2]22, we see
that in the expansion of A(k, iw) to order k? the next-nearest-
neighbor interaction J, can be taken into account via the
following replacement of the nearest-neighbor interaction,
[Ji| = «/Jf + (d'/a)*J?, where d' is the distance between
next-nearest neighbors. From Eq. (B6) it is clear that this is
also true in one dimension. Effects depending on the sign of
Jo/Ji can be only seen by expanding A(k, iw) beyond the
leading order, implying that these effects are only visible for
momenta ka = O(1).

(B15)

3. Simple cubic lattice

For a simple cubic lattice with nearest-neighbor exchange
Ji1 and next-nearest-neighbor exchange J, = uJ; the Fourier
transform of the exchange interaction is

J(k) = 6J\[yk + 2014,

where the form factors y, and ykJ- are defined in Eqgs. (133) and
(A3), respectively. The self-energy contribution to the high-
temperature kernel V (k, ) defined in Eq. (117) is then

2%,(q) — Xa(q + k) — Xa(qg — k)

(B16)

Yoi)l-
B17)

J2
= 2% = Vosk = Yook + 28 QY = Vo —

At high temperatures, the solution A(k,iw) of the inte-
gral Eq. (108) can be expressed in terms of seven different
form factors. Hence, the dimensionless dissipation energy
Ak, iw) = Ak, iw)/(|]; |\/%) can be written in the follow-
ing form:

Ak, iw) = (1 — y)A(iw) + (1 — yu) Al (io)
+ (1= y) A i) + (1 = y£) AL, (i)
+ (1 =y ) Ag iy oliw)
+(1 - Vk(z . 1))Az,l,l(iw)
+(1- )/k(l’l'l))Al,l,l(iw),

where we have introduced three additional form factors

(B18)

Yt = Lcos(2ka) cos(kya) + cos(k,a) cos(2k,a)

fxo)+b ol (B19a)
y Y = Lceos(2ka) cos(kya) cos(k.a)

fxoe)+b ol (B19b)
y Y = cos(kwa) cos(kya) cos(k,a). (B19¢)
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FIG. 11. Spin-diffusion coefficient D for a spin-1/2 Heisenberg
model on a simple cubic lattice with nearest-neighbor interaction J;
and next-nearest-neighbor interaction J, as a function of J,/J; for
T = oo.

The self-consistency Eqs. (120) for the amplitudes are
1 + V2q + 4Vql

Ay(iw) = #/# + = ——
by Jq 16| + Ag, iw) ¢ &) + A, iw)
— Ay o(io) — Ay 1 (iw), (B20a)
Aliw) = =3(1 +4M2)/ Y (B20b)
2 q 1@ + A(g, iw)
7

At(iw) = <2u2 + 242 — 12> —
g b ¢ 1@ + Ag, iw)

Yq
+24p / —
¢ 10| + A(g, iw)

142
+12M2/~+~—VM.
¢ 10 + Ag, iw)

— Ag 1 oliw) — Ay (i)

— 24} ,(iw) — 2A,.1 1 (iw), (B20c)
1
Al (iw) = —6p* | —2—— Vg — (B20d)
’ q |0l + Ag, iw)
J/(2,1,0)
A2,1,0(1'60) = —24u ~q~—,, (B20e)
q ol + Ag, iw)
J/(2,1,1)
Api(io) = =24 [ —L—— | (B20f)
q |0l + A(g, iw)
y(l,l,l)
Ay (i) = —24u/~"~—,. (B20g)
q |w| + A(qs lw)

The spin-diffusion coefficient at infinite temperature is then
given by

J b 612 5 B - ~
D %[Al(o) +4A%(0) +2A5(0) + 8A} ,(0)

+5A51,00) + 645 11(0) + 341,11 (0)]. (B21)

In Fig. 11 we show a graph of D for spin § = 1/2 as a function
of u = J,/J,. The asymmetry with respect to & — —u has
also been found on a bcc lattice in Fig. 3. In contrast, in
reduced dimensions the anomalous spin-diffusion coefficient
D(iw) in Eqgs. (B6) and (B15) is symmetric with respect to
nw—=> —u.
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