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Spacer layer thickness and temperature dependence of interlayer exchange coupling
in Co/Ru/Co trilayer structures
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In this paper, we measure the bilinear interlayer magnetic coupling J1 between two Co layers coupled across
a Ru spacer layer over a wide range of spacer layer thicknesses from 0.4 to 3.4 nm and temperatures from 5 to
300 K. These measurements are fit using the interface-reflection interlayer magnetic coupling model in order to
determine coupling strengths and electron Fermi velocities within the spacer layer in the direction perpendicular
to the film interface for each of the critical spanning vectors. We find that there is a significant contribution to J1

from several different critical spanning vectors, all with different periods of oscillation with respect to the spacer
layer thickness. The results indicate that there is likely no exponential superexchangelike contribution to coupling
in our samples. The nonoscillatory antiferromagnetic coupling bias of J1 seen in thinner Ru spacer layers can
be explained solely by a linear combination of oscillatory Ruderman-Kittel-Kasuya-Yosida-like coupling from
several different critical spanning vectors, all with different periods of oscillation. The experimentally determined
electron Fermi velocities are found to be within the range expected from theoretical calculations. The results also
indicate that the interface-reflection model is capable of describing the bilinear interlayer exchange coupling in
our samples over the entire range of spacer layer thicknesses and temperatures measured in this paper.
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I. INTRODUCTION

Modern spintronics devices would not be possible with-
out the discovery of oscillatory interlayer exchange coupling
[1]. This is observed in thin-film structures composed of two
magnetic layers coupled across a nonmagnetic spacer layer,
and it oscillates between antiferromagnetic (AFC) and ferro-
magnetic coupling (FC) as the thickness of the spacer layer is
increased [2].

This oscillatory interlayer exchange coupling allows one to
engineer thin-film layer structures containing magnetic layers
coupled to one another with desired coupling strengths and
coupling direction (FC or AFC) as required by the applica-
tion. One such spintronic application is spin transfer torque
magnetic random access memory, which, at a basic level,
requires two magnetic layers a free layer and a fixed layer.
The direction of magnetization of the free layer is typically
stable in one of two directions which are mapped to 1 and 0
to store binary information. The direction of magnetization of
the fixed layer must remain fixed and not be easily rotatable.
This is so that it can act as a reference and allow for reading
and writing of information to the free layer.

Such a fixed layer is typically composed of a complex
structure of multiple magnetic sublayers that are either FC or
AFC coupled to one another [3–5]. In such a structure, the
most popular spacer layer material to achieve AFC coupling
is Ru(0001) because it results in strong-coupling strengths of
more than −3 mJ/m2 in sputter deposited samples [6,7].

Many theories have been created with the purpose of
describing bilinear interlayer exchange coupling including
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Ruderman-Kittel-Kasuya-Yosida (RKKY) [8], quantum con-
finement [9], free electron [10–12], and interface reflection
(also called quantum interference) [13,14]. For thick spacer
layers, all of the theories predict the same periodicity of bi-
linear coupling oscillations, and the theories only differ in the
prediction of the amplitude of the oscillations.

Stiles and Bruno [13,14] were able to show that the
interface-reflection theory can treat metal and insulator spac-
ers in a unified manner, which required separate theories
previously. This theory also correctly predicts experimental
findings, such as the dependence of coupling on the magnetic
layer composition and thickness, and its temperature depen-
dence for both conductive and insulating spacer layers. For
these reasons, it appears that the interface-reflection theory is
the ideal choice for predicting the physics of bilinear inter-
layer exchange coupling.

Previous studies comparing the various bilinear interlayer
exchange coupling theories to experiment have focused on
structures with magnetic layers coupled across spacer lay-
ers composed of Ag(100), Au(100), Cu(100), and Cr(100)
[15]. This is because these spacer layers have relatively sim-
ple Fermi surfaces, and when coupled across these lattice
planes, have only a small number of dominant so-called crit-
ical spanning vectors, resulting in relatively simple coupling
oscillations that can be easily compared with theory.

On the other hand, much less comparison between the-
ory and experiment has been performed for samples with
magnetic layers coupled across transition-metal spacers (other
than Cr), such as Ru(0001). This is because the Fermi surfaces
are so complicated, and the number of critical spanning vec-
tors are so large that a reliable comparison is difficult [14].
This lack of comparison makes it difficult to know how well
these theories describe coupling across Ru spacer layers.
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Additionally, most experimental studies looking at cou-
pling across Ru(0001) spacer layers report measuring cou-
pling oscillations that contain, or is, at least, dominated by,
only one period of oscillations [16,17]. This differs from pre-
dictions from the interface-reflection theory, which Stiles [13]
used to calculate that the coupling across Ru(0001) should be
a superposition of several oscillatory functions with different
periods of oscillations. He also showed that the magnitude
of the contribution from most of these oscillatory functions
are comparable to one another, which would mean that sev-
eral periods of oscillation, or beating, should be seen in
experiment [13].

Furthermore, coupling across Ru(0001) spacer layers has
a very strong AFC bias for thinner spacer layers that might
be explained by the standard RKKY-like oscillatory coupling,
or it may require a superexchangelike contribution to cou-
pling. [7,18,19]. The interface-reflection theory predicts that
a nonoscillatory superexchangelike bias can occur for thin
spacer layers if evanescent electron states are contributing to
the coupling. This could account for an AFC bias of coupling
that decreases exponentially with the thickness of the spacer
layer [14].

In this paper, we measure the bilinear interlayer exchange
coupling between two Co layers coupled across a Ru(0001)
spacer layer over a wide range of spacer layer thicknesses
from 0.4 to 3.4 nm using a vibrating sample magnetome-
ter (VSM). We then fit the data with the interface-reflection
model that includes a superexchangelike contribution from
evanescent states. From this fit, we determine if the interface-
reflection model accurately describes coupling in our samples,
and whether there is a superexchangelike contribution.

The interface-reflection model predicts that any superex-
changelike contribution to bilinear interlayer exchange cou-
pling caused by evanescent states will result in a coupling
strength that increases with increasing temperature. This is
opposed to RKKY-like oscillating coupling, which has the
opposite temperature dependence. This has also been ver-
ified by experiment [20]. This superexchangelike coupling
strength is predicted to decrease in magnitude exponentially
with the spacer layer thickness, meaning that it would be
most prevalent for the thinner spacer layers. Thus, if there is a
superexchangelike contribution to coupling, we would expect
to see a temperature dependence of the coupling strength that
increases with increasing temperature for the thinnest spacer
layers.

Therefore, to confirm the existence of a superexchangelike
contribution to coupling, or lack thereof, we investigate the J1

temperature dependence in our thinner spacer layer samples
with spacer layer thicknesses from 0.4 to 1 nm and a temper-
ature range of 5 to 300 K. We then fit these data using the
interface-reflection model.

II. THEORY

A. Interlayer exchange-coupling energy

The interlayer exchange-coupling energy Ucoupling de-
scribes the exchange interaction that occurs between two
magnetic thin films separated by a nonmagnetic spacer layer.
The coupling energy per unit area between the magnetic thin-

film interfaces separated by a nonmagnetic spacer layer is
given by [21,22]

Ucoupling,1 = −J1
M1 · M2

Ms,1Ms,2
+ J2

(
M1 · M2

Ms,1Ms,2

)2

, (1)

where J1 and J2 are the bilinear and biquadratic coupling
terms, respectively, the 1 and 2 subscripts correspond to each
of the two coupled magnetic layers, Mi is the magnetization of
layer i, Ms,i = |Mi| as is the case for ferromagnetic materials,
which is what is studied in this paper. The bilinear term favors
parallel (positive J1) or antiparallel (negative J1) alignment of
the separated magnetic layers. The biquadratic term can only
be positive and favors 90◦ alignment of the separated magnetic
layers. This paper will focus on the physics of the bilinear
term.

B. Bilinear interlayer exchange-coupling model

We will be using a model based on the interface-reflection
theory as described by Stiles and Bruno [13,14]. This model
considers the magnetic/spacer/magnetic trilayer structure as
a quantum well where the magnetic layers are the walls of
the well, and the spacer layer is the well itself. Interlayer
exchange coupling is caused by the electron states that exist
within the spacer layer material that reflect from the walls of
the well. The electron states that contribute to the coupling
oscillations are determined by the critical spanning vectors
from the Fermi surface of the spacer layer material. Critical
spanning vectors, which are shown for Ru(0001), in Fig. 3, are
vectors in the direction of the interface normal, that connect
two sheets of the Fermi surface that are parallel to each other
at the end points of the vector.

The interface-reflection model predicts that the coupling
term J1 has the form [13,14]

J1(d ) = Im
∑

α

Jα

d2
ei(qα

⊥d+φα ), (2)

where it is summing over contributions from different electron
states within the spacer layer, corresponding to each critical
spanning vector, labeled by α. d is the thickness of the spacer
layer, Jα is the coupling strength of the electron state, qα

⊥ is
the critical spanning vector, and φα is the phase of the electron
probability density after scattering from a wall of the quantum
well. Phase φα of each state α is defined by the topology of the
Fermi surface of the spacer layer at the end points of its critical
spanning vector qα

⊥. For thick spacer layers, φα is equal to
0, π/2, and π when the Fermi surface at this location is a
minimum, a saddle point, and a maximum, respectively [8].

Jα is equal to [13,14]

Jα = −
[

h̄

2π2
καvα

⊥

]
[|R↑

↑|2 + |R↑
↓|2 − 2|R↑

↑R↑
↓|]Fα (d, T ),

(3)

where κα is the radius of curvature of the Fermi surface of
the spacer layer material and vα

⊥ is the electron state velocity
within the spacer layer material in the direction perpendicular
to the magnetic/spacer interface, both calculated at the loca-
tion of the end points of the critical spanning vectors. R↑

↑ (R↑
↓)

is the reflection amplitude for a spin-up (spin-down) electron
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reflecting from the energy barrier formed when both magnetic
layers have magnetization parallel with one another in the up
direction.

Fα (d, T ) in Eq. (3) is the temperature dependence, which
is given by [23–25]

Fα (d, T ) = xα

sinh xα
, (4)

where

xα = 2πkBT

[
d

h̄vα
⊥

+ Dα
φ

]
, (5)

where kB is Boltzmann’s constant and h̄ is the reduced
Planck’s constant. The first term in the square brackets is the
temperature-dependence contribution from the spacer layer,
and Dα

φ is the temperature-dependence contribution from the
interface reflections on either side of the spacer layer. This
first term arises due to the fact that at finite temperatures,
the Fermi surface and critical spanning vectors are broadened.
This results in a distribution of critical spanning vectors with
slightly different lengths, which smooths out the J1 oscilla-
tions, leading to a reduction in their magnitude.

The second term, to first order, is equal to the derivative
of the phase shift caused by the reflection of electrons at the
interfaces with respect to energy Dα

φ = dφα

dE [23–25]. Like be-
fore, finite temperature broadens the Fermi surface, resulting
in coupling electron states with a distribution of energies.
If dφα

dE is large, this distribution of coupling electron states
will have relatively large distribution in their phase. When
added together, this results in a smearing of the J1 oscillations,
leading to a reduction in their magnitude.

For thicker spacer layers, the first term in Eq. (5), which
depends on d , becomes larger, making the second interface
term insignificant. Thus, for thicker spacer layers, one can
approximate the temperature dependence with only the first
spacer layer term. However, in our case, the spacer layers are
thin enough that the two terms are of comparable magnitude
and must both be included.

It must be noted that this model is only exact in the limit
of infinitely thick spacer layers. However, it has been shown
to be reasonably accurate for thicknesses greater than one
period of J1 oscillations [13]. Thus, we expect that when J1

measurements are fit using this model, the fit will be less
accurate for the measurements of the thinnest spacer layers.

C. Evanescent states

The interface-reflection model is able to describe coupling
across metallic and insulating spacer layers [14]. The only
difference is that the electron states contributing to coupling
have oscillatory wave functions for the metallic case and
exponentially decaying tunneling wave functions for the in-
sulating case. In the latter case, the critical spanning vector
qα

⊥ in Eq. (2) will be imaginary instead of real. This will result
in J1 that decreases exponentially with spacer layer thickness
rather than being oscillatory.

In a crystal, the allowed states are Bloch waves,

ψ (r) = u(r)eikr, (6)

where u(r) is a periodic function with the periodicity of the
crystal lattice. This holds true for any complex wave vector
[26]. For bulk crystals, states with imaginary wave vectors
cannot exist because they increase exponentially to infinity
and cannot be normalized. However, for finite systems, such
as the spacer layer here, the wave function is limited in space
and does not go to infinity. This allows states with imaginary
wave vectors to exist. Therefore, just like insulating layers,
metallic spacer layers can also have evanescent electron states
that contribute to coupling. Since these decay exponentially,
their contribution will be significantly smaller than that of the
real wave vectors and are usually ignored. However, we will
be measuring coupling across spacer layers as thin as 0.4 nm,
so there is a possibility for these to contribute.

If the wave vector is real, Eq. (2) becomes [13,14]

J1(d ) =
∑

α

Jα

d2
sin(qα

⊥d + φα ), (7)

and if the wave vector is imaginary, Eq. (2) becomes
[13,14,27]

J1(d ) =
∑

α

Jα

d2
eiφα

e−d/δα
⊥ , (8)

where δα
⊥ = 1/Im(qα

⊥) is the decay length and the term eiφα

determines whether the exponential favors ferromagnetic or
antiferromagnetic coupling where φα is no longer constrained
to the range of 0-π in the case of evanescent states, so this
term can be positive or negative [14,27].

One useful difference between coupling caused by electron
states with real and imaginary wave vectors is that they have
opposite temperature dependence. This can be seen easily
using the following relation:

ix

sinh ix
= x

sin x
, (9)

which, along with the fact that if the wave vector is imag-
inary, its velocity will be as well, is the same form as the
temperature dependence in Eq. (4). The different dependence
of J1 for oscillating and evanescent wave functions is shown in
Fig. 1. The opposite dependence allows for the determination
of which case is contributing to coupling by measuring the
temperature dependence of J1 in a sample. It should be noted
that each term, in the sum in Eq. (2), has its own temperature
dependence. Depending on the spacer layer thickness and crit-
ical spanning vector, the zero-temperature J1 could be positive
for some terms and negative for others. Since the measured
temperature dependence is the sum of all terms, this can
also lead to opposite temperature dependence than expected.
Therefore, in order to compare the model to experiment we
need to consider the sum of the individual temperature depen-
dence of each critical spanning vector.

D. Critical spanning vectors for the Ru spacer layer

In order to use the interface-reflection model as described
by Eq. (2), we first need to determine the critical spanning
vectors qα

⊥ for the spacer layer, which is Ru textured in the
[0001] direction in our case. In order to have the most accurate
values, we have determined the critical spanning vectors from
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FIG. 1. The temperature dependence of J1 when
the critical spanning vector is real using Eq. (4) with
d = 0.4 nm, vα

⊥ = 4 × 105 m/s, Dα
φ = 0 J−1 (orange) or imaginary

with d = 0.4 nm, vα
⊥ = i4 × 105 m/s, Dα

φ = 0 J−1 (blue).

experimental measurements of the Ru Fermi surface from
Refs. [28,29].

It is important to note that the critical spanning vectors
we are using are for bulk Ru. The Fermi surface of very thin
spacer layers may differ from that of bulk due to lattice strain
or other effects. However, as we show later in this paper, these
bulk critical spanning vectors appear to work quite well even
for thinner spacer layers, at least, for the Co/Ru(0001)/Co
trilayer structure that we are studying.

A selection of the critical spanning vectors for bulk Ru
in the [0001] direction are shown in Fig. 3 superimposed
on top of two mirrored slices of the Fermi-surface diagram,
labeled from a to h. The Fermi-surface diagram is based
on one from Ref. [29] that was calculated using the linear-
muffin-tin-orbital method (LMTO) and fit to experimentally
determined sheet radii obtained through de Haas–van Alphen
measurements in Ref. [28]. The labeled high-symmetry points
in the Fermi-surface diagram correspond to locations in the
Brillouin zone for Ru as shown in Fig. 2. The critical span-
ning vector lengths, along with their phase shifts φα are also
shown in Table I. Labels denoted with ∗ are approximated

FIG. 2. The Brillouin zone for hexagonal close-packed Ru with
relevant high-symmetry points labeled.

FIG. 3. A selection of single-sheet critical spanning vectors for
a Ru spacer layer in the [0001] direction. The orange arrows labeled
a–h are the critical spanning vectors. The vectors are superimposed
on top of two mirrored Ru Fermi-surface diagrams based on one from
Ref. [29], which have been created using the LMTO method and fit to
experimentally determined sheet radii obtained through de Haas–van
Alphen measurements in Ref. [28]. The high-symmetry points of the
Brillouin zone are also labeled and correspond to points shown in
Fig. 2. The values for these vectors can be found in Table I.

from the LMTO Fermi-surface fit to de Haas–van Alphen
measurements, whereas the others are obtained directly from
de Haas–van Alphen measurements.

Critical spanning vectors that correspond to evanescent
states cannot be measured experimentally in bulk material.
They have been measured in finite systems, such as photonic
crystals [30], however, those are for different materials than
we are studying here. As such, the only way to determine
the evanescent state critical spanning vectors is to simulate
the complex Fermi surface with methods, such as the LMTO
method, which is known to be only approximately correct
without fitting to experimental results. The complex Fermi-
surface sheets are also very intricate and numerous, leading to
a large number of imaginary critical spanning vectors [14].
Thus, instead of calculating the expected decay lengths of
any imaginary critical spanning vectors, we will leave the
decay lengths as fitting parameters and allow the fit to J1

measurements to determine the appropriate decay lengths.

TABLE I. A selection of single-sheet critical spanning vectors
and phase shifts for a Ru spacer layer in the [0001] direction corre-
sponding to the labeled vectors in Fig. 3. All of the qα

⊥ values were
obtained from Refs. [28,29] where they measured the values exper-
imentally as determined by the de Haas–van Alphen effect. Labels
denoted with ∗ are approximated from the LMTO Fermi-surface fit to
de Haas–van Alphen measurements, whereas the others are obtained
directly from de Haas–van Alphen measurements. Note, these critical
spanning vectors are for bulk Ru.

Label qα
⊥ (nm−1) φα (rad)

a∗
1 3.01 π

a∗
2 2.54 π/2

b 9.21 π

c∗ 1.61 π

d∗ 1.86 0
e 3.77 π

f ∗ 2.08 π/2
g∗ 6.89 π

h∗ 9.43 0
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FIG. 4. J1(d ) for a single critical spanning vector as deter-
mined by Eq. (2) with qα

⊥ = 9 nm−1, Jα = 1 mJ/m2, vα
⊥ = 8 ×

105 m/s, Dα
φ = 2 × 1019 J−1. The orange line is assuming a constant

Jα , and the dashed blue line uses a Jα that depends on the spacer layer
thickness due to F α (d, T ) at 298 K.

If there are any imaginary critical spanning vectors in
Ru(0001), the exponentially decreasing contribution to J1

means that one with the largest decay length will dominate.
Thus, we have chosen to approximate the sum of any possible
imaginary critical spanning vectors with a single exponen-
tially decaying term. For other metallic spacer layers with
simpler Fermi surfaces, such as Cu, Ag, and Au, most of
the imaginary critical spanning vectors, if any, have decay
lengths between 0.2 and 0.5 nm [14]. Therefore, we have
chosen to limit the range of the decay length fitting parameter
to between 0.1 and 1 nm and allow the fit to determine exactly
which decay length fits the data best. This term has the form

J1(d ) = Jα

d2
e−d/δα

⊥ , (10)

where we constrain 0.1 nm < δα
⊥ < 1 nm and we have also

assumed eiφα = −1 because the purpose of this nonoscillatory
term is to account for AFC bias seen when coupling is across
thin Ru(0001) spacer layers.

The interface-reflection interlayer exchange-coupling
model [13,14] only takes into account critical spanning
vectors within the same sheet. So, we have not included any
critical spanning vectors between two different sheets.

E. Fitting for room-temperature Jα values

We first fit room-temperature J1 vs d measurements using
Eq. (2) with the real and imaginary critical spanning vectors
from Sec. II D in order to determine Jα for each critical
spanning vector. From this fit, we also determine if there is
a contribution to coupling from evanescent states. In order to
simplify this particular fit and avoid overfitting, we perform
the approximation that Jα does not depend on the thickness
of the spacer layer. At finite temperatures, Jα does have a
slight dependence on the thickness of the spacer layer as can
be seen in Eq. (5). However, this dependence is insignificant
compared to 1/d2 in Eq. (2) and, therefore, can be neglected.
Figure 4 shows the accuracy of this approximation for J1 for

a single critical spanning vector with qα
⊥ = 9 nm−1, Jα =

1 mJ/m2, vα
⊥ = 8 × 105 m/s, Dα

φ = 2 × 1019 J−1. These are
all typical values for critical spanning vectors for a Ru(0001)
spacer layer. It can be seen that this approximation is fairly
accurate.

F. Fitting J1 temperature-dependence measurements

At zero temperature, Fα (d, T = 0 K) = 1, then as tem-
perature increases, Fα (d, T ) becomes larger or smaller. The
effect of this is to scale Jα from its zero-temperature value,
and as a result, modify the critical spanning vector’s contribu-
tion to J1. Because of this, the temperature dependence of each
term in Eq. (2) can be rewritten as the temperature dependence
multiplied by the zero-temperature coupling strength,

J1(d, T ) =
∑

α

Jα
1 (d, T = 0 K)Fα (d, T ), (11)

where

Jα
1 (d, T ) = Im

Jα (d, T )

d2
ei(qα

⊥d+φα ), (12)

which is just an individual term from within the sum in Eq. (2),
and we have explicitly showed that Jα (d, T ), given by Eq. (3),
is a function of the spacer layer thickness and temperature,
and Fα (d, T ) is given by (4). Because of the oscillatory or
exponential contribution to Jα

1 (d, T ), the weighting of the
temperature dependence of each term will change in mag-
nitude relative to one another depending on the spacer layer
thickness.

The contributions from any evanescent states are exponen-
tially decreasing functions, and they will dominate for thinner
spacer layers. Therefore, if they exist, we would expect J1 to
increase with temperature for thinner spacer layers, similar to
the blue line in Fig. 1.

In order to determine Jα
1 (d, T = 0 K) for use in Eq. (11),

we use the bulk Ru qα
⊥ values from Table I and the Jα

values obtained from the fit of room-temperature J1 data.
With these, we can calculate the room-temperature Jα

1 (d, T =
298 K) for each critical spanning vector. This is related to the
zero-temperature Jα

1 (d, T = 0 K) by the relation Jα
1 (d, T =

298 K) = Jα
1 (d, T = 0 K)Fα (d, T = 298 K). Thus, we can

determine Jα
1 (d, T = 0 K) by

Jα
1 (d, T = 0 K) = Jα

1 (d, T = 298 K)

Fα (d, T = 298 K)
. (13)

Additionally, instead of fitting the absolute temperature de-
pendence, we fit the ratio J1(d, T )/J1(d, T = 0 K). Consid-
ering all of this, our temperature-dependence fitting function
that we use is given by

J1(d, T )

J1(d, T = 0 K)
=

∑
α

Jα
1 (d, T = 298 K)

Fα (d, T = 298 K)
Fα (d, T )

J1(d, T = 0 K)
. (14)

Our fitting procedure is as follows: We first fit the room-
temperature J1 data as explained above and then use the
obtained results to determine Jα

1 (d, T = 298 K) for each crit-
ical spanning vector. Next, we plug those into Eq. (14) and
then use this equation to simultaneously fit the temperature
dependence of J1 for several samples with different Ru spacer
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FIG. 5. The thin-film structure of the series of samples sputtered
and studied in this paper. The thickness of the spacer layer d is varied
from 0.4 to 3.4 nm.

layer thicknesses. In these temperature-dependence fits, the
only fitting parameters will be vα

⊥ and Dα
φ as shown in Eq. (5).

III. EXPERIMENTAL

We have sputtered a series of samples with the structure
Ta(2.5 nm)/Ru(3 nm)/Co(5 nm)/Ru(d )/Co(5 nm)/Ta(4 nm),
where d is the Ru spacer layer thickness and is varied from
0.4 to 3.4 nm. The structure of this sample can be seen in
Fig. 5. For brevity, this series of samples will be referred to as
the Co/Ru/Co series. The Co and Ru thin films are textured
in the [0001] direction as confirmed by x-ray diffraction
measurements.

All samples are deposited by means of rf magnetron sput-
tering on oxidized Si substrates. The deposition conditions
and sample preparation are explained in detail in our previ-
ous work [31]. The demagnetizing dipolar fields in the two
magnetic layers are much larger than any fields perpendicular
to the film that arise from the surface and magnetocrystalline
anisotropies, forcing the magnetization to lie in plane. The
samples are polycrystalline, and rotated during deposition,
resulting in the in-plane magnetocrystalline anisotropy be-
ing averaged out causing the easy plane of the magnetic
anisotropy being on the plane of the sample. The samples are
also capped with 4 nm of Ta to protect the top magnetic layer
from oxidation or water absorption from the atmosphere.

The technique we use to determine J1 within our samples
only works if the two magnetic layers are not FC coupled.
There are some regions of spacer layer thickness where
coupling is FC, which we are unable to measure. As
such, we have decided to also include previously obtained
data for the FC regions from Girt and Richter Ref. [32]
for J1 measurements in samples with the structure 12 ×
[Co(0.25 nm)/Pt(0.9 nm)]/Co(1 nm)/Ru(d )/Co(1 nm)/4 ×
[Pt(0.9 nm)/CoCr(0.25 nm)] where the parts in square
brackets are multilayers. This series of samples will be
referred to as the Pt/Co/Ru/Co series. In this case, J1 is
the coupling strength of the two Co layers across the second
Ru layer, which has a thickness d , which is varied from
1.07 to 2.82 nm. Since the Co layer is grown on top of
Pt instead of Ru, it is possible that it has a strained lattice
that is slightly different than is the case for our samples. In
order to determine if this has a significant effect on coupling
oscillations, we have plotted our data along with data from

FIG. 6. Coupling strength J1 as a function of the thickness of the
Ru spacer layer for our Co/Ru/Co series of samples, blue circles,
and the Pt/Co/Ru/Co samples from Girt and Richter [32], orange
triangles.

Girt and Richter [32] in Fig. 6 where we can compare
measurements for overlapping data. The blue circles are the
Co/Ru/Co series data, whereas the orange triangles are the
Pt/Co/Ru/Co series data. It can be seen that the data from
the two different series of samples seem to differ only slightly
in the range from 1.7 to 2.3 nm. We have also confirmed that
Co/Ru/Co series samples with Ru layer thicknesses of 1.6,
2.4, 2.8, and 3.0 nm are all FC coupled, which is in agreement
with data for the Pt/Co/Ru/Co series. Thus, by increasing
the size of the error bars of the Pt/Co/Ru/Co data, both
series are in agreement within the uncertainty. Additionally,
we only use the Pt/Co/Ru/Co data within the range of the
first FC peak for spacer layer thicknesses from 1.1 to 1.7 nm.

With this combination of data from the Co/Ru/Co series
and Pt/Co/Ru/Co series, we are able to fit the coupling model
to data over a wider range of spacer layer thicknesses to better
evaluate its accuracy.

J1 in our samples is determined by measuring M(Hdc)
(magnetization as a function of applied external field), where
Hdc is the applied external field using VSM and then fitting
the measurements using our micromagnetics model. Details
of this model can be found in Refs. [33,34]. An example
of a typical M(Hdc) measurement using VSM (blue points)
along with a fit using our micromagnetics model (orange
line) is shown in Fig. 7. The sample measured is one from
the Co/Ru/Co series with a Ru spacer layer thickness of
0.4 nm. The sample temperature during the measurement was
300 K. The parameters obtained from the fit are J1 = −3.60 ±
0.01, J2 = 0.19 ± 0.01 mJ/m2, and so-called exchange stiff-
ness Aex = 1.7 ± 0.1 × 10−11 J/m.

The low-temperature measurements were performed with
the same VSM tool. We found that the Ms of Co did
not change significantly within the temperature range we
tested. This is expected considering its Curie temperature is
1400 K [35].

For the purpose of normalizing our J1 measurements to
zero temperature, we have assumed that the J1 obtained from
fitting 5-K data is equal to that of 0-K data. This is an
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FIG. 7. Example of typical M(Hdc ) data obtained using VSM
(blue points) along with a fit using our micromagnetics model (or-
ange line) [33,34]. The sample measured is one from the Co/Ru/Co
series with a Ru spacer layer thickness of 0.4 nm. The sample
temperature during the measurement was 300 K. The parameters
obtained from the fit are J1 = −3.60 ± 0.01 mJ/m2, J2 = 0.19 ±
0.01 mJ/m2, and exchange stiffness Aex = 1.7 ± 0.1 × J/m, Ms =
1350 ± 10 kA/m.

accurate assumption because the slope of F (d, T ) near 0◦ is
approximately zero.

IV. RESULTS AND DISCUSSION

The J1 coupling strength measurements for the combined
Co/Ru/Co and Pt/Co/Ru/Co series are shown in Fig. 8. The
orange line fit was obtained using Eq. (2) with the critical
spanning vectors listed in Table I along with an additional

FIG. 8. Coupling strength J1 as a function of the thickness of
the Ru spacer layer for the combined Co/Ru/Co and Pt/Co/Ru/Co
series of samples. The blue points are experimental data. The orange
line is the fit with Eq. (2) using critical spanning vectors from Table I.
The dashed green line is the fit using the same equation and critical
spanning vectors, except now the lengths of the critical spanning
vectors are allowed to vary in length corresponding to up to 2.5%
in the Fermi-surface sheet radius.

(a)

(b)

FIG. 9. Jα values with corresponding periods of oscillation
(2π/qα

⊥) obtained from fitting the J1 measurements in Fig. 8 with
Eq. (2) using (a) the bulk Ru critical spanning vectors shown in
Table I, and (b) modified critical spanning vectors allowing up to
2.5% change in the Fermi-surface sheet radius. Each Jα is labeled
with the corresponding critical spanning vector from Table I.

imaginary critical spanning vector corresponding to an expo-
nentially decaying nonoscillating contribution to J1.

The coupling strengths of each critical spanning vector Jα

obtained from both fits are shown in Fig. 9.
The fit shown in Fig. 8 has resulted in fitting parameters for

the exponentially decaying contribution as shown in Eq. (10 of
a decay length of 0.35 nm with a weight of Jα = 1 × 10−5 eV.
This coupling strength from a possible imaginary critical
spanning vector is five orders of magnitude smaller than the Jα

values from real critical spanning vectors as shown in Fig. 9.
This indicates that there is likely no exponentially decaying
superexchangelike contribution to J1 from evanescent electron
states in the samples measured.

The coupling strengths in Fig. 9(a) show that all but two of
the critical spanning vectors have a significant contribution
to the overall interlayer exchange coupling. This finding is
in qualitative agreement with the predictions made by Stiles
[13], which predicted significant contributions from wide dis-
tribution of critical spanning vectors as opposed to being
dominated by one or two. It should be noted that the periods
of oscillation for each of the critical spanning vectors in this
paper differ slightly from that of Stiles [13] because they
approximated them using the local-density approximation the-
oretical method, whereas we used values from experiment.
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It is remarkable how accurate this fit is considering that the
model is only exact for very thick spacer layers. Additionally,
we have used the critical spanning vectors obtained from the
Fermi surface of bulk Ru. On the thin end of the series, the
Ru spacer layer is only a few atomic layers thick. The 8%
lattice mismatch between Co and Ru on the (0001) plane is
very likely to compress the Ru crystallographic unit cell on the
plane and expand it along the c axis. This will result in a modi-
fication of the Fermi surface, causing it to deviate significantly
from that of bulk Ru. It will also result in a change in the
size of the Brillouin zone. Both of these factors could result
in critical spanning vectors that deviate from those obtained
from bulk Ru.

To account for these two factors, we have added an addi-
tional fit to the data, shown as a dashed green line in Fig. 8.
This fit is the same as that of the orange line, except that now
an additional fitting parameter has been added for each critical
spanning vector, allowing the length to be scaled in the form
qα′

⊥ = Cqα
⊥, where qα′

⊥ is the new critical spanning vector, C
ranges from 0.95 to 1.05, which corresponds to a maximum of
a 2.5% change in the perpendicular component of the radius of
the Fermi-surface sheet. This additional fitting parameter can
take into account small changes in the Fermi surface that is
expected for the samples studied. It can be seen that by making
this change, the fit is improved significantly, going through
almost all data points. However, it should be noted that the
additional fitting parameters that allow for a small variation in
the Fermi-surface radius increases the chance of overfitting.
Therefore, this result only serves as an indication that there
might be the potential to improve the fit further by taking into
account differences in the Fermi surface for thinner films as
compared to the bulk. The Jα values obtained from this new
fit are shown in Fig. 9(b). It can be seen that the period of
oscillation of the new qα′

⊥ critical spanning vectors differ only
slightly from those obtained from the Fermi surface of bulk
Ru as shown in Fig. 9(a).

For the remaining temperature-dependence results, the crit-
ical spanning vectors of bulk Ru with the unmodified Fermi
surface are used. Additionally, the critical spanning vectors
labeled as f and c, which have Jα = 7.2 × 10−6 and Jα =
6.0 × 10−6 eV, respectively, are approximately equal to zero
and, therefore, will not contribute significantly to the tempera-
ture dependence. Because of this, they are set to 0 and ignored
for the remaining temperature-dependence results.

Figure 10 shows the J1 temperature dependence for the
Co/Ru/Co series with spacer layer thickness ranging from
0.4 to 1 nm and temperatures from 5 to 300 K, normalized
to the zero-temperature J1. The circles are experimental data,
and the lines are a single simultaneous fit using Eq. (14).
This fit uses the Jα values determined from fitting the room-
temperature data in Fig. 8. However, as previously discussed,
that fit resulted in Jα = 1 × 10−5 eV for the exponentially
decaying evanescent state contribution, which is much smaller
than that of the real critical spanning vector states and is,
therefore, neglected. Thus, the fit shown in Fig. 10 contains
only temperature-dependence contributions from real critical
spanning vectors.

The same fit is also shown in a 3D plot in Fig. 11. This
3D plot gives a better visualization of how the tempera-
ture dependence changes with spacer layer thickness. The

FIG. 10. J1 temperature dependence for the Co/Ru/Co series
with spacer layer thickness ranging from 0.4 to 1 nm and temper-
atures from 5 to 300 K, normalized to the zero-temperature J1. The
circles are experimental data, and the lines are fits using Eq. (14).
The fits were performed on all measurements simultaneously so
that each fit has the same parameters. The colors corresponding to
spacer layer thicknesses are shown in the figure. See Fig. 11 for a
three-dimensional (3D) image of the fit.

vα
⊥ and Dα

φ parameters obtained from the fit are shown in
Table II.

The vα
⊥ values shown in Table II obtained from fitting the J1

temperature dependence agree within the approximate ranges
as calculated by Gall [36] using density functional calcula-
tions and the projector-augmented wave method. Specifically,
the critical spanning vectors a and b, which are located on
the “inner electron star” in the 3D Fermi surface (which can
be seen in the reference of Gall [36]), all have relatively low-
vα

⊥ values within the range of 1.5-5 × 105 m/s. The critical
spanning vectors d, e, and h, which are located in the outer

FIG. 11. A 3D plot of J1 normalized to the zero-temperature
value as described in Eq. (14) using parameters determined from
fitting J1 temperature-dependence data for the Co/Ru/Co series with
spacer layer thickness ranging from 0.4 to 1 nm and temperatures
from 5 to 300 K. This fit is the same fit shown in Fig. 10 except
in 3D.
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TABLE II. vα
⊥ and Dα

φ from Eq. (5) for each critical spanning
vector as determined from fitting the temperature-dependence data
in Fig. 10 using Jα values from Fig. 9 and bulk Ru critical spanning
vectors listed in Table I with the exception of critical spanning
vectors c and f because they were found to have an insignificant
contribution to coupling.

CSV label vα
⊥ ± 0.6 (105 m/s) Dα

φ ± 0.5 (eV−1)

a1 4.8 3.1
a2 1.7 0.0
b 2.9 4.1
d 8.0 6.4
e 6.0 5.4
g 9.8 0.0
h 15.9 6.6

“hole ring” in the 3D Fermi surface, have relatively large
vα

⊥ values within the range of 6-16 × 105 m/s. The h critical
spanning vector from our fit has the largest vα

⊥, which is also in
agreement with the calculations by Gall [36]. The relative dif-
ferences of vα

⊥ between the critical spanning vectors are also in
agreement with those calculated by Philip et al. [37] using the
Perdew-Burke-Enzerhof generalized gradient approximation
method.

The Dα
φ values shown in Table II obtained from fitting the

J1 temperature dependence have a wide range of values from 0
to 6.6 eV−1 depending on the critical spanning vector. These
values are the same order of magnitude as the 2.4 eV−1 that
Lee and Chang [24] found for Co/Cu/Co trilayer structures
with (111)-oriented Cu, which only has one critical spanning
vector, making it value a good indication of what to expect for
each individual critical spanning vector. Additionally, Castro
et al. [23] calculated using fully realistic tight-binding bands,
a theoretical value of Dα

φ = 4.53 eV−1 for one of the critical
spanning vectors in the Cu [001] direction for the Co/Cu/Co
trilayer structure. This is also the same order of magnitude as
the values obtained from our fit.

One large difference between our samples and that of Lee
and Chang [24] is that instead of only having one critical span-
ning vector, we have seven. This means that for our samples,
our fitting model has seven times more parameters than that
of a Cu spacer layer growing along the [111] direction. This
would allow our model to easily overfit any J1 temperature
dependence for a single spacer layer thickness or even a small
number of spacer layer thicknesses. In order to mitigate this
problem, we have measured the J1 temperature dependence of
seven different samples, all with different spacer layer thick-
nesses, and then simultaneously fit them all together. This
provides more data so that there is less probability of an overfit
and because the data are for different spacer layer thick-
nesses allow us to determine both temperature-dependence
parameters. Specifically, we have 14 fitting parameters fit to
49 measurements. The fact that our fitted Dα

φ values for our
individual critical spanning vectors are on the same order as
those obtained from a single critical spanning vector show that
our fit seems to be yielding reasonable results.

An important thing to note in Fig. 10 is that for the thinnest
spacer layer of 0.4 nm, J1 decreases with temperature. This is

(a)

(b)

(d)

(c)

FIG. 12. (a) is J1 for two different critical spanning vectors and
the sum of them together, described by Eq. (2). (b) and (c) show the
temperature dependence of each of the individual critical spanning
vectors, described by Eq. (4) weighted by the value of J1 at 1.6 nm
for each critical spanning vector. (d) shows what would be the actual
measured temperature dependence which is the sum of both contri-
butions (normalized to the zero-temperature value after being added).

made visually obvious in the 3D plot in Fig. 11. If there was an
exponential contribution to J1 caused by evanescent electron
states, it would dominate at the smallest spacer layer thickness
and cause J1 to increase with temperature. The fact that we do
not see this is another strong indication that the nonoscillatory
coupling seen in thinner Ru spacer layers is not an exponen-
tial contribution caused by evanescent electron states and is
instead caused by a linear combination of contributions from
oscillatory electron states.

The opposite temperature dependence of J1 seen in the
sample with a 0.6-nm thick spacer layer may look like an
indication of contributions from evanescent states, but as you
can see by the fit, it is well described without any evanes-
cent states. This is because we have a linear combination of
the temperature dependence of each of the critical spanning
vectors weighted by their zero-temperature coupling strength,
which is oscillating with spacer layer thickness. Depending on
the thickness, some of these weighting factors will be positive,
and some will be negative. This can lead to the temperature
dependence being in the opposite direction for some critical
spanning vectors relative to the others which can cause the op-
posite temperature dependence seen in our data. For illustra-
tive purposes, we have shown a simulation of this taking place
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for a system with only two critical spanning vectors, which
is shown in Fig. 12. In this figure, critical spanning vector
1 has parameters qα

⊥ = 9 nm−1, Jα = 1 mJ/m2, vα
⊥ = 1 ×

105 m/s, Dα
φ = 0 J−1, φα = 0, and critical spanning vector

2 has parameters qα
⊥ = 3 nm−1, Jα = 1 mJ/m2, vα

⊥ = 2 ×
105 m/s, Dα

φ = 0 J−1, φα = 0. The temperature dependence
was taken at d = 1.6 nm. (a) shows J1 for the two critical
spanning vectors and the sum of them together. (b) and (c)
show the temperature dependence of each of the individual
critical spanning vectors, described by Eq. (4) weighted by
the value of J1 at 1.6 nm for each critical spanning vector.
(d) shows what would be the actual measured temperature
dependence (normalized to its zero-temperature value). The
main requirement for an inverted temperature dependence
is that there are two or more critical spanning vectors with
comparable Jα magnitudes but with opposite signs, which will
occur periodically with spacer layer thickness for most spacer
layers that have more than one dominant critical spanning
vector.

The quality of the fit in Fig. 10 and the reasonable values
of vα

⊥ and Dα
φ obtained from it indicate that the model appears

to accurately represent the temperature dependence of J1 that
is occurring in our samples.

V. CONCLUSIONS

These results show that the bilinear interlayer exchange
coupling in our Co/Ru/Co series of samples with addi-
tional data from the Pt/Co/Ru/Co series of samples is well
described by the interface-reflection model including only

contributions from real critical spanning vectors obtained
from bulk Ru.

The Jα values for each of the critical spanning vectors
as determined from fitting thickness-dependent J1 mea-
surements, show that there are significant contributions to
coupling from several different critical spanning vectors with
different periods of oscillations. This indicates that bilinear
interlayer exchange coupling cannot be characterized by only
a single period of oscillations. This is in agreement with
predictions performed by Stiles in Ref. [13].

By fitting spacer layer thickness and temperature-
dependent J1 measurements using the interface-reflection
model, we have determined that there is likely no superex-
changelike contribution to coupling. The nonoscillatory AFC
bias of J1 seen in thinner Ru spacer layers appears to be caused
by a linear combination of oscillatory RKKY-like coupling
from several different critical spanning vectors.

The fit to temperature-dependent J1 measurements has re-
sulted in vα

⊥ for each of the critical spanning vectors that are
in approximate agreement with those calculated in Ref. [36].
The fit also resulted in Dα

φ values that are within the expected
range as reported for similar experimental measurements
and theoretical calculations. These results indicate that the
temperature-dependence theory we have used appears to be
capable of describing our J1 measurements.

These results also show that, at least, for cobalt layers
coupled across a Ru spacer layer, this model is able to describe
bilinear interlayer exchange coupling with spacer layers as
thin as 0.4 nm to a reasonable level of accuracy. This is despite
using a theory that is only exact for infinitely thick spacer
layers.
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