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Tangential finite-size scaling at the Gaussian topological transition
in the quantum spin-1 anisotropic chain
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Scaling aspects of Gaussian topological phase transitions in quantum spin chains are investigated using the
prototypical one-dimensional spin-1 XXZ Heisenberg model with uniaxial single-ion anisotropy D. This model
presents a critical line separating the gapped Haldane and large-D phases, with the relevant energy gap closing
at the transition point. We show that a proper tangential finite-size scaling analysis is able to accurately locate
the Gaussian critical line and to probe the continuously varying set of correlation length critical exponents.
The specific features of the tangential scaling are highlighted, in contrast to the standard scaling holding in
the Ising-like transition between the gapless antiferromagnetic Néel and gapped Haldane phases. Our results are
compared with field-theoretic predictions and available high-accuracy data for specific points along the Gaussian
line.
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I. INTRODUCTION

Quantum spin models have been vastly investigated in
several physical contexts. They are able to capture several
interesting properties and the outstanding collective behavior
of strongly correlated electron systems. Interacting quantum
spin models usually exhibit appealing physical phenomena,
especially in one dimension due to strong quantum fluctuation
effects. The one-dimensional Heisenberg model describes lo-
calized spins interacting through exchange coupling between
neighbors. It can be viewed as the strong-interaction limit of
a more complex Hubbard model for itinerant electrons [1].
The isotropic antiferromagnetic Heisenberg model can exhibit
distinct spin phases for integer or semi-integer spins. The
spin- 1

2 chain, for example, has a unique critical (massless)
ground state, with gapless excitations and power-law decaying
correlation functions. On the other hand, the spin-1 chain
has a disordered (massive) ground state, gapped excitations,
and exponential decay of correlations [1,2]. The fundamental
physical mechanism leading to such intriguing distinct be-
haviors was conjectured by Haldane in seminal works [3,4].
Nowadays, the Haldane phase is understood as a symmetric
protected topological phase of matter [5,6], characterized by a
nonvanishing string order parameter [7] and the full breaking
of a hidden Z2 × Z2 symmetry [8].

Since Haldane’s conjecture, quantum spin-1 chains, as
well as several closely related models [9], have been deeply
studied. A rich scenario of quantum phases of matter has
emerged with quantum phase transitions as a central issue
[10–12]. An interesting model which supports Haldane’s con-
jecture was introduced by Affleck, Kennedy, Lieb, and Tasaki
(AKLT) [13,14] in which the ground state was obtained ex-
actly by mapping the spin-1 operator into the subspace of
two half spins for each site. The ground state spin configu-
ration follows the construction of valence-bound states. The

AKLT model features a Haldane gapped ground state and can
be interpreted as a particular case of a more general spin-
1 model with bilinear and biquadratic interactions [15,16].
It features a phase diagram with ferromagnetic, dimerized,
Haldane, and critical phases. Another important class of quan-
tum spin model emerges when one considers two kinds of
anisotropies, “Ising” and uniaxial single ion, parameterized
by λ and D, respectively. The Heisenberg XXZ spin-1 model
with single-ion anisotropy was extensively studied [17–24].
Its zero-temperature phase diagram is well understood nowa-
days, featuring an interesting type of topological quantum
phase transition between two gapped phases (Haldane and
large D) separated by a gapless critical point that belongs to
the Gaussian universality class.

Indeed, the Gaussian class of topological quantum phase
transitions occurs in several interesting interacting quan-
tum spin model. However, the associated critical exponents
are not universal. As such, the determination of critical
Gaussian points and exponents is a challenging task. The
twisted boundary conditions technique [25], for example,
was implemented to determine the Gaussian critical point
that separates Haldane and large-D phases in a Heisenberg
spin-1 XXZ chain with single-ion anisotropy. This technique
explores the different values of eigenvalues of space inver-
sion and time-reversal operators in these phases [21]. The
so-called multitarget density matrix renormalization group
method (DMRG) [26] combined with finite-size scaling the-
ory [22] was also implemented in the same model, focusing
on the precise determination of the Gaussian critical line.
Another interesting aspect is the possibility to investigate
Gaussian quantum phase transitions in a one-dimensional lat-
tice model through a mapping transformation onto a Gaussian
free two-dimensional field theory, with deep connections with
conformal field theories [22]. Recently, a rhombic-type single-
ion anisotropy spin-1 model was considered [27,28], in which
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the phase diagram features three Gaussian critical points that
were investigated using the numerical density renormaliza-
tion group method [29,30] and the level spectroscopy method
[25,31,32], including a discussion of the topological aspects
of the Gaussian transitions.

From the quantum information perspective, several kinds
of measurements of entanglement were proposed to localize
critical points where the quantum phase transition occurs (see,
e.g., [33]). The fidelity approach [34,35] was implemented to
localize the critical points in anisotropic spin-1 model, for
which the fidelity susceptibility fails to detect the Gaussian
transition in the (D − λ) plane for λ = 0.5. The scaling be-
havior of von Neumann entropy has been used to determine
accurately the central charge of the associated conformal field
theory and the phase boundaries of the Gaussian topologi-
cal quantum phase transitions in several models, including
an extended Bose-Hubbard model [36–38], dimerized spin-1
XXZ with uniaxial single-ion anisotropy [39], and topolog-
ical aspects of spin-2 quantum chains [40,41]. An improved
error protocol method for the DMRG was introduced [42], for
which the critical Gaussian points were obtained with high
accuracy by exploring the von Neumann entropy behavior for
large system sizes. Recently, a finite-size scaling analysis of
the energy gaps in the vicinity of Gaussian transitions was
introduced [43,44] in prototype models of heterotrimetallic
compounds described as branched chains with alternate S =
1/2 and larger spins. It was shown that the closing of the gap
on both phases meeting at the Gaussian critical point requires
a proper tangential scaling form. Such adapted tangential
finite-size scaling analysis was shown to provide accurate
estimates of the Gaussian critical point, as well as of the
associated correlation length critical exponent.

In this work, we aim to detail the tangential finite-size scal-
ing technique and to demonstrate its capability and accuracy.
To reach this goal, we will apply this technique to investi-
gate the quantum critical behavior of the spin-1 Heisenberg
XXZ chain with uniaxial single-ion anisotropy. This model is
known to display a Gaussian critical line with continuously
varying critical exponents [19,21]. Using a proper tangential
scaling form of the scaled gap in the vicinity of the Gaussian
quantum critical points, we will estimate their location along
the full transition line. The collapse of data obtained from den-
sity matrix renormalization group calculations on finite chains
into the tangential scaling form will be used to provide accu-
rate values of the correlation length critical exponent along
the Gaussian line. The estimated correlation length critical
exponents will be compared to analytical predictions based
on the mapping transformation in an effective continuum O(2)
nonlinear field-theoretic nonlinear σ model [22,45], as well as
with previous high-precision numerical estimates [42].

II. MODEL AND THE O(2) NONLINEAR
σ MODEL MAPPING

The XXZ spin-1 chain with uniaxial single-ion anisotropy
is described by the following Hamiltonian:

H=
N∑

i=1

J
[(

Sx
i Sx

i+1 + Sy
i Sy

i+1+λSz
i Sz

i+1

)]+D
N∑

i=1

(
Sz

i

)2
, (1)

where Sα
i denotes the component α = x, y, z of the spin-1

operator. The parameters λ and D represent the Ising-like and
uniaxial single-ion anisotropies, respectively. The isotropic
antiferromagnetic exchange parameter J here will be fixed as
the energy scale (J = 1.0). The ground state phase diagram of
the above model features several quantum phases [21] such as
Haldane, large-D, ferromagnetic, and antiferromagnetic (AF)
Néel phases, as well as two critical XY phases distinguished
by their low-lying spin excitations [19]. Several kinds of quan-
tum phase transitions takes place. Here we feature three of
those: a Gaussian topological transition between the gapful
Haldane and large-D phases that have opposite parity sym-
metries, Kosterlitz-Thouless transitions between gapless XY
and gapful Haldane or large-D phases, and an Ising transition
between Haldane and Néel phases. Here we will focus on
the absolute positive (λ > 0 and D > 0) parameter space of
the phase diagram where the Haldane, large-D, and AF Néel
phases appear.

From the quantum field theory point of view, the lattice
spin-1 model described by Eq. (1) along the Gaussian transi-
tion critical line can be mapped onto a free Gaussian model
in Euclidean space by using the path-integral representation
of the partition function and spin coherent states [1]. The
procedure described in Refs. [22,45] leads to an effective
continuum O(2) nonlinear σ model (NLσM):

LO(2) = 1

2

[
1

v
(∂τ�)2 + v(∂x�)2

]
(2)

and

g = 1

s

√
2(1 + D + λ), (3)

v = s
√

2(1 + D + λ), (4)

with � being the bosonic field compactified in a circle of
radius 1√

g and v being the spin-wave velocity of the theory.
This procedure establishes a direct connection of the lattice
model parameters with g and v of the continuum model, which
allows us to compare numerical calculations for this lattice
model with the field-theoretic predictions. It is described by
the conformal field theory with central charge c = 1 [45] and
a nonuniversal radius compactification parameter K = π/g.
The cases K = 1/2 and K = 1 correspond to special self-dual
and free Dirac points [22,39]. The Kosterlitz-Thouless quan-
tum phase transition has K = 2, as demonstrated, for example,
in the Tomonaga-Luttinger regime of anisotropic spin chains
[46] after a phenomenological bosonization transformation
[47].

III. FINITE-SIZE SCALING: ISING
AND GAUSSIAN POINTS

The scaling behavior of excitation energy gaps is usually
explored in the determination of phase boundaries and critical
points in several quantum spin models [48]. However, some
challenging aspects are involved in nonconventional classes
of quantum phase transitions, such as Kosterlitz-Thouless and
Gaussian critical points. The scaling form of the excitation
gaps depends on the nature of the specific quantum phase
transitions. For example, the Ising class features a crossing
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behavior of the scaled excitation gap curves in the vicinity
of the critical point. On the other hand, the scaled excitation
gap curves behave differently at Gaussian critical points, pre-
senting a tangential scaling in the vicinity of the transition
[43,44]. Exploring these ideas, we develop a simple method
to determine the critical points and correlation length critical
exponents directly from the scaled excitation gap data for the
Gaussian class of quantum phase transitions. Data were ob-
tained by employing the tensor network [49,50] formulation
of the numerical DMRG method [29,30]. All data we report
were obtained using the open-source code from the Algo-
rithms and Libraries for Physics Simulations (ALPS) project
[51]. We considered periodic boundary conditions and several
system sizes up to N = 100. The bond dimension χ inherent
in DMRG calculations was chosen seeking truncation errors
of the order of 10−9.

In general, the spin gap Es is defined by

Es = E0(1, N ) − E0(0, N ), (5)

where E0(M, N ) is the ground state energy with N spins in
the total magnetization sector M = ∑N

i Sz
i . Since Haldane and

large D are gapped phases, we expect the spin gap to remain
finite in both phases. At the Gaussian transition point, such an
energy gap decreases as 1/N with increasing system sizes.

The AF Néel to Haldane phase transitions belong to the
Ising class of phase transitions. The proper quantity to explore
such a critical point is the neutral gap En, given by

En = E1(0, N ) − E0(0, N ), (6)

corresponding to the difference between the first excited and
ground state energies in the total magnetization sector M = 0.
Here the energy gap differs from the spin gap in the quan-
tum number M, calculating the energy difference in the same
magnetization sector for two low-lying eigenvalues. While
in the Haldane phase this energy gap remains finite in the
thermodynamic limit, it vanishes as 1/N at the Ising critical
point and faster within the AF Néel phase.

Exploring the vanishing behavior of the energy gaps at
the critical points for several systems sizes, we expect the
curves for scaled gaps 
s = NEs or 
n = NEn for diverse
systems sizes to meet only at the critical point. Exploring this
feature, we built the phase diagram of the model, as reported
in Fig. 1. Details of the scaling procedure will be given be-
low. Our results give reliable estimates of some representative
features of the phase diagram that have been previously raised
using other techniques [21]. For example, the extrapolation
to the tricritical point where the Gaussian and Ising lines
meet is (D � λ ∼ 3.0). Further, we could capture with good
agreement the critical point Dc = 0.3493 at the axis λ = 0
corresponding to the interface of Haldane, large-D, and XY
phases. This point represents a Kosterlitz-Thouless transition
between a critical phase and a gapped phase. We also got the
critical point λc = 1.1862 at the axis D = 0.0 for the Ising
curve separating Haldane and AF Néel phases.

A. Ising transition: Standard finite-size scaling

We start the description of the finite-size scaling technique
by recalling its main features that hold in the vicinity of the
usual Ising phase transition between Haldane and AF Néel

FIG. 1. Ground state phase diagram of the Hamiltonian (1) for
positive λ and D. Black circles denote the Gaussian transition critical
line between Haldane and large-D phases. Red squares represent the
Ising critical line separating Haldane and AF Néel phases.

phases. The correlation length ξ is the only relevant length
scale in the thermodynamic limit that diverges at the critical
point. For a fixed value of λ, the correlation length scales as
ξ ∝ |D − Dc|−ν , with the well-known critical exponent ν =
1.0. For finite chains, the single-parameter scaling hypothesis
implies that the relevant physical quantities will depend only
on the ratio ξ/N , at least in the vicinity of the critical point
where ξ � 1. According to this reasoning, data for the scaled
neutral gap 
n obtained for distinct values of chain sizes and
anisotropies will obey the universal scaling form:


n = f

(
ξ

N

)
= g[(D − Dc)N1/ν], (7)

with g(x → −∞) → 0. g(x → +∞) ∝ xν guarantees that
the neutral energy gap becomes size independent in the ther-
modynamic limit within the Haldane phase. To account for the
size independence of the scaled neutral gap at the transition,
one might have g(0) be a constant. At the critical point, the
first derivative of (7) scales as d
n/dD ∝ N1/ν . The main
steps of the above finite-size scaling analysis are summarized
in Fig. 4 below. These results were obtained for λ = 2.0 and
sweeping the values of D around the critical point. First, we
explore the crossing behavior of the scaled gap 
n curves for
several systems sizes, which allows us to identify the critical
point Dc = 1.2956(2) in Fig. 2(a). After that, we compute
the first derivatives of 
n at D = Dc for each chain size.
When plotted as a function of N in log-log scale, as shown in
Fig. 2(b), the slope gives the correlation length critical expo-
nent 1/ν = 1.0. Further, we evaluate the accuracy of the above
estimates of the critical point and correlation length exponent
by plotting the scaled neutral gap 
n versus the proper scaling
variable using the scaling form for the Ising universality class
given by Eq. (7). The collapse of all data from distinct chain
sizes into a single curve corroborates the estimated critical
parameter and the validity of the single-parameter scaling
hypothesis. The above procedure was performed along the
entire Ising critical line. As expected, the correlation length
exponent ν = 1 was found to be universal.
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FIG. 2. Standard finite-size scaling in the vicinity of the Ising-
like transition. In (a) we report the crossing behavior of the scaled
neutral gap 
n in the vicinity of the critical point Dc. In (b) we plot
d
n/dD at the critical point as a function of the chain size N , which
is consistent with the correlation length critical exponent 1/ν = 1.
(c) shows the universal scale invariant behavior of the scaled neutral
gap against the proper scaling variable, endorsing the accuracy of our
estimates of the critical point and critical exponent and the validity
of the single-parameter scaling hypothesis.

B. Gaussian transition: Tangential finite-size scaling

The Néel-Haldane phase transition discussed above in-
volves phases with null (AF Néel) and diverging (Haldane)
scaled neutral gaps as N → ∞. In contrast, the proper scaled

spin gap diverges on both Haldane and large-D phases. Scale
invariance still holds at the Gaussian transition point between
these phases. Therefore, a different scaling analysis will be
developed for this specific phase transition for which curves
of the scaled gap from distinct system sizes do not cross but,
rather, touch each other tangentially at the critical point.

Let us describe in detail the tangential finite-size scaling
procedure that is appropriate to characterize the Gaussian
critical point. Using the fact that the energy gap Es closes just
at the critical point, the scale invariant behavior of the system
at the quantum Gaussian critical point emerges naturally. We
will illustrate the method for two points along the Gaussian
line, namely, λ = 0.5 and λ = 2.0. The first step of the method
is to compute the scaled spin gap curves for several systems
sizes in the vicinity of the Gaussian transition point between
Haldane and large-D phases at a given λ by sweeping the
anisotropy D values. We can see in Figs. 3(a) and 4(a) the
typical behavior of the scaled spin gap. In each case, we used
data from several system sizes up to chains with N = 100
spins. The scaled spin gap 
s indeed exhibits a quite different
size dependence compared to the scaled neutral gap 
n for the
Ising transition. Instead of crossing at a single point, curves
from distinct system sizes touch tangentially at the critical
Gaussian point, as previously inferred. Therefore, not just the
scaled spin gap but also its derivative αs = d
s/dD become
scale invariant at the Gaussian transition.

The second step is to precisely locate the Gaussian critical
point computing numerically the first derivative of the scaled
spin gap αs as a function of the anisotropy parameter D, as
shown in Figs. 3(b) and 4(b). These are the quantities that
cross at the Gaussian critical point because the scaled spin
gap and its derivative are both scale invariant but the curvature
increases with the chain size. From the crossing at the critical
points, we estimate Dc = 0.6352(2) and Dc = 1.7582(2) for
λ = 0.5 and λ = 2.0, respectively.

To estimate the correlation length critical exponent, we
need to extract the scale invariance of the first derivative of the
scaled spin gap at the critical point from the single-parameter
finite-size scaling hypothesis. To account for this feature, the
finite-size scaling form of the scaled spin gap is written as


s = (D − Dc)α∗
s + f

(
ξ

N

)

= (D − Dc)α∗
s + g[(D − Dc)N1/ν], (8)

where g(x) is quadratic at x = 0, diverging for x → ±∞.
Here α∗

s = d
s/dD|c. This scaling form ensures that the first
derivative of the scaled spin gap at the critical point is scale
invariant. The second derivative, d2
s/dD2 = dα∗

s /dD =
d2g/dD2, computed at the Gaussian critical point becomes
proportional to N2/ν . The third step of the method, there-
fore, corresponds to plotting these values as a function of
the system size and extracting the correlation length critical
exponent, as shown in Figs. 3(c) and 4(c). Notice that the cor-
relation length critical exponent is nonuniversal, as expected
along the Gaussian critical line [21,22].

To complete the tangential finite-size scaling analysis,
we perform a data collapse to evaluate the accuracy of the
single-parameter scaling hypothesis (8). The proper quan-
tity to be rescaled is 
s − (D − Dc)α∗

s whose values, when
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FIG. 3. (a) shows the scaled spin gap 
s for λ = 0.5 considering
several system sizes around the Gaussian critical point. The tangen-
tial behavior at the critical point is evidenced. (b) features the first
derivative of the scaled gap αs. The crossing point identifies precisely
the Gaussian critical point Dc = 0.6352(2) and α∗

s = d
s/dD|c =
0.3967(6). In (c) the power-law behavior of the second derivative of
the scaled gap at the critical point allows us to extract the correla-
tion length critical exponent 1/ν = 0.430(4). In (d) we provide the
data collapse of scaled spin gap curves using the estimated critical
parameters onto the tangential finite-size scaling form.

FIG. 4. (a) shows the scaled spin gap 
s for λ = 2.0 considering
several system sizes around the Gaussian critical point. (b) features
the first derivative of the scaled gap αs. The crossing point identifies
the Gaussian critical point Dc = 1.7582(2) and α∗

s = d
s/dD|c =
−0.745(9). In (c) the power-law behavior of the second derivative of
the scaled gap at the critical point allows us to extract the correlation
length critical exponent 1/ν = 1.015(5). In (d) we provide the data
collapse of the scaled gap curves using the estimated critical param-
eters onto the tangential finite-size scaling form.
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FIG. 5. Inverse of the nonuniversal correlation length critical
exponent along the Gaussian critical line. Data from the tangential
finite-size scaling as well as the theoretical O(2) NLσM prediction
are shown. Error bars are of the order of the symbol size.

plotted against x = N
1
ν (D − Dc), will collapse onto an single

universal curve g(x) independent of the chain size. Such a
data collapse process is shown in Fig. 3(d) for λ = 0.5 and
Fig. 4(d) for λ = 2.0 using the critical parameters estimated
from the previous steps. The quadratic form of the scaling
function g(x) at x = 0 is a signature of the tangential finite-
size scaling.

IV. DISCUSSION

Although the spin gap tangential scaling functions slightly
differ along the Haldane to large-D transition line [see
Figs. 3(d) and 4(d)], the data collapse is successful and reveals
the Gaussian character of this critical line. The protocol put
forward in the previous section was implemented for a wide
range of λ values. Besides the location of the critical line
reported in Fig. 1, we also report the estimated correlation
length exponents in Fig. 5, as well as the scale invariant
derivative of the scaled spin gap α∗

s = d
s/dD|c along the
critical line (see Fig. 6). All results are gathered in Table I.

The estimated critical parameters Dc and ν can be com-
pared with available values found in the literature. In the
Gaussian free quantum field model (a NLσM), the com-
pactification radius parameter K values are important in the
determination of the universality class of a quantum phase
transition. It is related to the effective central charge c = 1 of
the Gaussian theory and the critical exponent ν = 1

(2−K ) [22].
Since K = π/g and g is given by Eq. (3), the Gaussian quan-
tum field theory predicts that the correlation length exponent
can be obtained if the location of the critical point is known,
i.e., that these two critical quantities are not independent.
Considering that the tangential finite-size scaling analysis
provides independent measures of Dc and ν, we tested the
NLσM prediction by computing the values of ν from the
expected values of the compactification radius K . The values
of 1/νNLσM predicted by the NLσM are also reported in Fig. 5
and listed in the last column of Table I. The agreement is
fairly good, supporting the mapping on the NLσM. The slight
deviations at the ends of the critical line may indicate either

FIG. 6. The first derivative of the scaled spin gap α∗
s =

d
s/dD|c along the Gaussian critical line. The values of α∗
s are pos-

itive for small λ, approaching α∗
s = 1/2 as λ → 0. Above λ = 1.4,

α∗
s becomes negative and diverges as the Gaussian critical line ends

at a tricritical point [22].

the possible presence of relevant corrections to scaling due to
the proximity of other critical points or that higher-order terms
in the field-theoretic functional are needed to fully capture the
critical behavior at the Haldane to large-D transition. As one
decreases λ, the inverse of the correlation length exponent
1/ν → 0, which indicates the Kosterlitz-Thouless nature of
the transition at λ = 0 with the compactification ratio K = 2.0
[21,22].

The derivative of the scaled spin gap along the Gaussian
critical line shows some features that deserve attention, as

TABLE I. Estimated values of the critical anisotropy Dc, first
derivative of the scaled gap at the critical point α∗

s , and inverse
of the correlation length critical exponent ν−1 obtained using the
tangential finite-size scaling hypothesis for distinct values of λ along
the Haldane to large-D transition. We also include the field-theoretic
prediction of the correlation length critical exponent ν−1

NLσM based on
the mapping on a NLσM given by ν−1 = 2 − π/

√
2(1 + Dc + λ).

For this, we used the estimated pairs (λ, Dc ).

λ Dc α∗
s ν−1 ν−1

NLσM

0.10 0.4025(4) 0.4831(1) 0.172(3) 0.1877(3)
0.20 0.4575(3) 0.4648(4) 0.238(6) 0.2745(1)
0.40 0.5741(2) 0.4221(2) 0.371(4) 0.4189(1)
0.50 0.6352(2) 0.3967(6) 0.430(4) 0.4797(1)
0.60 0.6982(3) 0.3691(2) 0.488(2) 0.5346(1)
0.80 0.8298(4) 0.3055(7) 0.592(1) 0.6301(1)
1.00 0.9685(2) 0.2262(2) 0.681(1) 0.7107(1)
1.20 1.1139(3) 0.1305(5) 0.760(1) 0.7797(1)
1.40 1.2658(1) 0.0046(5) 0.832(1) 0.8397(1)
1.50 1.3440(2) −0.092(8) 0.866(1) 0.8670(1)
1.60 1.4239(2) −0.161(6) 0.898(1) 0.8926(1)
1.80 1.5881(1) −0.381(8) 0.958(1) 0.9395(1)
2.00 1.7582(2) −0.745(9) 1.015(5) 0.9816(1)
2.20 1.9343(1) −1.171(9) 1.062(3) 1.0196(1)
2.40 2.1162(1) −2.015(6) 1.106(3) 1.0542(1)
2.59 2.2944(2) −3.62(8) 1.130(5) 1.0850(1)
2.80 2.4976(3) −10.5(9) 1.14(1) 1.1148(1)
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shown in Fig. 6. For small λ, α∗
s has small, but positive, values,

approaching α∗
s = 1/2 for λ → 0. Above λ � 1.4, the critical

scaled spin gap derivative changes sign and starts to diverge.
It is interesting to recall that the Gaussian line meets the Ising
critical line at a tricritical point. The precise location of the tri-
critical point is still not completely settled [21,22], although it
is estimated to be close to D = 3.20 and λ = 2.90. The tricrit-
ical point is described by the superposition of two conformal
field theories with c = 1

2 and c = 1.0 with the parameter K
approaching 0.5 from above [22]. The divergence of the scaled
spin gap derivative as one approaches the tricritical point can
be explored to obtain its precise location. However, due to the
proximity of Gaussian and Ising critical points, system sizes
larger than those considered in the present work would be
required to properly deal with possible corrections to scaling.
This specific topic will be left for a future larger-scale compu-
tational effort.

In order to assess the accuracy of the present estimates
of the Gaussian critical parameters based on the tangential
finite-size scaling hypothesis, we compare some of our re-
sults with available high-precision estimates. A variant of
the density matrix renormalization group method was used
to study the Gaussian critical point at λ = 1.0 and λ = 0.5
for the spin-1 model described by (1), reaching system sizes
up to N = 10 000 spins [42]. Exploring the peak behavior
of von Neumann entropy, the critical point for λ = 1.0 was
estimated to be Dc = 0.96845(8). The approach of the gap
to zero at Dc from both the Haldane and large-D sides pro-
vided ν = 1.472(4). Both estimates are fully compatible with
those found using the present tangential finite-size scaling,
namely, Dc = 0.9685(2) and ν = 1.468(2). It is interesting to
note that the field-theoretic relation νNLσM = 1/(2 − K ), with
K = π/

√
1 + D + λ, predicts the correlation length exponent

νNLσM = 1.407 for (λ = 1, Dc = 0.9685). For λ = 0.5, the
critical point was estimated in Ref. [42] to be Dc = 0.6355(6),
also in excellent agreement with the present estimate of
Dc = 0.6352(1). In this case, the previous estimate of the
correlation length exponent ν = 2.387(5) was not derived
using the scaling analysis of the closing gap but indirectly
through the estimate of the compactification ratio K . This
value is slightly above our present estimate of ν = 2.325(22)
based on the tangential scaling. Both estimates are above the
field-theoretic prediction νNLσM = 2.08 for (λ = 0.5, Dc =
0.6352). Our results are also compatible with the critical point
(λ = 2.59, Dc = 2.30) at which 1/ν = 1.15 reported in Ref.
[22].

V. CONCLUDING REMARKS

In summary, we revisited the spin-1 XXZ Heisenberg
model with uniaxial single-ion anisotropy, aiming to char-
acterize the Gaussian critical line using a specially tailored
tangential finite-size scaling hypothesis. To clearly expose the
distinct features of standard and tangential finite-size scaling,
we focused on two transition lines.

The first one was the Ising-like transition line between
the gapless AF Néel and gapped Haldane phases for which
standard finite-size scaling of the scaled neutral energy gap
holds. The usual scaling hypothesis was shown to provide pre-
cise estimates of the critical line and the universal correlation
length critical exponent ν = 1.

The second transition investigated in the present work was
between the gapped Haldane and large-D phases. It is a topo-
logical Gaussian phase transition with the relevant energy spin
gap closing at the critical point. The scaled energy gap and
its derivative at the critical point are both scale invariant. To
account for this specific feature, a tangential finite-size scaling
hypothesis was implemented to properly write the scaled gap
as a single function of the ratio between the chain size N and
the correlation length ξ ∝ |D − Dc|−ν .

Exploring the tangential scaling, we were able to locate the
Gaussian transition and to estimate the nonuniversal correla-
tion length critical exponent along the Gaussian critical line.
The estimated values of the critical exponents were shown
to be in good agreement with a field-theoretic prediction
based on a mapping to a nonlinear σ model [22]. The es-
timated Dc and ν values are also compatible with available
data from the twisted boundary conditions method [25,32]
and high-accuracy calculations based on large-scale DMRG
studies using chains up to N = 104 sites [42]. Considering
that the tangential finite-size scaling analysis requires data
from relatively small chains sizes, it appears to be a powerful
procedure that adds to recent efforts aiming to investigate
Gaussian topological quantum phase transitions in general
spin chains [52–56].
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