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Time-evolving Weiss fields in the stochastic approach to quantum spins
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We investigate nonequilibrium quantum spin systems via an exact mapping to stochastic differential equations.
This description is invariant under a shift in the mean of the Gaussian noise. We show that one can extend the
simulation time for real-time dynamics in one and two dimensions by a judicious choice of this shift. This can
be updated dynamically in order to reduce the impact of stochastic fluctuations. We discuss the connection to
drift gauges in the gauge-P literature.
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I. INTRODUCTION

Quantum spin systems play a ubiquitous role in condensed-
matter physics, with a myriad of applications ranging from
magnetic materials to quantum computers. Out of equi-
librium, they exhibit a wealth of phenomena, including
anomalous thermalization in low dimensions [1,2] and dy-
namical quantum phase transitions [3,4]. In one dimension
they permit especially strong links between theory and exper-
iment, as exemplified by the recent observation of dynamical
quantum phase transitions using a one-dimensional (1D)
chain of trapped ions [5]. They have also been instrumen-
tal in the development of numerical algorithms, including
time-dependent density matrix renormalization group and ten-
sor network approaches [6–8]. These methods have enjoyed
widespread applications in one dimension, but they are much
harder to apply to nonequilibrium problems in higher dimen-
sions. For state-of-the-art progress in this direction see, for
example, [9–12].

Recently, an exact mapping between quantum spin dynam-
ics and classical stochastic differential equations (SDEs) has
emerged based upon the Hubbard-Stratonovich decoupling of
the exchange interactions [13–19]. This stochastic approach
allows for the numerical evaluation of time-dependent quan-
tum observables in addition to analytical insights obtained
from the classical stochastic formulas [16–19]. A notable
feature is that it treats integrable and nonintegrable problems
on a similar footing, including those in higher dimensions.
It also offers opportunities for developing links to a diverse
body of phase space approaches which have attracted attention
in recent years [20–35]. In previous work [18], we showed
that the stochastic approach to quantum spins could be sig-
nificantly improved by a two-patch parameterization of the
Bloch sphere, in conjunction with a higher-order numerical
integration scheme. We also highlighted the link between the
onset of stochastic fluctuations and the non-Hermiticity of the
effective stochastic Hamiltonian. In this work, we show that
the method for real-time dynamics can be further improved
by the use of a dynamical Weiss field to reduce the effects of
non-Hermiticity and stochastic fluctuations [18]. In essence,

the Weiss field tracks the mean-field dynamics of the quantum
spin system, which facilitates more efficient sampling. Similar
conclusions have been drawn in imaginary time using saddle-
point techniques [19]. We demonstrate these improvements by
presenting results for the quantum Ising model in both one and
two dimensions, with up to 121 spins. In the Appendixes, we
discuss the link between the SDEs employed here and phase
space methods using gauge-P density matrices [20–22,24,36].
We show that it is possible to map between the two formalisms
using a suitable choice of drift gauge, previously considered
for bosonic systems [21,26,36–38]. We conclude with direc-
tions for future research.

II. STOCHASTIC APPROACH

Recalling the principal steps of Refs. [13,15–18], the
stochastic approach can be applied to a generic quadratic spin
Hamiltonian

Ĥ = −1

2

∑
i jab

Jab
i j Ŝa

i Ŝb
j −

∑
i

ha
i Ŝa

i , (1)

where Jab
i j is the interaction between spins at lattice sites

i, j and ha
i is an applied magnetic field. The spin opera-

tors Ŝa
i obey the canonical commutation relations [Ŝa

i , Ŝb
j ] =

iεabcδi j Ŝc
j , where a, b ε {x, y, z} label the spin components,

εabc is the antisymmetric symbol, and h̄ = 1. The interac-
tions in the corresponding time-evolution operator Û (t f , ti ) =
Te−i

∫ t f
ti

Ĥ (t )dt can be decoupled by performing a Hubbard-
Stratonovich transformation over auxiliary fields ϕa

j :

Û (t f , ti )=T

∫
Dϕ e−S[ϕ]+i

∫ t f
ti

dt
∑

ja �a
j Ŝ

a
j , (2)

where T denotes time ordering. Here, Dϕ = ∏
ja Dϕa

j , and

�a
j = 1√

i
ϕa

j + ha
j ∈ C plays the role of an effective, complex

magnetic field. The path integral weight

S[ϕ] = 1

2

∫ t f

ti

dt
∑
i jab

ϕa
i (J−1)ab

i j ϕ
b
j (3)
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is referred to as the noise action [17] since it allows one
to interpret the fields ϕa

j as Gaussian distributed random
variables. The problem therefore reduces to the dynamics
of individual spins coupled to noisy complex fields, where
the decoupled spins evolve under the stochastic Hamiltonian,
Ĥ s ≡ −∑

ja �a
j Ŝ

a
j . The spatial and temporal correlations be-

tween the spins are encoded in the correlations of the noise
fields. By diagonalizing the noise action [15–18] one may
introduce new white noise variables φb

j via ϕa
i → ∑

jb Oab
i j φ

b
j ,

where OT J−1O = 1; here, we recast Oab
i j and Jab

i j in terms of
matrices O ≡ O(ai)(b j) and J ≡ J(ai)(b j), where (ai) is a two-
component index.

The stochastic Hamiltonian gives rise to a stochastic
evolution operator Û s(t ) = Te−i

∫ t
0 Ĥ s (t ′ )dt ′ ≡ ∏

j Û s
j (t ), which

factorizes into on-site contributions. Using the Lie algebraic
structure of Ĥ s, we may parametrize Û s

j (t ) via a so-called dis-

entanglement transformation: Û s
j (t ) = eξ+

j (t )Ŝ+
j eξ z

j (t )Ŝz
j eξ−

j (t )Ŝ−
j

[15]. The ξ variables evolve according to SDEs:

−iξ̇+
j = �+

j + �z
jξ

+
j − �−

j ξ+2

j , (4a)

−iξ̇ z
j = �z

j − 2�−
j ξ+

j , (4b)

−iξ̇−
j = �−

j eξ z
j , (4c)

where �±
j = 1

2 (�x
j ∓ i�y

j ). The latter can be written in terms

of the white noise variables as �a
j = 1√

i

∑
jb Oab

i j φ
b
j + ha

j ,

where [15–18]〈
φa

i (t )φb
j (t

′)
〉 = δabδi jδ(t − t ′),

〈
φa

i (t )
〉 = 0. (5)

To calculate quantum observables, 〈Ô(t )〉 =
〈ψ (0)|Û †ÔÛ |ψ (0)〉, both the forwards and backwards
time-evolution operators must be independently decoupled
[16]. Observables thereby reduce to averages of functions
of the associated decoupling fields, ξ and ξ̃ [16]. To solve
the SDEs (4a) and (4b), we use the Heun predictor-corrector
integration scheme in the Stratonovich formalism [39,40],
with a time step dt = 0.01, unless stated otherwise. We also
remove coordinate singularities via the two-patch approach
given in [18].

III. EFFECTIVE WEISS FIELD

A key feature of the representation (2) is that it is
invariant under shifts of the Hubbard-Stratonovich fields
ϕ(t ) → ϕ(t ) + 	ϕ(t ) since the fields correspond to dummy
integration variables in the path integral. This leaves the
time-evolution operator unchanged, which was recently used
to develop an importance sampling approach in imagi-
nary time [19,41]. In this work, we show that a judicious
choice of 	ϕ(t ) can significantly improve numerical sim-
ulations of real-time dynamics over a broad range of
parameters. To gain some intuition for this, we note
that under this transformation, the effective magnetic field
transforms as �a

i → 1√
i

∑
jb Oab

i j (φb
j + 	φb

j ) + ha
i . Denot-

ing 	φb
j = √

i
∑

kc mc
kOcb

k j , this can be rewritten as �a
i =

1√
i

∑
jb Oab

i j φ
b
j + ha

i + ∑
jb Jab

i j mb
j . At this stage the parameter

mb
j is completely arbitrary. However, as we will expand upon

in Secs. IV and V and the contribution
∑

jb Jab
i j mb

j can be

FIG. 1. Comparison of the breakdown time tb for simulations of
the 1D quantum Ising model with 10 spins, following a quantum
quench from the fully polarized initial state |⇓〉 to different values
of 
/J . The results are obtained by numerical solution of the SDEs
without a Weiss field (mz = 0), in the presence of an optimal static
Weiss field (mz

opt), and with a time-evolving Weiss field mz(t ). The
use of a Weiss field leads to longer simulation times. Inset: rescaling
tb by

√
J2 + (2
)2, which is proportional to the Hilbert-Schmidt

norm of the Ising Hamiltonian ||ĤI ||, facilitates the comparison of
tb for different values of 
/J . With this rescaling, the smallest break-
down time for both static and time-evolving Weiss fields occurs at
the critical point 
 = J/2.

interpreted as an effective Weiss field due to the neighboring
spins. For example, in the special case of isotropic nearest-
neighbor interactions, this reduces to ZJabmb, where mb = mb

j
and Z is the coordination number. This mirrors the mean-field
contribution of neighboring spins to the local Weiss field,
where mb

j is the component of the magnetization in the di-
rection specified by b. More generally, we may choose the
parameter mb

j (t ) to be time dependent, in accordance with the
dynamics of the neighboring spins. The shift of the fields ϕ

also induces a transformation of the probability measure via
the noise action (3) [19,41]:

S[φ] → S[φ, m] = S[φ] + 	S[φ, m], (6)

where

	S =1

2

∫ t f

ti

dt

⎛
⎝2

√
i
∑
i jab

ma
i Oab

i j φ
b
j + i

∑
i jab

Jab
i j ma

i mb
j

⎞
⎠ (7)

and S[φ] = 1
2

∫ t f

ti
dt

∑
ia(φa

i )2 is the diagonal form of the
noise action. This reweights the stochastic trajectories by
terms involving the dynamical Weiss field ma

i (t ).
In Fig. 1 we highlight the improvements obtained by the

use of a Weiss field. Figure 1 shows the breakdown time of
numerical simulations tb following a quantum quench in the
1D quantum Ising model

ĤI = −1

2

∑
〈i j〉

Ji j Ŝ
z
i Ŝz

j − 


N∑
j=1

Ŝx
j , (8)

with N = 10 spins and nearest-neighbor interactions Ji j = J ,
from the fully polarized state |⇓〉 ≡ ∏

j |↓〉 j to different values
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of 
/J . The relevant SDEs are

−iξ̇+
j = 


2
+

(
1√

i

∑
k

Ozz
jkφ

z
k +

∑
k

Jjkmz
k

)
ξ+

j − 


2
ξ+2

j , (9a)

−iξ̇ z
j = 1√

i

∑
k

Ozz
jkφ

z
k +

∑
k

Jjkmz
k − 
ξ+

j , (9b)

−iξ̇−
j = 


2
eξ z

j . (9c)

In practice, the variable ξ−
j can be neglected since it drops out

of observables involving the initial spin-down state at site j
[18]. The data in Fig. 1 correspond to (i) the SDEs without
a Weiss field (mz

j = 0); (ii) an optimal choice of spatially
uniform static Weiss field, as discussed in Sec. IV; and (iii)
a spatially uniform time-evolving Weiss field mz(t ), which
is determined self-consistently in Sec. V. The key point is
that the use of a Weiss field leads to longer breakdown times
over a broad range of parameters. In the remainder of this
work, we will consider each of these cases in turn. In Sec. IV
we consider the case where mb

j is spatially homogeneous
and static and investigate its impact upon the dynamics of
quantum expectation values. In Sec. V we consider time-
dependent extensions via a self-consistent choice of mb

j (t ). In
the Appendixes, we demonstrate that the generalized SDEs,
including a Weiss field, can be obtained within the gauge-P
approach for a particular choice of drift gauge.

IV. STATIC WEISS FIELD

In this section we explore the improvements in numerical
simulations obtained through the use of a static Weiss field.
We consider quantum quenches in the 1D quantum Ising
model (8), with periodic boundary conditions and J = 1. We
start in the fully polarized initial state |⇓〉 = ∏N

i=1 |↓〉 and
quench to different values of 
/J . The expectation value of
the spin operator Ŝ j has an intuitive representation in the
stochastic approach [18]:

〈Ŝ j (t )〉 =
〈
W

∏
i

∣∣ψ s
i (t )

∣∣2
n j (t )

〉
φ,φ̃

, (10)

where 〈· · · 〉φ,φ̃ denotes averaging over the Gaussian white

noise variables. The weight W = e−	S[φ,m]−	S∗[φ̃,m] is dis-
cretized in time, and it weights the stochastic trajectories via
the Weiss field. This mirrors the reweighting of trajectories
performed in imaginary time [19]. The vector n j (t ) corre-
sponds to the position of a spin on the Bloch sphere, expressed
in terms of projective coordinates [18]:

n j (t ) = 1

2

(
2Re[ξ+

j (t )]

1 + |ξ+
j (t )|2 ,

−2Im[ξ+
j (t )]

1 + |ξ+
j (t )|2 ,

−1 + |ξ+
j (t )|2

1 + |ξ+
j (t )|2

)
.

(11)

The factor of |ψ s
i (t )|2 corresponds to the norm of the stochas-

tic state |ψ s
i (t )〉 = Û s

i (t )|ψ (0)〉 and is given by

|ψ s
i (t )|2 = e−Re[ξ z

i (t )][1 + |ξ+
i (t )|2]. (12)

In writing (11) and (12), it is implicit that the conjugate
variable ξ a∗

j is independent of ξ a
j ; we denote this via the
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FIG. 2. Time evolution of the magnetization M(t ) following a
quantum quench from the fully polarized initial state |⇓〉 in the 1D
quantum Ising model with 25 sites. (a) Quench to 
/J = 5 using the
SDEs in the absence of a Weiss field with mz = 0 (solid line) and
using tensor network matrix product operator methods (dashed line).
(b) Quench to 
/J = 0.4 with mz = 0 (solid line) and using tensor
networks (dashed line). The accessible timescale for the stochastic
approach is reduced in comparison to (a). This can be extended
by using a well-chosen static Weiss field. (c) Quench to 
/J = 0.4
with mz = −0.3 (solid line) showing improved simulation times. In
all the cases we average over N = 106 trajectories. The norm of
the quantum state is also shown to indicate the reliability of the
simulations, and the eventual breakdown time.

replacement ξ a∗
j → ξ̃ a∗

j . Although (10) is formally exact, the
norm of the quantum state is not preserved in numerical simu-
lations with a finite number N of stochastic samples [18]. As
such, we further rescale by the quantum state norm [18]

|ψ (t )|2 =
〈
W

∏
i

∣∣ψ s
i (t )

∣∣2

〉
φ,φ̃

. (13)

In Fig. 2(a) we show the time dependence of the mag-
netization, M(t ) = 1

N

∑N
j=1〈Ŝz

j〉, with N = 25, following a
quantum quench from the initial state |⇓〉 to the paramagnetic
phase with 
 = 5J . The results are obtained in the absence
of a Weiss field (mz

j = 0) and are in excellent agreement with
those obtained via the tensor network matrix product operator
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m
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(c)

FIG. 3. Breakdown time tb versus the static Weiss field mz for
quenches in the 1D quantum Ising model with 10 spins from the fully
polarized state |⇓〉 to (a) 
/J = 0.1 and (b) 
/J = 5. The optimal
Weiss field, corresponding to the longest simulation time, is given
by mz

opt ≈ −0.45 in (a) and mz
opt ≈ −0.2 in (b). (c) Variation of mz

opt

as a function of the postquench value of 
/J . The optimal value is
selected from the range −0.5 � mz

opt � 0, which is discretized in
steps of 0.05. The breakdown times are obtained as the average of
the breakdown time from 10 batches of N = 10, 000 runs. The error
bars in (a) and (b) correspond to the standard error of these batches.

technique (MPO) W I [42] for the time-interval displayed.
For comparison, we also show the norm of the time-evolving
quantum state as calculated via (13). It is readily seen that
departures from coincidence occur when the norm deviates
from unity [18]. Throughout this work, we define the break-
down time tb of our numerical simulations as the time at which
this deviation reaches 1%. In Fig. 2(b), we show results for a
quench to 
 = 0.4J , within the ferromagnetic phase. The re-
sults are obtained in the absence of a Weiss field (mz

j = 0) and
break down at an earlier time than those in Fig. 2(a). For com-
parison, in Fig. 2(c) we show results for the same quench as in
Fig. 2(b) but in the presence of a static Weiss field mz

j = −0.3;
as we will discuss below, this turns out to be a near-optimal
choice of the static Weiss field for this particular quench.
Since the model (8) contains only z interactions, we consider
Weiss fields in only the z direction. It is evident that the
simulation time is extended beyond that in Figs. 2(a) and 2(b).

In order to gain some insight into the variation of the
breakdown time tb with mz = mz

j , we consider quenches to
different points in the phase diagram as a function of mz. To
aid the comparison, we fix the number of stochastic samples
to N = 10 000. In Fig. 3(a) we plot the dimensionless break-
down time Jtb versus mz for a quench to 
 = 0.1J within the

ferromagnetic phase. It can be seen that the best choices for
the static Weiss field lie in the range −0.5 � mz � −0.35.
In Fig. 3(b) we do the same analysis for 
 = 5J . It can be
seen that this larger value of 
 reduces the magnitude of the
optimal choice for mz. In Fig. 3(c) we show the variation of
the optimal Weiss field mz

opt for quenches to different points
in the phase diagram. It can be seen that the optimal choice of
mz interpolates between mz = −1/2 and mz = 0 as one passes
from the ferromagnetic region (
 < J/2) to the paramagnetic
region (
 > J/2).

In Fig. 1 we show the breakdown time corresponding to
the optimal static Weiss field. It can be seen that the use of
a Weiss field leads to a significant improvement in the sim-
ulation time throughout the phase diagram. The inset shows
the same data rescaled by

√
J2 + (2
)2, which is propor-

tional to the Hilbert-Schmidt norm of the Ising Hamiltonian
||ĤI ||2 =

√
Tr(Ĥ2

I ) [43]. This facilitates the comparison of
the timescales for different quantum quenches. It can be seen
that the shortest rescaled simulation times occur for quenches
close to the quantum critical point at 
 = J/2, as one would
naïvely expect due to enhanced fluctuations.

V. TIME-EVOLVING WEISS FIELD

In this section we examine the possibility of choosing the
value of mz

j as a function of time. A natural choice is evident
if we write the stochastic Hamiltonian for the quantum Ising
model in the form

Ĥ s(t ) = −
∑

i


Ŝx
i −

∑
i j

Ji jm
z
j (t )Ŝz

i

− 1√
i

∑
i

ϕz
i

[
Ŝz

i − mz
i (t )Î

]
, (14)

where Î is the identity operator and ϕz
i is the original decou-

pling field with probability measure (3). The additional terms
that would arise via (7) have been absorbed into Ĥ s(t ); the
O(m2) terms can be neglected since they result in a determin-
istic phase for |ψ s(t )〉 which is identical for all trajectories.
Choosing mz

j (t ) to be the instantaneous average of 〈Ŝz
j〉 allows

one to reduce the effects of non-Hermiticity arising from (14):

mz
j (t ) =

〈 〈ψ s(t )|Ŝz
j |ψ s(t )〉

|ψ s(t )|2
〉

φ

, (15)

where the average is over the noise variables associated with
the forwards time evolution; the Weiss field for the backwards
evolution takes the same value. Enforcing the Bloch-sphere
normalization explicitly in (15) results in contributions to
the average that are comparable in size. The result therefore
converges with far fewer samples than are needed for quan-
tum observables such as (10). The choice (15) also generates
the physically transparent mean-field term

∑
i j Ji jm

z
i Ŝ

z
j in the

stochastic Hamiltonian (14). This is analogous to the optimal
shift for imaginary-time evolution, corresponding to a mean-
field saddle point [19]. Since |ψ s(t )〉 is itself a function of
mz

j (t ), the Weiss field should be determined iteratively. To
do this, we first set mz

j (t ) = 0 and simulate trajectories to
yield (15). This is then used as mz

j (t ) for the next simulation.
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FIG. 4. Determination of the time-evolving Weiss field mz(t )
following a quantum quench in the 1D quantum Ising model with 10
sites from the fully polarized state |⇓〉 to 
/J = 0.4. The results cor-
respond to five iterations of the procedure discussed in the text, where
each iteration corresponds to N = 10 000 stochastic trajectories. As
shown in the inset, the results converge to a fixed time-dependent
profile for mz(t ).

We proceed in this iterative fashion until mz
j (t ) converges

to a fixed time evolution. For translationally invariant states,
we may consider a single Weiss field mz(t ) = 1

N

∑N
j=1 mz

j (t )
applied to all the sites. As we discuss in Appendix E, one can
estimate this field from a small subsystem that captures the
local interactions.

In Fig. 4 we plot mz(t ) as a function of time for simula-
tions of the 1D quantum Ising model with N = 10 spins. We
consider a quantum quench from the fully polarized state |⇓〉
to 
 = 0.4J , showing the results from each iteration. After
four iterations of N = 10 000 samples the data converge to
a fixed-point value of mz(t ), to a high level of accuracy. As
shown in Fig. 1, the time-evolving Weiss field performs at
least as well as the optimal static choice. For small 
/J , a key
advantage of the time-dependent procedure is that one does
not have to survey different static Weiss fields. For 
 � J the
performance of mz(t ) is superior to mz

opt, as it self-consistently
tracks the mean-field dynamics. In comparison, the optimal
static Weiss field, mz

opt = 0, captures only the time average of
the time-evolving mean field.

VI. IMPLEMENTATION

Having established a protocol for determining the time-
evolving Weiss field mz(t ), we now explore its effectiveness
in numerical simulations. We focus on moderately large sys-
tem sizes in both one and two dimensions. Throughout this
section, the Weiss field is determined by four iterations of
the self-consistent approach with a relatively small number
of N = 1000 samples. In Fig. 5(a) we show results for the
transverse magnetization, Mx(t ) = 1

N

∑
i〈Ŝx

i 〉, following a

0

0.1

0.2

0.3

M
x
(t

)

(a) 1D

mz(t)
mz = 0
Tensor

0 0.5 1 1.5 2 2.5

Jt

0

1

2

|ψ
(t

)|2

0

0.1

0.2

M
x
(t

)

(b) 2D

mz(t) : N = 5×5
mz(t) : N = 11×11
mz =0 : N = 5×5
mz =0 : N = 11×11
QuSpin: N = 5 × 5
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Jt

0.75
1

1.25

|ψ
(t
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FIG. 5. Dynamics of the transverse magnetization Mx (t ) fol-
lowing a quantum quench in the (a) 1D and (b) 2D quantum Ising
models, from the fully polarized initial state |⇓〉 to 
/J = 0.3.
(a) One-dimensional results for a 101-site system obtained from the
SDEs using a time-dependent Weiss field mz(t ) and N = 5×105

trajectories (dashed line). The results are in agreement with those
obtained via tensor networks (solid line) until the breakdown time.
It can be seen that the results for mz = 0 (dotted line) break down
earlier. (b) Two-dimensional results for a 5×5 lattice with N = 106

(dots) and an 11×11 lattice with N = 5×105 (dashed line). The
former are in agreement with the results obtained via QuSpin’s ODE
solver [44] (solid line). In the absence of a comparison to other
techniques, the 11×11 results are seen to be in good agreement
with the 5×5 results until the breakdown time; beyond this, strong
fluctuations occur in the 11×11 case. Once again, the mz = 0 results
(red dotted and light solid lines) break down earlier. In all cases, the
results are plotted until fluctuations cause departures from the true
dynamics. In each panel, the time-dependent Weiss field mz(t ) is
obtained by four iterations of the procedure discussed in the main
text using N = 103 stochastic samples.

quantum quench from |⇓〉 to 
 = 0.3J , in the 1D quantum
Ising model with N = 101 spins. The results are in very good
agreement with tensor network methods until Jtb = 2.11; this
is a significant improvement over the mz = 0 case where
Jtb = 0.05. In Fig. 5(b) we show results for Mx(t ) following
a quantum quench in the 2D quantum Ising model with N =
5×5 and N = 11×11 sites. In the former case, the results are
in excellent agreement with those obtained via QuSpin’s ordi-
nary differential equation (ODE) solver [44] until Jtb = 2.56;
this exceeds the mz = 0 case, which has a breakdown time of
Jtb = 0.09. In the absence of another method with which to
compare, the results for the N = 11×11 case are compared to
those obtained for smaller system sizes. The data track each
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other until the breakdown time tb, suggesting that the results
for the larger system size are reliable. There is a similarly large
improvement over the mz = 0 case.

VII. CONCLUSIONS

In this work, we have introduced time-evolving Weiss
fields into the stochastic approach for real-time quantum spin
dynamics. We have shown that they can significantly extend
the timescales for numerical simulations in both one and two
dimensions. In the Appendix, we have further demonstrated
that these Weiss fields can be obtained via the use of drift
gauges in the gauge-P phase space formulation. It would be
interesting to explore this connection in future work.

Note added in proof. Recently, we became aware of forth-
coming work [46] which extends [19] to real time.
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APPENDIX A: FOKKER-PLANCK DESCRIPTION

As highlighted in the main text, we can make contact
between the SDEs employed here and the gauge-P approach
[20,22–24], through the use of drift gauges [21]. To see this,
we first consider the Fokker-Planck description of the stochas-
tic approach to quantum spin systems [13]. This will enable
us to develop connections to a broad class of “phase space”
methods, which describe quantum systems via mappings to
classical coordinates.

As usual, one may switch between a Langevin-type
description of a stochastic process and a Fokker-Planck de-
scription by introducing a probability distribution P(ξ ) for the
stochastic variables ξ . For a quantum spin system, this can be
introduced by means of the density matrix ρ̂ = 〈ρ̂s〉φ,φ̃ , where
ρ̂s is the stochastic density matrix ρ̂s = |ψ s(φ, t )〉〈ψ s(φ̃, t )|.
More explicitly,

ρ̂s = Û s(φ, t )|ψ (0)〉〈ψ (0)|Û s†(φ̃, t ), (A1)

where Û s(φ, t ) is the stochastic time-evolution operator and
we highlight its noise dependence. The density matrix can also
be expressed as an integral over the classical coordinates ξ (t )
and ξ̃ (t ):

ρ̂(t ) =
∫

d2ξd2ξ̃ P(ξ )P(ξ̃ ) ρ̂s(ξ, ξ̃ ), (A2)

where ρ̂s(ξ, ξ̃ ) = Û s(ξ )|ψ (0)〉〈ψ (0)|Û s†(ξ̃ ) and both P(ξ )
and P(ξ̃ ) satisfy the Fokker-Planck equation

∂

∂t
P(ξ ) = F̂P(ξ ). (A3)

Here, the differential operator F̂ contains only first- and
second-order derivatives with respect to the coordinates ξ (t ).
Quantum expectation values can be computed within the
Fokker-Planck representation by

〈Ô(t )〉 =
∫

d2ξd2ξ̃ P(ξ )P(ξ̃ ) Tr[ρ̂s(ξ, ξ̃ ) Ô]. (A4)

Without loss of generality, we may consider initial states that
are obtained by time evolution from the spin-down state |↓〉
[18,19]:

ρ̂s = e− 1
2 (χ+χ̃∗ )

∏
j

|ξ+
j 〉〈ξ̃+

j |, (A5)

where |ξ+
j 〉 = eξ+

j Ŝ+
j |↓〉 is a spin coherent state and χ ≡∑

j ξ
z
j . As we will discuss in Appendixes B and C, Eq. (A5)

enables us to make contact with the representation of ρ̂ in
the phase space literature [21,22]. The Weiss field ma

j is
interpreted as a drift gauge parameter, which we discuss in
Appendix C. To make the connection more explicit we use
the parameterization z j = ln(ξ+

j ) and ω = −χ

2 , as used in
Refs. [22,24]. In this representation

ρ̂s = eω+ω̃∗ ∏
j

|z j〉〈z̃ j |, (A6)

where

|z j〉 = eez j Ŝ+
j |↓〉 = |↓〉 + ez j |↑〉 (A7)

and z j ∈ C.

APPENDIX B: PHASE SPACE REPRESENTATIONS

In this section we give a brief introduction to the phase
space methods developed in Refs. [20–24]. The initial starting
point is to consider a general parameterization of a density
matrix ρ̂ in terms of phase space variables λ:

ρ̂ =
∫

dλW (λ) �̂(λ), (B1)

where W (λ) is a quasiprobability distribution and �̂(λ) is
an operator kernel. Since W (λ) can be negative, it cannot
be interpreted as a true probability distribution. However, for
bosons [20] and spins [22], W (λ) can be made positive by us-
ing a generalized kernel built from off-diagonal coherent state
projectors: �̂(λ, λ′) = ∏

j |λ j〉〈λ′
j |, where λ, λ′ ∈ C [20,22].

For example,

ρ̂ =
∫

d2λd2λ′ P(λ, λ′)
∏

j

|λ j〉〈λ′
j |

〈λ′
j |λ j〉 , (B2)

where P(λ, λ′) is positive definite. For bosonic systems, the
decomposition (B2) in which the normalization is explicitly
enforced is known as the positive-P representation [20]. Anal-
ogous representations for spin systems have been considered
in Refs. [22,24]. Phase space distributions over coherent states
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are not unique due to the overcompleteness of the basis.
This can be exploited by using a more general representation
that includes a complex weight �. This enlarges the variable
space:

ρ̂ =
∫

d2λd2λ′d2� P(λ, λ′,�) �
∏

j

|λ j〉〈λ′
j |. (B3)

With the inclusion of the weight this is referred to as the
gauge-P representation [21]. This mirrors Eqs. (A2) and (A6),
provided we identify � = e− 1

2 (χ+χ̃∗ ). The integrations over λ

and λ′ can be further identified as the forwards and backwards
time evolutions involving ξ+ and ξ̃+. Physical observables are
calculated according to

〈Ô〉 =
∫

d2λd2λ′d2� P(λ, λ′,�) � Tr(�̂(λ, λ′)Ô), (B4)

in conformity with Eq. (A4) in the stochastic approach.
Having introduced a formal representation of the density

matrix, one may obtain the Fokker-Planck equation by substi-
tuting ρ̂ into the Liouville equation

i ˙̂ρ = [Ĥ, ρ̂], (B5)

where Ĥ is represented by a differential operator acting on the
classical coordinates. Assuming that the Hamiltonian contains
no derivative terms higher than second order, one obtains [22]

∂

∂t
P(λ) =

[
V +

∑
j

∂

∂λ j

(
−Aj + 1

2

∑
l

∂

∂λl
D jl

)]
P(λ),

(B6)

where λ = {λ, λ′} and we neglect boundary terms in perform-
ing partial integrations. For V = 0 this is a Fokker-Planck
equation, where Aj is the drift vector and Djl is the diffusion
matrix. The mapping to stochastic Langevin equations can be
carried out provided a “noise matrix” Bjk exists satisfying
Djl = ∑

k B jkBlk [20]. The resulting Langevin equations in
Ito form are given by [47]

λ̇ j = Aj +
∑

k

B jkφk, (B7)

where φk is Gaussian white noise satisfying

〈φk (t )φk′ (t ′)〉 = δkk′δ(t − t ′), 〈φk (t )〉 = 0. (B8)

Observables can be calculated as averages over the noise

〈Ô〉 = 〈�Tr(�̂Ô)〉φ, (B9)

where φ includes the forwards and backwards time evolution
and � = 1 is the unweighted case.

APPENDIX C: DRIFT GAUGES

As discussed in Appendix B, the phase space distribution
is not unique. The use of different gauges enables one to move
between these representations. The gauges can be introduced
by adding a vanishing term to the Liouville equation (B5).
Denoting � = eω, the identity ( ∂

∂ω
− 1)eω�̂ = 0 [21] allows

one to add∫
d2 λd2ω P(λ, ω) f (λ, ω)

(
∂

∂ω
− 1

)
eω �̂ = 0, (C1)

where f (λ, ω) is an arbitrary function. To produce a
valid Fokker-Planck equation, without introducing additional
noises, f (λ, ω) can be constrained [21]:

f (λ, ω) = V (λ) + 1

2

∑
k

gk (λ)2 ∂

∂ω
+

∑
kα

gk (λ)Bαk (λ)
∂

∂λα

.

(C2)

The first term eliminates V (λ) from Eq. (B6), yielding an
equation with only first and second derivatives. The functions
gk (λ) are known as “drift gauges” [21] as they modify the drift
terms in Eq. (B7). The resulting Fokker-Planck equation is
of the form (B6), but with Aα → Aα − ∑

k gkBαk and Dαβ →
Dαβ left unchanged. One must also introduce additional drift
and diffusion terms for the weight variable ω:

Aω = V − 1

2

∑
k

g2
k, Dωω = 1

2

∑
k

g2
k, (C3)

Dαω = Dωα =
∑

k

gkBαk . (C4)

The drift of the coherent state parameters λ has thus been
modified via diffusion and drift in the weight variable ω. The
modified Langevin equations are given by

λ̇α = Aα −
∑

k

gkBαk +
∑

k

Bαkφk, (C5)

ω̇ = V − 1

2

∑
k

g2
k +

∑
k

gkφk. (C6)

In Appendix D, we use this formalism to link the Weiss field
ma

j to the drift gauge gk (λ).

APPENDIX D: SPIN COHERENT STATES

In order to make the discussion in Appendixes A, B, and
C more explicit, we introduce spin coherent states following
Refs. [22,24]. We consider the spin- 1

2 state decomposition

|ψ〉 =
∫

d2zd2ω P(z, ω) eω
∏

j

|z j〉, (D1)

where ω is a complex weight and |z j〉 are the un-normalized
coherent states defined by (A7). The spin operators are rep-
resented by differential operators acting on the coherent state
parameters:

Ŝz
j |z, ω〉 =

(
−1

2
+ ∂

∂z j

)
|z, ω〉, (D2)

Ŝx
j |z, ω〉 =

(
1

2
ez j − sinh(z j )

∂

∂z j

)
|z, ω〉, (D3)

Ŝy
j |z, ω〉 =

(
i

2
ez j − i cosh(z j )

∂

∂z j

)
|z, ω〉, (D4)

where |z, ω〉 ≡ eω
∏

j |z j〉 are weighted basis states. For a
given spin Hamiltonian, we may substitute the decomposition
(D1) into the Schrödinger equation, i∂t |ψ (t )〉 = Ĥ |ψ (t )〉, in
order to derive the corresponding Fokker-Planck equation for
P(z, ω). In this representation the analog of (C1) is∫

d2 zd2 ω P(z, ω) f (z, ω)

(
∂

∂ω
− 1

)
|z, ω〉 = 0, (D5)
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where f (z, ω) is defined by (C2). To begin with we set the
gauges gk (z) to zero. However, V (z) must be chosen to remove
the zeroth-order terms. Decomposing ω into on-site contribu-
tions ω = ∑

j ω j yields the SDEs

− iż j = �z
j − 
 sinh(z j ) − 1

2

∑
l

J jl , (D6)

− iω̇ j = −iVj (z) ≡ 


2
ez j +

∑
l

1

8
Jjl , (D7)

where �z
j = −∑

k iB jkφk is given in terms of the independent
white noises φk and we have set V = ∑

j Vj . The “noise
matrix” Bjk is defined via the diffusion matrix Djl = iJjl =∑

k B jkBlk . We can make contact with the SDEs (4a) and (4b)
discussed in the main text, including the Weiss field mz

j , by
introducing the drift gauge

gk = −
∑

j

(
1

2
+ mz

j

)
Bjk . (D8)

The SDEs (D6) and (D7) become

− iż j = �z
j − 
 sinh(z j ), (D9)

− iω̇ j = 


2
ez j − 1

2
�z

j + imz
j

∑
k

B jkφk, (D10)

where now �z
j = ∑

l J jl m
z
l − ∑

k iB jkφk . The variables used
here can be related to those in the SDEs (4a) and (4b) via

the identification z j = ln ξ+
j , ω j = − ξ z

j

2 , and Bjk = 1√
i
Ozz

jk .

In writing (D10) we have neglected the contribution 1
2

∑
k g2

k
since it results in a deterministic phase for |ψ s(t )〉 which
is identical for all trajectories. The additional noise term in
(D10) appears via the noise action (7), rather than the SDE
(4b) for ξ z

j ; the two are equivalent since ω enters via eω in
(D1).

APPENDIX E: WEISS-FIELD CALCULATION

To calculate the time-evolving Weiss field for the simula-
tions of the Ising model presented in the main text we use
the following procedure. In the first step we take N samples
of the SDEs (9a) and (9b) with mz

j (t ) = 0, where we use a
two-patch approach to avoid coordinate singularities in (9a)
[18]. In the second step, we use these trajectories to calculate
mz

j (t ) via (14). For translationally invariant systems we con-
sider a single Weiss field obtained from the spatial average
mz(t ) = 1

N

∑
j mz

j (t ). We then use this as the local Weiss field
in the next simulation. We repeat steps 1 and 2 until mz(t ) con-
verges to a sufficient level of accuracy over the timescales of
interest or until it decays to zero. The resulting Weiss field can
now be used in simulations to obtain quantum observables.
As discussed above, throughout this work we take the spatial
average over the entire system to estimate mz(t ). However,
as noted in the main text, it can, in principle, be calculated
from a small subsystem which captures the local interactions
between the spins. To see this, it is convenient to introduce
a variant of the Hubbard-Stratonovich transformation which
places decoupling fields on the bonds between the spins,
rather than on the sites of the lattice. We consider again the

0 5 10 15
Jt

-0.4

-0.2

0

m
z
(t

)

N = 3
N = 5
N = 10
N = 25

FIG. 6. Time-dependent Weiss field mz(t ) following a quantum
quench in the 1D quantum Ising model from the fully polarized
state |⇓〉 to 
/J = 0.3 for different system sizes. The simulations
are carried out using site noise, with four iterations of N = 5000
stochastic samples and dt = 0.1. Only the final iteration is shown.

generic quadratic spin Hamiltonian (1). The interactions in the
time-evolution operator can be decoupled by performing an
integral transformation over auxiliary fields ηab

i j ∈ C, which
correspond to the interactions between spins:

Û (t f , ti )=T

∫
DηDη∗ e−S[η,η∗]+i

∫
dt

∑
ja �a

j Ŝ
a
j . (E1)

Here, DηDη∗ = ∏′ Dηab
i j Dηab∗

i j , where the prime indicates
that the product is over the bonds linking the spins. We label
every spin in the array, in arbitrary dimension, with numbers
1 to N , so that ηab

i j is associated with the bond between sites i
and j. The effective magnetic field �a

i is given by

�a
i (t ) = 1√

i

′∑
b j

( j < i)

ηab
i j + 1√

i

′∑
b j

( j > i)

ηba∗
ji + ha

i , (E2)

where the prime indicates that the summation is restricted to
bonds. The path integral weight is given by

S[η, η∗] =
∫ t2

t1

dt
′∑

i jab

1

Jab
i j

ηab
i j (t )ηab∗

i j (t ). (E3)

The Gaussian “bond noises” satisfy 〈ηab
i j (t )ηcd∗

kl (t ′)〉 = Jab
i j δik

δ jlδ
acδbdδ(t − t ′), with 〈ηab

i j (t )〉 = 0 and 〈ηac
i j (t )ηbd

kl (t ′)〉 = 0.
Since the number of bond noises scales with the coordination
number and each complex noise is the sum of two real noises,
they are computationally more intensive to draw numerically
than site-based noises. However, bond noises can offer some
advantages for Weiss field estimation. For example, in the
case of nearest-neighbor interactions, the spins that are not
nearest neighbors will evolve independently. In addition, since
every spin experiences fluctuations of the same strength they
will have identical mean-field dynamics if the initial state is
translationally invariant. As a result, in this case it is possible
to calculate the time-evolving Weiss field from a single spin,
coupled to its nearest neighbors. Adding additional spins does
not change the stochastic evolution of the selected spin.

A similar approach to Weiss field estimation can be taken
using site noise, but it requires additional justification. Recall
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that the stochastic magnetic field in direction a experienced
by each spin is given by 1√

i
ϕa

j , where ϕa
j = ∑

kb Oab
jkφ

b
k . In

general, the matrix Oab
jk ensures that the spins do not evolve

independently since they experience common noise fields φb
k .

However, only the strength of the noise is relevant for Weiss
field estimation as (15) is an average for a single spin; the cor-
relations between spins on individual stochastic trajectories
are not required. In particular, if

∑
kb |Oab

jk |2 is translationally
invariant (i.e., independent of j) and we consider translation-
ally invariant initial states, the Weiss field can be estimated
from N−1 ∑

j ma
j (t ). This is true for all the simulations con-

sidered in this work.
As in the case of bond noise, it is possible to estimate

the Weiss field from an appropriate subsystem that reflects
the local interactions, provided that

∑
kb |Oab

jk |2 is approxi-

mately independent of the system size. For nearest-neighbor
interactions, we find that it indeed exhibits only very weak
N dependence. For example, for the N = 101 site system

simulated in Fig. 5(a),
√∑

k |Ozz
jk|2 ≈ 1.128, while for an

N = 3 spin system
√∑

k |Ozz
jk|2 ≈ 1.155, corresponding to

a 2% difference. In Fig. 6 we demonstrate the similarity in
the extracted Weiss field for a range of system sizes follow-
ing a quantum quench in the 1D quantum Ising model. For
the nearest-neighbor 2D simulation of an 11×11 lattice in

Fig. 5(b) the difference in
√∑

k |Ozz
jk|2 compared with a 3×3

system is approximately 4.3%. Given the effectiveness of a
well-chosen static Weiss field, this difference is not expected
to be significant. It should therefore be possible to estimate
the Weiss field by using a smaller system size.
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Szymańska, PRX Quantum 2, 010319 (2021).

[28] M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S. M.
Tan, M. J. Collett, D. F. Walls, and R. Graham, Phys. Rev. A 58,
4824 (1998).

[29] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Rev. Mod. Phys. 83, 863 (2011).

[30] J. Schachenmayer, A. Pikovski, and A. M. Rey, New J. Phys.
17, 065009 (2015).

[31] J. Schachenmayer, A. Pikovski, and A. M. Rey, Phys. Rev. X 5,
011022 (2015).

[32] R. Khasseh, A. Russomanno, M. Schmitt, M. Heyl, and R.
Fazio, Phys. Rev. B 102, 014303 (2020).

[33] J. Huber, P. Kirton, and P. Rabl, Phys. Rev. A 102, 012219
(2020).

[34] W. Verstraelen and M. Wouters, Appl. Sci 8, 1427
(2018).

[35] W. Verstraelen, R. Rota, V. Savona, and M. Wouters, Phys. Rev.
Res. 2, 022037(R) (2020).

[36] P. Deuar and P. D. Drummond, Comput. Phys. Commun. 142,
442 (2001).

[37] P. D. Drummond and P. Deuar, J. Opt. B 5, S281 (2003).
[38] P. D. Drummond, P. Deuar, and K. V. Kheruntsyan, Phys. Rev.

Lett. 92, 040405 (2004).
[39] W. Rümelin, SIAM J. Numer. Anal. 19, 604 (1982).
[40] P. E. Klöden and E. Platen, Numerical Solution of Stochastic

Differential Equations (Springer, Berlin, 1992).
[41] S. De Nicola, Ph.D. thesis, King’s College London, 2018.
[42] M. P. Zaletel, R. S. K. Mong, C. Karrasch, J. E. Moore, and F.

Pollmann, Phys. Rev. B 91, 165112 (2015).
[43] R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge

University Press, Cambridge, 2012).
[44] P. Weinberg and M. Bukov, SciPost Phys. 7, 020 (2019).
[45] M. Fishman, S. R. White, and E. M. Stoudenmire,

arXiv:2007.14822.
[46] S. De Nicola, arXiv:2103.16468.
[47] H. Risken, The Fokker-Planck Equation (Springer, Berlin,

1984).

024408-9

https://doi.org/10.1103/PhysRevLett.98.050405
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1103/PhysRevLett.119.080501
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/PhysRevB.99.035115
https://doi.org/10.21468/SciPostPhys.8.2.021
https://doi.org/10.1103/PhysRevLett.124.037201
https://doi.org/10.1088/0305-4470/37/49/002
https://doi.org/10.1103/PhysRevA.84.012118
https://doi.org/10.1103/PhysRevA.88.062105
https://doi.org/10.1088/1751-8121/aaf9be
https://doi.org/10.1088/1742-5468/ab6093
https://doi.org/10.1088/1751-8121/abbf87
https://doi.org/10.1088/1742-5468/abc7c7
https://doi.org/10.1088/0305-4470/13/7/018
https://doi.org/10.1103/PhysRevA.66.033812
https://doi.org/10.1103/PhysRevA.78.052108
https://doi.org/10.1088/1751-8113/44/6/065305
https://doi.org/10.1103/PhysRevB.88.144304
https://doi.org/10.1088/1367-2630/17/5/053018
https://doi.org/10.1103/PhysRevE.96.013309
https://doi.org/10.1103/PRXQuantum.2.010319
https://doi.org/10.1103/PhysRevA.58.4824
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1088/1367-2630/17/6/065009
https://doi.org/10.1103/PhysRevX.5.011022
https://doi.org/10.1103/PhysRevB.102.014303
https://doi.org/10.1103/PhysRevA.102.012219
https://doi.org/10.3390/app8091427
https://doi.org/10.1103/PhysRevResearch.2.022037
https://doi.org/10.1016/S0010-4655(01)00384-8
https://doi.org/10.1088/1464-4266/5/3/359
https://doi.org/10.1103/PhysRevLett.92.040405
https://doi.org/10.1137/0719041
https://doi.org/10.1103/PhysRevB.91.165112
https://doi.org/10.21468/SciPostPhys.7.2.020
http://arxiv.org/abs/arXiv:2007.14822
http://arxiv.org/abs/arXiv:2103.16468

