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We analyze the decay of spin waves into Stoner excitations in magnetic Weyl semimetals. The lifetime of a

mode is found to have a universal dependence on its frequency and momentum, and on a few parameters that
characterize the relativistic Weyl spectrum. At the same time, uniform Gilbert damping by Weyl electrons is
absent. The decay rate of spin waves is calculated perturbatively using the s-d model of itinerant Weyl or Dirac
electrons coupled to local moments. We show that many details of the Weyl spectrum, such as the momentum-
space locations, dispersions, and sizes of the Weyl Fermi pockets, can be deduced indirectly by probing the spin
waves of local moments using inelastic neutron scattering.
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I. INTRODUCTION

Weyl semimetals are condensed matter realizations of
massless fermions with a chiral relativistic three-dimensional
spectrum [1-3]. Topologically protected gapless Fermi “arc”
states on the system boundaries, and unconventional transport
properties such as the intrinsic anomalous Hall effect, set
Weyl semimetals apart from other weakly interacting conduc-
tors. One way to obtain a Weyl spectrum involves breaking
the time-reversal symmetry in a material that has Dirac quasi-
particles. The presence of magnetization, for example, will
remove the spin degeneracy of a Dirac node by splitting it into
a dipole of opposite-chirality Weyl nodes in momentum space.
Magnetism then becomes intimately related to the presence
of Weyl electrons. Alternatively, Weyl spectrum of itinerant
electrons can be created by a broken inversion symmetry, e.g.,
due to the crystal structure, and then coupled to magnetism if
the material possesses additional local moments or undergoes
a spin density wave instability. Some of these theoretical sce-
narios are slowly finding their actualization in experimentally
studied magnetic Weyl semimetals [4—13].

Here we analyze an important imprint of Weyl electrons
on the magnetic dynamics—the damping of spin waves via
particle-hole (Stoner) excitations. This basic interaction effect
reveals the defining features of the Weyl spectrum, relativity
and chirality. We will show that the lifetime of spin waves
exhibits a universal dependence on the mode frequency and
momentum which can be used to extract detailed properties
of the underlying Weyl electrons. By measuring the mode
lifetime throughout the first Brillouin zone, it is possible to
discern the locations of the Weyl nodes in momentum space,
their relative chiralities, slope of the energy versus momentum
dispersion, and the size of the Fermi pockets on the Weyl
nodes. The spin wave lifetime is obtained from the width of
the scattering intensity peaks in inelastic neutron scattering
experiments, provided that a sufficient energy resolution is
available and other sources of decoherence (thermal broad-
ening, disorder, phonons) do not mask the electronic source.
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Even though neutron scattering is a powerful Green’s func-
tion probe, its ability to detect fermionic quasiparticles is
normally ruined by the incoherent continuum of excitations
that can absorb an angular momentum quantum. Interest-
ingly, this problem is reduced in Weyl semimetals [14],
and fortunately it is also possible to indirectly characterize
the quasiparticles via collective excitations. The latter has
been achieved in the neutron studies of samarium hexaboride
(SmBg) [15,16], where the measured dispersion of a “spin
exciton” has revealed a nontrivial topology of the underlying
electronic quasiparticles. An energy gap protects the exciton’s
coherence in SmBg, but the gapless quasiparticles in Weyl
semimetals will generally induce ubiquitous damping of col-
lective modes. Such a damping can in fact reveal the existence
and properties of chiral fermionic quasiparticles. The Weyl
electron characterization through damping could potentially
overcome various issues that plague other approaches, such as
correlation effects in the case of band-structure calculations,
limited resolution in the case of ARPES, sensitivity to con-
ventional bands (that coexist with Weyl nodes) in transport
measurements, etc.

Closely related to the physics we pursue here is the ex-
tensively studied damping in metallic ferromagnets [17-29].
Stoner excitations provide a mechanism for the decay of
spin waves, and also typically give rise to Gilbert damping
[30]—the dissipated precession of uniform magnetization in
an external magnetic field. Many works have been devoted to
the calculation of Gilbert damping since it is possible to mea-
sure it by ferromagnetic resonance [31,32] and time-resolved
magneto-optical Kerr effect [33,34]. A careful consideration
of the relativistic electron dynamics has revealed that Gilbert
damping originates in the spin-orbit coupling and depends
on the electrons’ mass [25]. In the case of massless Weyl
electrons, we show here that Gilbert damping of a precessing
uniform magnetization is absent. However, spin waves un-
avoidably decay via Stoner excitations [35—40], which can be
phenomenologically described as nonlocal Gilbert damping
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FIG. 1. The plots of functions (a) f-* and (b) f!I for the damp-
ing rates of transverse and longitudinal spin waves, respectively,
contributed by the Fermi surfaces on a particular pair of Weyl nodes.
Solid red lines are for the same-chirality nodes, and the dashed blue
lines are for the opposite-chirality nodes. |2] = 1.4|u| was assumed
in this example.

[41-43]. We show that the damping shaped by Weyl electrons
also features “nonreciprocity”’—different polarization modes
that carry the same momentum have different damping rates.
This accompanies the nondissipative aspects of chiral spin-
momentum locking [44,45]. Spin wave “nonreciprocity” has
been anticipated in spiral magnets [46], magnetic interfaces
with a Dzyaloshinskii-Moriya interaction derived from the
Rashba spin-orbit coupling [47-53], and observed in sev-
eral experiments [54-59]. In the context of magnetic Weyl
semimetals, initial theoretical studies have been focused on
the domain wall dynamics [60,61].

The rest of this paper is organized as follows. Section II
presents the approach and the main results of the analysis,
focusing on the observable physical characteristics of the spin
wave damping by Weyl electrons. Section III is devoted to
the technical development of the damping theory. It contains
separate derivations of the dissipative terms in the effective
spin action (Sec. III A), spin wave damping (Sec. IIIB),
and Gilbert damping from the semiclassical field equation
(Sec. III C). The last section (Sec. IV) summarizes the conclu-
sions and discusses the broader applicability and limitations of
the damping theory.

FIG. 2. The plots of selected universal functions f featured
in the damping rate y ~ Q? f(vq/|2];x,). The functions are
parametrized by x, = 2|u/2|, with finer dashes corresponding to
larger Weyl Fermi pockets (solid lines refer to the Fermi level that
crosses the Weyl nodes). Shown functions include transverse (L 1)
and chiral (L") damping channels shaped by electron scattering
between equal-chirality (4) and opposite-chirality (—) Weyl nodes.
Longitudinal channels (|| ||) are similar to the shown transverse chan-
nels; compare with Fig. 1.

II. SUMMARY OF THE RESULTS

In this paper, we work with the s-d model of Weyl elec-
trons coupled to local moments. We perturbatively calculate
the dissipative non-Hermitian parts of the moments’ effective
action, which determine the rate y of spin wave damping. y
also depends on the magnetic order and the wave’s propaga-
tion direction relative to the magnetization, but it is always
controlled by the components of the universal damping rate
tensor given by
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for ferromagnetic local moments of spin magnitude S. The
upper indices a, b € {x,y, z} refer to spin projections. The
universal scaling functions f% are dimensionless, the factor
ag is the unit-cell volume of the local moment’s lattice, Jx
is the Kondo or Hund coupling energy scale, v and p are
the Fermi velocity and Fermi energy of the Weyl electrons,
respectively, and €2 is the real spin wave frequency (we use the
units 2 = 1). The spin wave momentum q in this expression is
measured relative to the difference AQ = Q,, — Q, between
the wave vectors Q,,, Q, of any two Weyl nodes in the first
Brillouin zone. Coherent collective excitations that span the
entire first Brillouin zone can be used to separately address
many pairs of Weyl nodes—by tuning the total wave vector
AQ + q to the vicinity of AQ. Representative functions f
for the Weyl nodes with finite Fermi surfaces are plotted in
Figs. 1 and 2.

We make analytical progress and gain valuable physical
insight through several idealizations: All Weyl nodes are as-
sumed to be identical, spherically symmetric, and living at the
same node energy. Their chiralities x,, = =1 and locations
Q,, are arbitrary (as long as the total chirality in the first
Brillouin zone vanishes). Under these conditions, only three
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FIG. 3. Examples of the damping rate map in momentum space
for (a) u # 0 and (b) u = 0 (with and without a Fermi surface of
Weyl electrons, respectively). Brightness depicts the rate y(q) of
spin wave damping, and the red crosshair shows the reference AQ
for the local wave vector q = 0. These are ¢, = 0 slices through the
full 3D map. Observing patterns of this kind in the full Brillouin
zone scan will indicate the Weyl-electron origin of damping and
reveal the complete set of AQ = Q,, — Q, wave vectors from which
the individual node wave vectors Q,, can be deduced (assuming,
for example, >, Q,, = 0). The bright outer ring, which shrinks
and closes when 2|u| < |€2|, originates in the interband electron
scattering and gains strength from the rapidly growing Weyl electron
density of states. Note that various details in these maps, such as the
anisotropy and ring sizes, will generally depend on the concrete spin
wave dispersion Q2(q + AQ), polarization, type and orientation of
magnetic order, as well as the chiralities and symmetries of the Weyl
nodes.

tensor components of
yizs — q/\agbynu’\l + (Sab _ qf\aqf\b)ynl&f_ + eabcqf\cynjl_nj_’ (2)

are finite and independent, !, -4 and y, -t
ponent of the unit-vector { || q along the direction a, and €
is the Levi-Civita symbol; repeated indices are summed over).
Here and throughout the paper || indicates the spin direction
parallel to the mode’s wave vector ¢, and L, |’ are the spin
directions which are perpendicular to q and each other. The
full expression for damping rates is presented in Sec. III B; in

Weyl ferromagnets, it becomes
Yom = Yo % Vi (3)

for the two polarizations of spin waves propagating along the
magnetization direction.

The essential utility of the universal damping comes from
its qualitative features that reflect the relativistic nature of
Weyl electrons. If the Fermi energy p lies away from the
energy of the Weyl nodes, Fermi surfaces will form. Then,
the spin wave damping rate is expected to exhibit a set of
minimums and maximums as a function of the frequency 2
and momentum q. The locations of these extremums depend
on the parameters that characterize the Weyl nodes: Fermi
velocity v, chemical potential u, and even their relative chiral-
ities x, x» = 1. Figure 3 demonstrates how the locations Q,,
of Weyl nodes can be extracted from the full Brillouin zone
map of the spin wave’s damping rate y(q). Once the wave
vectors Q,, are known, Fig. 4 illustrates how the observation
of enough extremums enables indirect measurements of the

(¢“ is the com-
abc

FIG. 4. A density plot of the collective mode damping rate
y(q, 2) induced by Weyl electrons. Thin solid green lines indicate
y =0, and the thin dashed green line indicates the local maxi-
mum of y. The thick dashed yellow line represents the dispersion
Q(q + AQ) of a hypothetical spin wave excitation (note that the
origin of the plot corresponds to the momentum difference AQ of
two Weyl nodes in the first Brillouin zone). The spin wave damping
rate will exhibit local minimums and maximums at the shown red
points, which are characteristic for the relativistic spectrum of Weyl
electrons. Resolving two of these points is enough for the determi-
nation of the Weyl Fermi velocity v and the chemical potential p
of the Weyl nodes addressed via AQ. Resolving three points allows
an independent verification that Weyl nodes are indeed responsible
for the damping. The two-parameter scaling of the damping rate (1)
across a range of energies is the most general signature of Weyl
electrons, and can be used to verify the Weyl-electron origin of
damping even if the visible spin wave dispersion does not cross any
of the shown characteristic points.

Weyl electron spectra on multiple Weyl nodes. The presence
of Weyl Fermi pockets also introduces spin-momentum lock-
ing into the damping rates (y,-1 % 0), but only on the pairs
of Weyl nodes with opposite chiralities. As a consequence,
the two spin wave modes that carry opposite spin currents at
the same wave vector q have different peak widths in inelastic
neutron scattering.

The above qualitative features of damping disappear if the
Fermi energy sits exactly at the Weyl nodes. However, the
damping rate then becomes a universal function of a single
parameter |2|/vq. This kind of scaling is a signature of the
relativistic Weyl electrons—it is caused by “interband” tran-
sitions in which an electron below the Weyl node is excited to
a state above the Weyl node. The plots of universal functions
£4% that appear in Eq. (1) at .« = 0 are shown in Fig. 2.

The magnitude of the damping rate depends on the
Kondo/Hund scale Jx which may not be known. How-
ever, the spin wave damping caused by Weyl electrons
is always related to the effective strength J of the Weyl-
electron-induced Ruderman-Kittel-Kasuya-Yosida (RKKY)
interactions among the local moments [45]:

1 2 /)2 SN2\
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FIG. 5. The Feynman diagram for two-spin interactions. Thick
external lines represent local moment fields and thin lines repre-
sent Weyl electron propagators. The two-spin couplings include
Heisenberg, Kitaev, and Dzyaloshinskii-Moriya interactions, but the
Weyl-electron origin of spin dynamics also creates a dissipation
channel in which spin waves decay into electron-hole pairs.

Here, A is the momentum cutoff for the linear Weyl spectrum,
|q] < A. Since agA < 1 and the characteristic features of the
universal damping appear near |2| ~ vq, the damping rates
are generally comparable to the energy scale J of the induced
RKKY interactions. For example, the RKKY energy scale in
the magnetic Weyl semimetal NdAISi [13] can be crudely es-
timated as J ~ 1 meV. Even if the damping rate is more than
an order of magnitude below this value of J, it should be de-
tectable with high resolution neutron instruments (a spin echo
spectrometer can achieve energy resolution below 10 ueV).

II1. DISSIPATION BY WEYL ELECTRONS

Here we calculate the Gaussian dissipative part of the
effective action for local moments which arises due to
their coupling to itinerant Weyl electrons. The nondissipa-
tive part of this action, computed in Ref. [45], captures
the induced RKKY interactions among the local moments:
Heisenberg, Kitaev, and Dzyaloshinskii-Moriya. All Gaussian
terms 8nT"*8n’ of the action obtain from a single two-point
Feynman diagram which involves momentum integration of
a singular function; the principal part of this integral yields
the interactions, and the contribution of its pole singularity
amounts to dissipation. We will focus only on the latter, fol-
lowing the procedure from Ref. [45].

The essential dynamics of local moments f; coupled to
conduction electrons ; is given by the Hamiltonian:

Hy = Hy [0+ Y et +Jx Y 0, yloyi.  (5)
k i

Both the local moments and electrons live on a lattice whose
sites are labeled by i, but we will immediately take the
continuum limit. Jx is the Kondo/Hund coupling, and ¢ is
the energy of itinerant electrons without interactions. The
term Hi, contains any intrinsic exchange and crystal-field
anisotropy that the local moments experience independently
of the itinerant electrons; we will neglect it here since we
are interested only in the dissipative influence of eleitrons
nan

on the moments. The basic two-spin correlations (A7) are

contained in the second-order Feynman diagram shown in

J

reg) = -

Fig. 5:
J> d*k q q
ab _ 'K i _ 41 a 9 b
Don(q) =i > (2n)4tr[Gm(k 2)0 Gn(k+2)a ] (6)
The Weyl electron Green’s functions,
Gu(w,K) = [0 — H,(k) + isgn(e, (k)01 @)

are treated as spinor matrices and refer to the low-energy elec-
tronic states near any Weyl node n whose wave vector in the
first Brillouin zone is Q,. From this point on, the wave vector
k will be a “small” displacement |k| < A from Q,, where A
is the momentum cutoff for the linear Weyl dispersion. These
low-energy electrons are described by the Hamiltonian,

Hn(k + Qn) = vXnUk - M, (8)

where p is the chemical potential that determines the Weyl
Fermi pocket character and size, v is the Fermi velocity,
and x, = %1 is the Weyl node chirality. The corresponding
spectrum is ex = £v|k| — . We assume for simplicity that
all Weyl nodes are spherically symmetric, share the same
node energy, chemical potential, and Fermi velocity, but have
arbitrary wave vectors Q,, and chiralities x, = %1 (as long as
the chiralities of all nodes in the first Brillouin zone add up
to zero). By this construction, the expression (6) is associated
with a pair m, n of Weyl nodes, and q is a “‘small” wave vector
measured relative to Q,, — Q,,.

We will carry out all calculations with the formal assump-
tion that no external or effective magnetic field is exerted on
electrons. Realistically, however, we are interested in mag-
netic Weyl semimetals whose local moments may carry a
nonzero net magnetization fiy that presents itself as an ef-
fective magnetic field B = —Jkfi to electrons. This is of no
concern because the correction of the spectrum (8) amounts
merely to a shift of the wave vector k — k — B/vy,. Hence,
an effective magnetic field only alters the locations Q,, of the
Weyl nodes in momentum space, which are arbitrary in our
formalism.

The full effective action matrix I" for local moments takes
contributions from all Weyl node pairs:

rQ )= Tm@Q-Qu+Qu Q). ©)

In this sense, it is possible to experimentally address a par-
ticular pair of Weyl nodes, or a set of pairs, by probing
the momentum space in the vicinity of Q ~ Q,, — Q,.. The
dissipative part of I',, will contain information about the
addressed Weyl nodes.

A. Calculation of the dissipative terms in the
effective spin Lagrangian

The calculation of (6) is lengthy, so we will only outline its
key steps. The trace has been evaluated before [45], and the
frequency integration yields

‘II% d%k Xab(Qv q; valk_%l + % -
2] @n) 20|k — 3]

. k) I (1 — vxmlk—3)
Q + UXm|k_

s==+1 %' - USX,1|k+%| + i0+F(SXm Xm)
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0 (u + vxmlk—11)

XP(Q, q;—vxmlk—2+ 2 — u. k)
_ | l_[

q
2UXm|k_§ —4]

Q — vxmlk—31 — vsxul k43| + 0T F ()00 — Xm)

0 — vxnlk+3)

X goxlk 3 - 5 - p k)
2uy,k + 9|

X @ v k+3 = § —

20 VXl 3] = Q= vk — 3| — i0TF (X, 5 Xm)

0(u + vxak+3)

u, k) l—[

20K+ 9] 11

Here, 6(x) is the step function, and two more functions,
X(Q, q;w,k) and F(sy,s_), are introduced to simplify
notation. The function X% (L2, q; w, k) obtains from the nu-
merator of the trace in (6). Introducing the Kronecker symbol
8% and the Levi-Civita symbol €%, we have

QZ
XQ, qo, k) = [(w +u)? — ﬂsab

a b
+ vZXan |:2<kakb - %)

_ 8ab Kk — qc_qc
4
Q C
+ ive®* |:Xm <w + 5 + M) (k“ — %)
Q T
— x|l w— = kK+—=1]]. 10
X(a) 2+M>< +2)} (10)

The function F(s4, s_) with s, s_ = %1 keeps track of the
infinitesimal imaginary terms in the denominators of Green’s
functions:

F(sy,5_) = sgn(vs+‘k+g‘ — M) - sgn(vs_‘k—g‘)
)sen(ak) + =

q? 2
T (ss —s)9<k2 + %~ lak| - (;) )

L

oy

S++S,

x [ (sen(u) +

At this point, we use the relationship

1
x £+ i0+
to isolate the dissipative processes that curb the x — 0 reso-

nances. Dropping all terms that involve the principal part P,
we get

re (q) = _ijTJI% Zsmsn/ d’k F'(Suns SmXm)
" (277)3 Xanlk_ %Hk"r‘ %|

= IP’}C F in8(x) (12)

SmsSn

Q
xX“”(SZ, q; vszm‘k_ g) + 5 u,k>

k+2))

q
(S(Q m m’k__)_ nAn
X + VS X > vSy X >

—vnlk+ 3| — Q — vs)ulk—3| — i0OFF (= x, sxm)]’

(

<[00 = vswtali=3))

k5]

We introduced F' = sgn(F) (1 — r,0), and the sum goes over
Sm, Sy = £1. All chirality factors yx,,, x, = =1 that appear
outside of X“» are clearly eliminated by the summation over
Sm» Sy, SO it will be convenient do define s_ = s,,x,, = &1 and
St = SyXn = £1. The Dirac § function in (13) imposes

Q

13)

- 0(“ — USuXn

2l =ofk=3]
k+ 2| —s_|k—=|=—. 14
sefkt 3| = fk=F[ == (14)
This pins the magnitude of the wave vector k to
P L el (15)
20\ Q2 —v2g2cos26’

assuming qk = gk cos @, and further requires satisfying one
of these two conditions:
Q2| > vg A
|| < vg|cosb| A

s+ = Esgn(2)
s+ =5_ =sgn(2cosh).

The wave vector k = (k, 6, ¢) integration in (13) is now
conveniently performed in the spherical coordinate system
referenced to the external wave vector q. The integral over
k = |k| is immediately solved due to the Dirac § function and
we merely need to replace the occurrences of |k| with (15).
The integral over ¢ affects only the quantities (10) leading to
[ dpX® = 27 v2X P with the following nonzero components:

il — 7‘1(_2“1( 2‘
548 2113

2
+xmxn|:k2(200s29 —-1)— %}

XJ_J_

k3]
k—~|lk+>
21T 3

= S48

q2

+ XmXn (—k2 cos? 6 + Z)
L = el _(m ‘k 9‘ n_‘k—ﬂ‘)i
i€ XmS+ +2 + XuS 1)

n <xms+‘k + g) - an_‘k - g’)kcose}. (16)

Here and onward, the upper spin indices denote directions ||
parallel to q, and two mutually perpendicular directions L, 1’
which are also perpendicular to q. Note that €+ implements
a chiral “right-hand-rule” relationship between the three spin
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directions. The integral over 6 is finite and conveniently eval-
uated numerically. At the end, we arrive at

J2Q?

Fab —
(D) =15

w1921 1]
fmn YR Sgn(“’v Q) ) (17)
vg  2|pl

where the dimensionless functions f = « + § have contribu-

tions from intraband « and interband § electron scattering.
Note that the interband processes require transferring an elec-

J

mn

1
a“:/ dE OQ2kAE — |x* — k> — 22 k?
0

X [(1— —Kk*€% + 27
XmXn \/(K_z + )\,2)2 — (2/()\-%_)2

1
alll = /0 dE 0(2k0E — x> — k% — A?|)k?

X[(l_ K2(2E2 — 1) — A2
K G 32 — 2k

mn

1
att = _ieHM’/ dE OQ2krE — |x* — k> — A*)K?
0

)9(1 -2+ (1 + XmXn

)9(1 - )") + (1 + XmXn

Xn) 8gn(§2)

y Z (Xom + Xn) sgn(i) + 5 (m —

= 2/Kk% 4+ A2 — 25k A

and

1
Bt = / dE Ok + 2% = 2k M€l = X2 k2| 1 = Xodtn
-1

1
ﬂ,‘ll',L:/ dg0(k* + 2% — 2kAlE] — ) i [ 1 = Yo
—1

1
Bt = etV / dEO(k* + A% — 2k h|E| — xP)k? Z
-1

The functions f% have the same characteristics in all
spin channels a,b € {LL, ||, LL'}. Their plots in Figs. 1,
2, and 4 illustrate that f° vanish for |Q| < v|q| — 2|u|,
2|lu| —vlq| > |2|] > v|ql, and |2| = v|q|. The dissipation at
|2] > max(2|ul|, v|q|) is dominated by the collective mode
decay into “high energy” particle-hole pairs which are excited
across the Weyl node. Outside of this frequency-momentum
region, the decay occurs by generating “low-energy” particle-
hole pairs across the Fermi surface on the Weyl node. This
“low-energy” channel is weaker, but has several features that
clearly reveal the relativistic properties of the Weyl spectrum.
Figure 4 shows how the minimums and maximums of a collec-
tive mode damping rate can be used to characterize the Fermi
surface of Weyl electrons.

B. Spin wave damping

The actual damping rate of collective excitations gener-
ally obtains from a mixture of spin channels. Consider the

tron between the two states whose energies have opposite
signs, and thus can occur only when |2| > 2|u|. Defining

2 1 — A2
P B Ik T
12| 12| 1 — 2282
with |€] = | cos 8], we have
242

O(rE — 1) |.
\/(K2+A2)2—(2Kxg)2> ?5 )}

K222 —1)— A2 )9% B 1)}
V327 — (2hE)? '

(kE — ) [6(1 — 1) — sOE — 1), (19)
2:2 | 42
i 0(1 —1). (20)
\/(KZ +22)° — (2ucrE)>
2(7e2 1y 22
LG Vit 0(1 — ).

\/(KZ +22)° — (2ucrE)?

§ (Xm — Xn) sgN(2)
2K+ A2 = 2scE|

(k|&] —sA)0(1 — A).

(

spin waves with wave vectors AQ + q in the vicinity of the
momentum-space separation AQ = Q,, — Q, between two
particular Weyl nodes. Let —SQ28°(q) be the intrinsic part of
the effective Lagrangian density 8 L¢s for the local moment
fluctuations én, excluding the spin Berry phase SQ8% (S is
the spin magnitude of local moments). This can contain any
intrinsic exchange interactions of the localized electrons and
crystal field anisotropies derived from Hj, in (5). The La-
grangian density terms induced by the itinerant Weyl electrons
are all contained in the I'* tensor (6). The principal part
of (6) yields a variety of induced RKKY interactions [45],
while its dissipative components % are collected in (17).
The presence of magnetic order in the ground state further
affects the dynamics of spin waves because the small spin
fluctuations én of low-energy modes must be orthogonal to
the local spins fi. This can be incorporated into the general
analysis [44], but we will simplify the discussion here by
considering only a ferromagnetic ground state fi(r) = fy. The
choice of a ferromagnetic order is well motivated because the
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dominant RKKY couplings induced by Weyl electrons are in-
deed ferromagnetic [45], and the intrinsic exchange (normally
antiferromagnetic) is weak for strongly localized f electrons
that produce magnetic moments in rare earth atoms. Beyond
this, there is no need to calculate the magnetic order and spin
wave dispersion by solving a concrete spin model—we are
interested only in the electron-induced damping rates, which
depend on the propagation direction and polarization of spin
waves relative to the magnetization, but do not depend on
any other mentioned details (at the pursued one-loop order of
perturbation theory).

The spectrum of damped spin waves is extracted from the
Gaussian part of the Lagrangian density in momentum space,

8Lt = (3n)*[SQ™ — SQE (q) + ay T(Q, @)]on”. (21)

The factor of a unit-cell volume @} converts the energy density

' to the energy per lattice unit cell, and the factor of % in the
Berry phase term €2 is appropriate for the local moments with
spin S = % Introducing

@
¢ =i — §° re (22)
to simplify notation, the spin wave modes obtain by diag-
onalizing PMP, where P% = §% — 4lal projects out the
high-energy amplitude fluctuations (keeps én L hg) and

M® = Qs® — gt (s — M pagh _ L1’ abe pe

9'9") = §"q"q" — g+ e g
is the matrix embedded in (21). An arbitrary choice of the
background magnetization fiy = Z reveals two polarization
modes dn = (6n*, 6n’) at q = ¢q,
Mg (2 2
ony o ( T L(fo ) = ) (23)
& =& )agy — & 4

with energies

I _ gLl
@ — gt + 5

where e = 1./(gT1 — gm)2(1 — §2)? — (2g774.)%. These
polarizations are generally elliptical, but become circular
sm o< (i, 1) with Qi = g™+ F igt for the modes that prop-
agate along the magnetization direction (q || fig), and linear
dny o q, on_ o ny x § with Q, = gll, Q_ = g*+, respec-
tively, for the modes that propagate in the plane perpendicular
to the magnetization (q L fip). The character and nondegen-
eracy of the two polarization modes is the hallmark of the
RKKY interactions induced through the spin-orbit coupling:
Dzyaloshinskii-Moriya (DM) in the case of circular polariza-
tions, and Kitaev in the case of linear polarizations.

Equation (24) has to be solved self-consistently since the
components of the g?” tensor on its right-hand side depend on
frequency, but the revealed form of its solutions ensures all
of the spin wave properties that we discuss. The two circular
polarizations at the same wave vector q || iy carry opposite
spin currents,

(1 —§7) £ 8e, (24)

J& = —igie (n”y*n° oc Flg-t Pgis,  (29)

so their energy difference Q1 = gt~ Figt" due to the DM
interaction implies spin-momentum locking. Note that the

DM interactions appears as g%bM o €% (ig®), so it does shift
the spin wave energy. The dissipative components g% o [
of g» impart an imaginary part y on the pole frequency £,
which was introduced in Sec. Il [e.g., Eq. (3)] and corresponds
to the damping rate. The signs of both ', Tl (4 £l >
0) indeed correspond to damping and not an instability, and
the chiral contributions are not large enough to overturn this at
any 2. The chiral dissipative part extracted from (17) is real,
E‘S’M o €?¢g¢, and hence introduces different damping rates
for the two circular spin waves. These qualitative conclusions
hold for the elliptical modes as well.

C. The absence of uniform precession damping

The universal dependence of (17) on |2|/vq introduces a
nonanalytic behavior at 2, ¢ — 0 in the damping terms £ of
the spin Lagrangian density. Therefore, one cannot strictly
expand £ in powers of 2, g to represent the dissipation as
a result of local processes. £ can be approximated by an
expansion only in special limits. Suppose the spin waves
have dispersion |Q2| = uqg at low energies (in the vicinity of
AQ = Q,, — Q, — 0 for intranode scattering m = n). If the
spin wave velocity u is smaller than the Weyl electrons’ ve-
locity v, then a sufficiently large g pushes the spin waves into
the regime || < vg — 2|u| where I'® = 0 in (17) and the
damping is absent (see Fig. 2). Alternatively, if u > v, then
the spin waves are in the regime |€2| > vq and their damping
at energies |€2| > 2|u] is approximately characterized by the
dominant local terms T+ ~ {(AQ? + Bg?) and a smaller
chiral term I ~ Dg. Together with the nondissipative
Hermitian terms ! the electron-induced part of the local
moments’ effective Lagrangian density (21) contains

Fab |Q2>vq %[(X(;l)ab + i(AabQZ+Babq2) +D€abcch2]’
(26)

with A = A8 — g9g? /¢?) + Allg°q /q* and likewise
for B“. By construction (6), I' = % x ! is the inverse time-
ordered correlation function,

(85°(q, ) 85°(q', @) = ix™(q, ) 8(q + q)8(QL+ Q),

for the small fluctuations s of the Weyl electron spins away
from their equilibrium magnetization. We will consider only
the simplest case of a collinear ferromagnet in the following
analysis. The equilibrium state will be given by the uniform
magnetization of local moments fip and electrons (sg) || fig.
A semiclassical representation of the local moment dy-
namics is given by the field equation for fi. The presence
of non-Hermitian damping terms in the effective action for
local moments prevents us from deriving the field equation by
considering the stationary action condition. Instead, we can
use linear response theory to learn about the semiclassical
dynamics. The retarded electrons’ spin correlation function,

x(q,2), 2=>0

,Q)=1 . 27
xr(q, 2) {x'(q,Q), Q<o 27
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is readily obtained from (26),

lab Q1> la
R D™ =5 (g™
+sgn(Q)[i(A QL +B"q’) + De™¢°Q], (28)

and then the response of electron spins to the local moment
field is

J
(8s°(r, 1) = = f dr'd’r xf e —v' 1 — 1) sn (', 7).
ay
(29

This follows from the Kondo interaction Jx in (5) between
the “perturbation” field n and the responding electrons spin
s = ¥ oy on a lattice site (the unit-cell volume a} effectively
converts the integration over coordinates to a summation over
lattice sites). Note that Xﬁb(q, Q) = (Xf{b)*(—q, —€2) is es-
tablished globally in momentum space (not necessarily in the
immediate vicinity of the Weyl node wave vector AQ) [62],
so that its inverse Fourier transform Xﬁ”(r, t) is real. The
thermodynamic potential for local moments is simply

F[A] = Jg (s)A. (30)

The local moment dynamics is driven by an effective “mag-
netic” field in units of energy,

SF[h
He(r. 1) = — Sﬁ(r[“t]) = —Jg(s(r.1)). 31)

Taking into account the Berry phase of local moments yields
the usual semiclassical field equation,

on
ot

= fi x Hey, (32)
with
a ~ _T. 50 _ J_l% 3 ab
He(r, 1) ~ —Jxiy 3 | ddtd”ér xg"(dr, 8t)
G

x 8AP(r + 8r, 1 + 81)
o s dstd’sr x2(sr, 8
~—Kn0—% td”dr xg (0r, 8t)

)
x [1 +8rv + ‘”5 4o ](Sﬁb(r, 7). (33)

This is seen to generate Gilbert damping which dissipates the
precession of uniform magnetization in typical ferromagnets,

M axH +1 on (34)
— =1 X =..-+0 X ag—,
9t eff O[Gaf

with the damping tensor,

J2
al = _é / dstd’sr &b (sr, 8t) 8t
J]% @/dﬁt e*iQ(St axgb(o’ Q)
21

a2 90

9
JZ 0 Im gt
ag 02

(35)

(q,§)=0

The real part of xgr(q, €2) generally does not contribute be-
cause it is an even function of Q2 at ¢ = 0 (even though it

diverges for gapless spin waves when 2 — 0). In the case
of damping induced by Weyl electrons, the imaginary part of
Xr becomes zero when 2|u| — vg > |2| > vq, following the
behavior of the time-ordered x ! = I'* that was discussed
earlier (see Fig. 4). This feature is a universal consequence of
the energy and momentum conservation shaped by the mass-
less relativistic Weyl spectrum. Therefore, xg is real in the
limit 2, ¢ — 0 and the decay of spin waves into Stoner excita-
tions of the Weyl electrons does not generate a uniform Gilbert
damping, «&’ = 0. By comparison, massive relativistic elec-
trons can induce uniform Gilbert damping [25]. Otherwise,
the damping of nonuniform spin configurations is a generic
consequence of spin wave decay and obtains from the gradient
expansion in (33).

The complete equation of motion for local moments can be
extracted from (32) and (33), but the nonanalytic frequency
dependence of the dissipative terms in (28) introduces (via its
Fourier transform) nonlocal relationships between the fields
n(t) at different times ¢. If one were to ignore this issue, or
approximate the nonlocal effect by couplings over small time
intervals, then a local field equation would be obtained from
the expansion indicated in (33). We will not pursue this here
any further.

IV. CONCLUSIONS AND DISCUSSION

We analyzed the dynamics of local magnetic moments
coupled to itinerant Weyl electrons, and focused on the dissi-
pation of spin waves via the continuum of Stoner particle-hole
excitations. We described this dissipation at the level of the
effective Lagrangian of local moments, or equivalently the
spin-spin correlation function (dynamic susceptibility). For
the spin waves at wave vector AQ + q and frequency 2
in the vicinity of the momentum difference AQ = Q,, — Qn
between two Weyl nodes, the damping rate is proportional to
Q? and a universal function of |$2|/v|q| where v is the Weyl
electron (Fermi) velocity. The presence of Fermi pockets with
chemical potential u introduces additional dependence of the
damping rate on |2/u|. If the Weyl nodes are well sepa-
rated in momentum space, then there is no cross-talk between
them in the damping rates and the momentum-space locations
of the Weyl nodes can be discerned from the wave vectors
near which the spin wave dissipation is locally maximized.
The Weyl-electron origin of dissipation can be experimentally
verified by the universal relativistic properties of damping
over a range of mode frequencies and momenta, while vari-
ous parameters of the Weyl spectrum can be extracted from
the momentum space locations of the characteristic damping
features (e.g., local maximums and points where damping
vanishes). The damping rates involving Weyl electrons also
generally exhibit “nonreciprocity” or chirality—the modes of
different polarizations that propagate at the same momentum
q have different lifetimes. We presented a procedure to obtain
the field equation for the semiclassical dynamics of the local
moment magnetization field, and found that the dissipation on
Weyl electrons does not give rise to uniform Gilbert damping.

One important conclusion of this study is that the spin
wave damping rate reveals the relativistic nature of Weyl
electrons—both through its universal dependence on |2]/v|q]|
and the places in momentum space where it vanishes. We
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computed the damping rate associated with Stoner excitations,
but similar results should hold for zero-spin particle-hole
excitations as well. Then, other kinds of collective modes
coupled to Weyl electrons, e.g., the phonons of the crystal
or a charge density wave, should exhibit similar universality
in their damping rates. This would be interesting to explore
in the future since inelastic neutron scattering is sensitive to
phonons as well.

The developed theory is very general within its limitations.
It makes no assumptions about the Weyl node locations, so
it applies to Dirac semimetals as well (where the opposite-
chirality Weyl nodes coexist at the same wave vectors). It
also makes no assumptions about the magnetic order, so it
holds for ferromagnets, antiferromagnets, and paramagnets,
with or without local spin anisotropy. In this regard, how-
ever, the damping rates of spin waves are affected by the
nature of magnetic order; we demonstrated the calculations
only in the ferromagnetic (and implicitly also the param-
agnetic) case. Analytical progress was made by simplifying
the model to spherically symmetric Weyl nodes that all live
at the same energy. This is the main limitation of the cur-
rent theory, although many implications of realistic model
extensions can be readily anticipated. Energy differences be-
tween the nodes are easily included by associating different
chemical potentials to the nodes, while a small Weyl node
anisotropy is expected to introduce a similar anisotropy in
the induced dynamics and dissipation of local moments. It is
possible that type-II Weyl nodes fall outside of this theory’s
domain, so their exploration is left for future study. We also
did not consider corrections due to finite temperature and
disorder.

The usefulness of this theory for the experimental char-
acterization of magnetic Weyl semimetals is guarantied in
principle, but depends on several factors in reality. The needed
level of detail is not easy to achieve in the measurements
of spin wave spectra. It requires at least very clean sam-
ples, low temperatures, as well as a sufficiently high energy
resolution and adequate statistics to resolve with low error
bars the energy/momentum dependence of the inelastic neu-
tron scattering. These aspects of measurements can always
be improved, but there are also material-related constraints:
Phonons, for example, must not coexist with spin waves at the
same momenta and frequencies. Still, some regions of the first
Brillouin zone should expose the electronic damping mecha-
nism and enable the proposed experimental characterization
of magnetic Weyl semimetals. On the purely theoretical front,
the present study was concerned with a basic but intricate
and important aspect of interaction physics in a topological
system. It plays a role in piecing together a broader picture
of magnetic correlated topological materials, which can host
nontrivial anisotropic magnetic orders [13], chiral magnetic
states and excitations [44], and possibly even exotic spin lig-
uids [63].
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