
PHYSICAL REVIEW B 104, 024406 (2021)

Chiral hinge magnons in second-order topological magnon insulators
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When interacting spins in condensed matter order ferromagnetically, their ground-state wave function is
topologically trivial. Nonetheless, in two dimensions, ferromagnets can support spin excitations with nontrivial
topology, an exotic state known as topological magnon insulator (TMI). Here, we theoretically unveil and
numerically confirm a ferromagnetic state in three dimensions dubbed second-order TMI, whose hallmarks
are excitations at its hinges, where facets intersect. Since ferromagnetism naturally comes with broken time-
reversal symmetry, the hinge magnons are chiral, rendering backscattering impossible. Hence, they trace out
three-dimensional paths about the sample unimpeded by defects and are topologically protected by the spectral
gap. They are remarkably robust against disorder and highly tunable by atomic-level engineering of the sample
termination. We predict that a van der Waals heterostructure built from chromium trihalide and transition metal
dichalcogenide monolayers exhibits second-order magnon topology. Our findings empower magnonics, the
harnessing of spin waves as information carriers, with the tools of higher-order topology, a promising route
to combine low-energy information transfer free of Joule heating with three-dimensional vertical integration.
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I. INTRODUCTION

The quantum Hall effect and the Chern-insulating state
of electrons are two of the great discoveries in the second
half of the 20th century that have shaped today’s solid state
research by amalgamating Bloch’s band theory with quantum
state geometry and topology [1–3]. One of the many novel
exotic phases of matter brought to light by this fruitful syn-
thesis is that of the topological magnon insulator (TMI), a
two-dimensional phase that exhibits a spectrum of topologi-
cally nontrivial bosonic excitations, called magnons, above a
topologically trivial magnetically ordered ground state [4–9].
A topologically nontrivial gap in the magnon spectrum pro-
tects magnonic edge states. Due to time-reversal violation in
ferromagnets, the propagation of the edge modes is chiral
akin to electronic Chern insulators, giving rise to magnon Hall
effects [10–17]. Hence, TMIs support unidirectional magnon
currents that, once coherently excited, transfer information
along the sample’s boundary [4,5]. In sharp contrast to elec-
trons, the charge-neutral magnonic currents do not cause
Ohmic heating [18], promising low-energy information trans-
fer and giving rise to the paradigm of “topological magnonics”
[19–22]. However, since the magnonic Chern insulator is a
two-dimensional phase of matter, it is not suitable to keep
up with information technology design trends such as three-
dimensional vertical integration [23].

Herein, we contribute to the foundations of topological
magnonics by reporting our theoretical discovery of an exotic
phase of matter in three dimensions dubbed second-order
TMI (SOTMI). In general, the hallmarks of a higher-order
(or nth-order) topological phase in d dimensions are gapless
states at its nth-order boundaries (n � 2) [24–26]. So far,
second-order (n = 2) topological magnons have been iden-
tified as localized corner states in two-dimensional magnets
[27–29]. In contrast, we present a SOTMI in three dimensions,

whose hinges, the intersections of facets, support propagat-
ing gapless chiral magnons, as depicted in Fig. 1. These
hinge magnons trace out a three-dimensional path, allowing

FIG. 1. Snapshot of a chiral hinge magnon in a SOTMI visual-
ized by atomistic spin dynamics simulations. At each lattice site of
a stack of honeycomb layers, a classical spin vector is represented
by a little cone, whose size encodes its deviation from the ferromag-
netic ground state. Large cones indicate strongly excited spins. Since
the magnon spectrum exhibits a gap, within which topologically
protected states only exist at the hinges of the sample, a coherent
local excitation at one of the hinges (here: in the middle of the
rearward left hinge) launches a unidirectionally propagating spin
wave. The snapshot is taken before the spin wave completed the loop
along the hinges. The topological protection due to the absence of
backscattering renders the chiral hinge magnon remarkably robust
against defects and disorder.
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for magnonic information transfer in all spatial directions.
We explicitly simulate hinge magnons in the presence of
disorder and perturbations that break crystalline symmetries,
unveiling their remarkable topological robustness owed to
their chirality. Nonetheless, their path in real space turns
out to be highly tunable by a manipulation of the surface
termination at the atomic level. Thus, our findings empower
magnonics with the tools of higher-order topology, opening up
new avenues to achieve the sought-after control of spin-wave
propagation [30–32]. We propose to realize SOTMIs in de-
signer materials. In particular, we predict that a van der Waals
heterostructure of chromium trihalides (e.g., CrBr3, CrI3)
and nonmetallic transition metal dichalcogenides support
second-order topological magnon spectra with chiral hinge
magnons.

II. SECOND-ORDER TOPOLOGICAL MAGNONS

A. Model

We consider a stack of honeycomb magnets with spins sit-
uated at the honeycomb’s vertices, as indicated by spheres in
Fig. 2(a). The interactions between these spins are comprised
in the Hamiltonian

H = H‖ + H⊥ + H δ
⊥ + HZ. (1)

Here, intralayer interactions H‖ = ∑
l h(l )

‖ (l is the layer in-
dex), with

h(l )
‖ = −J

2

∑
〈i j〉

S(l )
i · S(l )

j + (−1)lD

2

∑
〈〈i j〉〉

νi j ẑ · S(l )
i × S(l )

j , (2)

include positive nearest-neighbor exchange interaction J that
stabilizes ferromagnetic order. Upon a magnon expansion
(see Appendix A) a single layer is found to feature two
magnon branches, resembling the graphene band structure
with Dirac cones. The latter acquire a topological mass gap
[33] ±6

√
3D/J (later referred to as “bulk gap”) by next-

nearest-neighbor Dzyaloshinskii-Moriya interaction [34,35]
(DMI) D [green arrows in Fig. 2(a)]; ẑ is a unit vector along
the z direction and νi j = ±1, with + (−) for counterclock-
wise (clockwise) circulation. The topological nontriviality is
captured by a nonzero winding number w(l ) = (−1)lsgn(mD)
(see Appendix B). Here, m = +1 (m = −1) for the ferro-
magnetic ground state pointing along the positive (negative)
z direction. Hence, a single layer exhibits chiral edge states,
as indicated by yellow spheres in Fig. 2(b). From hereinafter,
we consider m = +1.

The AA-stacked honeycomb layers are coupled by

H⊥ = −J⊥
∑

l

∑
i

S(l )
i · S(l+1)

i , (3)

with ferromagnetic interlayer exchange J⊥ due to which
magnons obtain a dispersion along the stacking direction. We
assume that J⊥ is sufficiently small such that the bulk gap
due to D stays open, which is a reasonable assumption for
layered structures [36]. Using the Brillouin zone convention
in Fig. 3(a), a representative bulk magnon spectrum is shown
in Fig. 3(b); notice the band gap between the lower and upper
pair of bands.

FIG. 2. Microscopic model of a SOTMI with chiral hinge states
in three dimensions. (a) A stack of honeycomb layers with indicated
magnetic interactions. Blue and red spheres indicate the A and B
sublattices of the honeycomb, respectively. (b) A single honeycomb
layer realizes a magnon Chern insulator, whose hallmark is a gap
in the magnon spectrum bridged only by a chiral edge state (yellow
spheres). (c)–(f) View along a zigzag-terminated surface of stacks
built from a finite number of layers. Even-numbered stacks exhibit
either (c) hinge modes at both terminating layers or (d) no hinge
modes at all. In contrast, odd-layered stacks exhibit hinge states at
one of the terminating layers, either at the top (e) or the bottom (f) of
the stack.

Letting the sign of DMI alternate between adjacent layers
ensures alternating winding numbers and chiral edge states,
which gap out pairwise. However, since each layer is a mirror
plane for the infinite stack, a magnonic surface Dirac cone is
stabilized, rendering the surface spectrum gapless. Hence, so
far, the stack is a (first-order) topological mirror insulator [37]
of magnons (see Appendix C). To break this mirror symmetry,
we effectively buckle each layer. This is accounted for by an
alternating modulation of the interlayer exchange interaction
(δJ⊥),

H δ
⊥ = δJ⊥

∑
l

(−1)l

(∑
i∈A

S(l )
i · S(l+1)

i −
∑
i∈B

S(l )
i · S(l+1)

i

)
,

(4)

which is opposite for the A and B sublattices of the honey-
comb [cf. alternating interlayer bonds between blue and red
sites in Fig. 2(a)]. Finally, a magnetic field Bz < 0 (m = +1)
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FIG. 3. Brillouin zones (BZs) and magnon band structures in 3D,
2D, and 1D. (a) For a successive reduction of dimensions, the hexag-
onal 3D BZ (green) first gets projected onto a surface to yield the 2D
BZ (red), which then is projected onto a line, resulting in a 1D BZ
(blue). Selected high-symmetry points are indicated. (b) Gapped 3D
spectrum showing four magnon branches. (c) Gapped 2D spectrum,
with gray areas indicating the bulk continuum projected onto the
xz surface and black lines indicating surface states. (d) Gapless 1D
spectrum with chiral hinge magnons crossing the band gap (orange
lines). Gray areas indicate both the bulk and surface continuum pro-
jected onto the z axis. (e) Probability density |Ψ (x, y)|2 of the chiral
hinge-magnon states in real space for a pillar with a parallelogram

cross section [cf. Fig. 2(b)] at Γ . Open boundary conditions are
assumed in both x and y directions but periodic boundary conditions
in the z direction. The two chiral modes are localized at opposite
obtuse corners of the pillar. Parameters read as d = j⊥ = δ j⊥ = 0.2
and b = 0.

is applied that enters the Zeeman Hamiltonian

HZ =
∑

l

∑
i

BzS(l ),z
i . (5)

The field is measured in units of energy. Using reduced
constants b = Bz/(JS), j⊥ = J⊥/J , d = D/J , and δ j⊥ =
δJ⊥/J , the ferromagnetic ground state is stable for |δ j⊥| �
1
2

√
(−b + 2 j⊥)(−b + 2 j⊥ + 6); note that b � 0. Below, we

consider parameters d = j⊥ = δ j⊥ = 0.2, for which the fer-
romagnetic state is stable even at b = 0.

B. Gapless hinge magnons along domain walls

The mirror-symmetry breaking δ j⊥ acts like a mass that
gaps out surface states, as depicted in Fig. 3(c). This can be
understood in the following intuitive way. It is well established
that the wave function of edge states in graphene has weight
predominantly on the sublattice whose atoms dominate in
a particular termination [38]. For example, the edge states
of zigzag-terminated graphene live on that sublattice whose
atoms constitute the very edge. Now, consider a stack of
an even number of layers with a zigzag-terminated surface,
as shown in Fig. 2(c). The surface state has weight mainly
on the blue sublattice. Along the stacking direction, spins
located at the blue sites of the chains resemble a spin version
of the Su-Schrieffer-Heeger (SSH) model [39]. The sign of
δ j⊥ determines whether the chain is topologically trivial or
nontrivial, i.e., if its ends feature bound states [Fig. 2(c),
δ j⊥ > 0] or not [Fig. 2(d), δ j⊥ < 0]. For an odd number of
honeycomb layers, there is always one undimerized dangling
spin hosting the bound state, either at the top [Fig. 2(e),
δ j⊥ > 0] or bottom layer [Fig. 2(f), δ j⊥ < 0]. Due to the
intralayer coupling of SSH-type chains, the states bound to
the chains’ ends can propagate along the hinge to which they
are confined. The DMI-induced chirality of each layer admits
propagation only in one direction, promoting the end states to
chiral hinge modes.

A different surface of a finite stack may be terminated
by the red sublattice that exhibits the opposite dimerization
pattern. Hence, whatever sign of δ j⊥ causes bound states at
a particular end of the blue chains leads to the red chains not
hosting bound states at this very end (and vice versa). If do-
mains of opposite surface terminations (of “opposite color”)
meet, there is a domain wall between a topologically trivial
and nontrivial phase, necessitating a gapless mode along the
domain wall, i.e., along the stacking direction. Such domain
walls naturally occur at the hinges of materials where facets
intersect, suggesting the name “chiral hinge magnons.” In
the spectrum of an infinite pillar (i.e., an infinite stack of
honeycomb layers of finite size), hinge magnons appear as
bands that connect adjacent bulk and surface bands, as shown
in Fig. 3(d). The hinge-magnon wave function is strongly
localized to the hinges [cf. Fig. 3(e)].

We present selected examples in Fig. 4. For a stack with
a parallelogram cross section and all-zigzag termination, as
shown in Fig. 4(a), the termination changes from blue to red
at the obtuse corners. The associated hinges feature a domain
wall and, hence, also a chiral hinge magnon, a prediction that
is confirmed numerically by exact diagonalization of a finite
sample by means of linear spin-wave theory [see Figs. 4(b)
and 4(c)]. While the position of the hinge magnons is tied
to the domain walls, it is the number of layers that deter-
mines the actual path taken. This is because a stack of an
odd number of layers has a nonzero net winding number,
originating from one layer being uncompensated [40]. Hence,
there must be one chiral mode circulating the stack about the
stacking direction [cf. Fig. 4(b)]. In contrast, an even number
of layers has a net winding number of zero, ruling out any net
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FIG. 4. Chiral hinge magnons in finite-sized stacks of honeycomb-lattice ferromagnets for selected terminations. (Left column) Sketch of
stacks’ cross sections with blue and red circles indicating the termination spanning the full height of the stack. (Central and right columns)
Probability density of hinge magnons in a finite stack built from an odd (13) and even (12) number of layers. Each layer consists of 25×25
honeycomb unit cells. Black transparent (orange opaque) color indicates zero (maximal) probability density of the hinge magnon. The view
angle is chosen such that the frontmost hinge coincides with the lower right corner of the cross sections. (a)–(c) All-zigzag terminated cross
section with domain walls at the obtuse corners of the parallelogram. (d)–(f) Cross section with several blue vertical chains removed, giving
rise to a new termination domain and, hence, two new domain walls. (g)–(i) Upon removing all terminating sites at two opposite boundaries,
the domain walls get shifted to the acute corners. (j)–(l) Removing only the blue sites [compared to (a)] causes a uniform termination without
domain walls. (m)–(o) Removing the terminating sites from the surfaces enclosing the frontmost obtuse corner [compared to (a)] causes domain
walls at all hinges. Parameters read as d = j⊥ = δ j⊥ = 0.2 and b = 0.

chirality about the stacking direction [cf. Fig. 4(c)]. Nonethe-
less, the hinge magnons are still chiral as their propagation is
unidirectional.

Upon removing a couple of vertical blue chains from a sur-
face, a red domain arises within the formerly blue-terminated
surfaces [Fig. 4(d)]. Two new mass domain walls are created,

024406-4



CHIRAL HINGE MAGNONS IN SECOND-ORDER … PHYSICAL REVIEW B 104, 024406 (2021)

forcing the hinge magnon to take a detour in stacks with
an odd number of layers [Fig. 4(e)]. For an even number of
layers, two independent chiral hinge magnons, amounting to
two separate loops, are found [Fig. 4(f)].

Removing all terminating spins from two opposite sur-
faces, as depicted in Fig. 4(g), results in the domain walls
being shifted to the acute corners. The hinge magnons
redistribute accordingly [see Figs. 4(h) and 4(i)]. Hence, ter-
mination manipulations at the atomic level allow to engineer
samples with hinge modes at arbitrary hinges. In particular,
one may remove any domain walls [Fig. 4(j)], resulting in the
chiral modes not crossing the stack at all [Figs. 4(k) and 4(l)].
Similarly, domain walls at all hinges [Fig. 4(m)] cause chiral
hinge magnons at all hinges [Figs. 4(n) and 4(o)]. We reiterate
that the path of the hinge magnons depends also on the sign
of δ j⊥, as we explicitly show in Appendix D.

For the very special case that the Hamiltonian respects
inversion symmetry, the existence of chiral hinge magnons
is captured by the recently developed machinery of higher-
order topology [24–26], which associates a bulk topological
number with the hinge modes. We show in Appendix E how
to apply these tools to the present magnonic case but point
out that inversion symmetry is not a prerequisite for chiral
hinge magnons. As a matter of fact, Appendix F demonstrates
that the chiral hinge magnons are remarkably robust against
various types of inversion-symmetry-breaking bulk spin
interactions.

C. Spin dynamics simulations of chiral hinge magnons

The above analysis relied on the magnon wave function
as obtained within linear spin-wave theory. Next, we present
independent numerical evidence for chiral hinge magnons
by simulating a coherent excitation experiment by means of
atomistic spin dynamics simulations based on the Landau-
Lifshitz equation (see Appendix G 1 for technical details).

We consider a stack similar to that in Figs. 4(a)–4(c). An ac
magnetic field with an energy εex = 3.4JS within the global

band gap [where the hinge magnons cross the Γ point in
Fig. 3(d)] applied to a single spin at the obtuse hinges excites
the hinge magnon. Its chiral information transfer along the
three-dimensional (3D) path can be clearly traced both for an
odd number of layers [Fig. 5(a)] as well as for an even number
of layers [Fig. 5(b)]. In contrast, a local excitation at the acute
hinges does not result in chiral information transfer, but rather
in an evanescent wave [Fig. 5(c)]. This finding complies with
the absence of probability density of the chiral in-gap states at
the acute corners [cf. Figs. 3(e), 4(b), and 4(c)].

The simulations also reveal the hinge magnon’s robustness
against backscattering at defects. We model the defect by
locally applying large magnetic fields (along the z direction) to
a selection of hinge spins and their neighbors, such that a spin
wave has to pay a large potential energy penalty for crossing
this area. We find that the chiral hinge mode simply bypasses
the defect [Fig. 5(d)]. For the hinge magnon to scatter into
states with opposite momentum, it would have to scatter to the
opposite hinge, a process that is exponentially suppressed by
spatial separation. Hence, chiral magnon information transfer
is immune to defects. For movies of the snapshots shown in
Fig. 5, see Supplemental Material, videos 1-4 [41].

FIG. 5. Numerical simulation of a finite-sized SOTMI built from
(a), (c), (d) 31 or (b) 30 layers. There are 40×40 honeycomb unit
cells per layer. Snapshots show the time evolution upon a local
coherent excitation (indicated by the wavy arrow) with an energy
within the global band gap of the magnon spectrum [cf. Fig. 3(d)].
Black transparent (orange opaque) color indicates zero (maximal)
probability density. (a) Upon exciting a single spin at a domain
wall a topologically protected chiral magnon propagates around the
sample along the hinges. (b) For an even number of layers, a similar
excitation causes the hinge magnon to take a different path around the
sample. (c) Excitations at hinges without a domain wall merely cause
evanescent waves. (d) Due to the impossibility of backscattering
the chiral excitation bypasses defects at the hinges. For movies,
see Supplemental Material, videos 1–4 [41]: (a) SuppMov1.mov,
(b) SuppMov2.mov, (c) SuppMov3.mov, and (d) SuppMov4.mov.
The simulations are based on the Landau-Lifshitz equation without
damping. Parameters read as d = j⊥ = δ j⊥ = 0.2 and b = 0.

D. Robustness of chiral hinge magnons against disorder

The hinge magnons’ localization to domain walls may
be quantified by a localization length ξ , which is inversely
proportional to the surface gap � ∝ δ j⊥ from broken mirror
symmetry, thus, ξ ∝ 1/δ j⊥. For large enough domains, of size
	 	 ξ , neighboring counterpropagating hinge magnons are
well separated and do not hybridize. However, if the boundary
consists of domains 	 ≈ ξ , hinge states of opposite chirality
overlap and gap out. For example, consider the situation in
Fig. 4(d) as a gradual process parametrized by λ ∈ [0, 1].
Starting with no vertical chains removed (λ = 0), one chain
at a time is removed, until the termination of the manipu-
lated surface has fully changed from zigzag (blue) to bearded
(red) (λ = 1). Figure 6(a) shows the magnon spectrum of an

infinite stack at the Γ point [where the hinge modes cross,
cf. Fig. 3(d)] in dependence on λ. Two degenerate states are
found at 3.4JS (green line) corresponding to well-separated
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FIG. 6. Finite-size and disorder effects on chiral hinge magnons in SOTMIs. (a) Gapless 1D spectrum of an infinite stack at the Γ point
in dependence on λ which parametrizes the process of removing terminating vertical chains from one surface, a process similar to Fig. 4(d).
λ = 0: no chains removed [blue termination in Fig. 4(d)]. λ = 1: all chains removed (red termination). Spatially well-separated hinge magnons
appear as a green horizontal line. Two new hinge states associated with the new domain walls are colored in magenta. The gray continuum
indicates projected bulk and surface states. (b), (c) Probability density of the hinge magnon in a finite stack of an odd number (13) of layers
for (b) λ ≈ 0.12 and (c) λ ≈ 0.32. (d)–(f) Probability density of the hinge magnon for λ ≈ 0.24 and increasing disorder; (d) σb/� = 0;
(e) σb/� = 1.11; (f) σb/� = 1.48. The hinge modes due to short domains (	′) gap out for sufficiently large disorder. Parameters read as
d = j⊥ = δ j⊥ = 0.2 and b = 0 and the pillar’s cross section is built from 25×25 honeycomb unit cells per layer.

hinge modes [green arrows in Fig. 6(b)]. The surface gap
hosts two states that split off for λ close to 0 or 1 [ma-
genta lines in Fig. 6(a)]. In these limits, two domain walls
come close together, causing their hinge magnons to overlap
and gap out [magenta arrow in Fig. 6(b)]. However, around
λ = 0.5, the domain sizes are sufficiently large to suppress
finite-size effects and to enforce the chiral magnon to take a
detour, as depicted in Fig. 6(c). Thus, it is ξ (or �) what sets
the lower threshold for miniaturization of devices to support
chiral hinge magnons.

The size of the gap � also protects the chiral hinge
magnons against disorder, whose strength we denote by σb.1

For example, Fig. 6(d) shows the probability density of a
hinge magnon in the absence of disorder. The hinge magnon
takes a detour around a small domain of length 	′ > ξ . As dis-
order is increasing, the effective, disorder-averaged gap �(σb)
is decreasing, leading to an increasing ξ (σb) [see Fig. 6(e)].
Once ξ (σb) � 	′ the associated hinge magnons gap out [see
Fig. 6(f)]. Consequently, the hinge magnons of larger domains
are more robust against disorder than those of smaller do-
mains. Eventually, very strong disorder closes the gap and
causes localization. The effects of disorder are also captured
by spin dynamics simulations, presented in Appendix G 2
(for movies, see Supplemental Material, videos 5–9 [41]).

1We add random magnetic fields bz
i , drawn from a uniform dis-

tribution [− β

2 ,
β

2 ], to all spins. Within linear spin-wave theory, the
bz

i ’s enter the main diagonal of the Hamilton matrix, resembling
chemical-potential disorder known from electronic disorder stud-
ies. The disorder strength is measured by its standard deviation
σb = β/(2

√
3).

III. EXPERIMENTAL REALIZATION IN
VAN DER WAALS HETEROSTRUCTURES

As a specific example, we propose to realize the SOTMI
phase in designer materials, in particular, in van der Waals
(vdW) heterostructures that can be engineered with atomic
precision [42] and allow for monolayer magnetism [43]. Mag-
netic vdW layers are no exception to the extraordinary control
achieved by exfoliation [44,45] or growth through molecular
beam epitaxy [46]. In particular, we point out that heterostruc-
tures of magnetic and nonmagnetic layers have already been
synthesized [47,48]. Below, we take inspiration from these
impressive experimental results to construct a SOTMI vdW
heterostructure step by step.

So far, we considered stacks of layers with alternating
DMI. However, this restriction can be relaxed. Let us denote
the DMI of one layer by D and that of the neighboring layers
by D′. Without loss of generality, let D > 0. For D′ = −D,
we recover Hamiltonian (1) and the SOTMI phase discussed
above. However, for D′ = D, each layer has the same winding
number and all edge states have the same chirality. Hence, the
chiral states do not gap out and the stack is a first-order topo-
logical (thick) Chern insulator. The phase transition between
the two phases is associated with a bulk band-gap closing.
Importantly, due to the interlayer coupling J⊥, this closing
does not happen at D′ = 0 but at the nonzero critical value

D′
crit = 4

27

J2
⊥

D
> 0, (6)

along vertical lines in reciprocal space passing through the K
and K ′ points. The SOTMI phase is stable as long as D′ <

D′
crit, in particular, for D′ = 0. This opens up the possibility
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to realize a SOTMI by alternatingly stacking layers with and
without DMI.

There is plenty of experimental and theoretical evidence
that ferromagnetic monolayers of CrI3 are magnonic Chern
insulators. In particular, inelastic neutron scattering on bulk
CrI3 uncovered a bulk band gap within the honeycomb planes
[49,50] and the spin susceptibility of an itinerant fermion
description with parameters extracted from density functional
theory revealed a topological gap with chiral edge states in
a CrI3 monolayer [51]. Within an effective spin model, both
second-nearest-neighbor DMI D as well as Kitaev interaction
open a topologically nontrivial gap [22,52–56].

Other representatives of the family of chromium trihalides,
in particular CrBr3, exhibit negligible spin-orbit coupling, as
supported by both ab initio calculations [57] as well as neutron
scattering [58]. Within the spirit of our model, they represent
suitable D′ = 0 layers. Between the lattice constants of CrBr3

(6.45 Å) and CrI3 (6.97 Å) there is a relative mismatch of
about 8% [59]. However, the CrI3 layers may be replaced with
their Janus monolayer relative Cr(I,Br)3 with a lattice constant
6.47 Å [53], reducing the mismatch to below half a percent.

Heterostructures with a designer unit cell CrBr3/Cr(I,Br)3

already realize one of the most important ingredients: an al-
ternation between zero and nonzero DMI that allows for the
SOTMI phase as explained above. However, such heterostruc-
tures miss the dimerization pattern of the interlayer coupling
(δJ⊥ = 0) and are only first-order topological, as considered
in Ref. [60]. To design such dimerization, we propose to
use intermediate nonmetallic transition metal dichalcogenide
(TMD) layers. Several of these TMDs come with a lattice
constant that is almost half of that of the chromium trihalides,
examples are MoTe2 (3.5 Å), HfS2 (3.6 Å), and WSe2 (3.3 Å)
[61]. Hence, the TMD layer can be arranged in several Cr-
sublattices asymmetric setups, as explored in Ref. [61] (and
experimentally realized for MoSe2 on top of CrBr3 [48]):
either the metal atom, the chalcogen atom, or a vacancy is
on top of the Cr atoms. Ab initio calculations suggest that
the arrangement with chalcogen atoms on top of Cr atoms
is the most stable [61], as indicated in Fig. 7(a). The crucial
idea is now to flip every second TMD layer upside down,
resulting in the chalcogen atom to be located on top of the
other Cr atom [cf. Fig. 7(b)]. This alternating arrangement
of intermediate TMD layers results in a dimerization pattern
of the interlayer paths between Cr atoms [cf. Fig. 7(c)] that
also causes a dimerization of the interlayer exchange coupling
(δJ⊥ �= 0).

In conclusion, we propose to realize a SOTMI
in vdW heterostructures with the designer unit cell
TMD′/CrBr3/TMD/Cr(I,Br)3, where the prime distinguishes
the two configurations in Figs. 7(a) and 7(b). In the following,
we study the magnon topology of such a stack by means
of an effective magnetic Hamiltonian, with magnetic
interaction parameters either taken from experiments or
ab initio calculations. The influence of the TMD layers
is effectively accounted for in the coupling between the
chromium trihalide layers. Thus, we arrive again at a spin
Hamiltonian with spins situated at AA-stacked honeycomb
layers, as depicted in Fig. 7(d). We write the effective
spin Hamiltonian H = ∑

u H (u) as a sum over unit-cell

FIG. 7. Real-space construction of a SOTMI in a vdW het-
erostructure built from chromium trihalides layers and TMD layers.
Blue (red) spheres indicate the Cr atoms of the chromium trihalides
layers on the A (B) sublattice of the honeycomb lattice. Br and I
atoms are not indicated. Gray (yellow) spheres indicate the metal
(chalcogen) atoms of the TMD layer. The lattice constant of the TMD
layers is half of that of the chromium trihalides layers. (a) TMD
layer on top of Cr(I,Br)3, with the chalcogen atom on top of the
blue Cr sublattice. (b) Flipped TMD layer on top of CrBr3, with
the chalcogen atom on top of the red Cr sublattice. (c) Vertical
view of the vdW stack, with chalcogen atoms causing a dimerization
pattern, as indicated by dashed and solid lines. Metal atoms are not
indicated. (d) Effective magnetic model of the vdW layer stack, with
magnetic interactions indicated. In contrast to Fig. 2(a), the intralayer
Heisenberg exchange interactions (J and J ′) are different, the DMI
of every second layer is zero, and there is magnetic anisotropy A in
layers with nonzero DMI.

Hamiltonians

H (u) = H (u)
Cr(I,Br)3

+ H (u)
CrBr3

+ H (u)
Cr(I,Br)3→CrBr3

+ H (u)
CrBr3→Cr(I,Br)3

, (7)

which themselves are composed from sub-Hamiltonians
H (u)

Cr(I,Br)3
, H (u)

CrBr3
, H (u)

Cr(I,Br)3→CrBr3
, and H (u)

CrBr3→Cr(I,Br)3
that, re-

spectively, describe the magnetic interactions within the
Cr(I,Br)3 and CrBr3 layers, and between them. The spin quan-
tum number is S = 3

2 for all layers.
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We model the Cr(I,Br)3 layers by

H (u)
Cr(I,Br)3

= − J

2

∑
〈i j〉

S(u)
i · S(u)

j + D

2

∑
〈〈i j〉〉

νi j ẑ · S(u)
i × S(u)

j

− A
∑

i

(
S(u)

i,z

)2
, (8)

with J = 1.8 meV, D = 0.07 meV, and anisotropy A =
0.12 meV, as obtained from density functional theory [53].
The summations in Eq. (8) are to be understood over those
spins S(u)

i in the Cr(I,Br)3 layer of the uth unit cell. The lowest
honeycomb layer in Fig. 7(d) represents a Cr(I,Br)3 layer.

Some comments are due on those magnetic interactions
in Cr(I,Br)3 that we have neglected. First, we have ne-
glected further-neighbor Heisenberg exchange because of
their subdominant influence on the spectrum. Second, we
have neglected the Kitaev interaction in Cr(I,Br)3 [53] and
attributed the topological gap entirely to the second-nearest-
neighbor DMI. We point out that the specific origin of the
topological gap is not important to our proposal. Third, Janus
monolayers break inversion symmetry. As already shown, this
is not detrimental to the existence of chiral hinge magnons but
it allows for considerable in-plane DMI interaction that favors
noncollinear spin structures such as spin spirals or skyrmions
[53,62,63]. However, this tendency to spiralization can be
easily overcome by an external magnetic field. Consequently,
we neglect in-plane DMI altogether due to its subleading
influence on the magnon spectrum [64]. Fourth, out-of-plane
nearest-neighbor DMI [52] is neglected because it does not
open a topological gap.

As for the CrBr3 layer, neutron scattering data suggest that
it is very well modeled by

H (u)
CrBr3

= −J ′

2

∑
〈i j〉

S(u)
i · S(u)

j + D′

2

∑
〈〈i j〉〉

νi j ẑ · S(u)
i × S(u)

j , (9)

with nearest-neighbor Heisenberg exchange J ′ = 1.56 meV
only [58]. The absence of an experimentally resolvable topo-
logical magnon gap in CrBr3 implies D′ = 0, as indicated by
the absence of green arrows in the middle honeycomb layer in
Fig. 7(d).

For the coupling between the layers, we make the ansatz

H (u)
Cr(I,Br)3→CrBr3

= − (J⊥ + δJ⊥)
∑
i∈A

∑
j∈A

S(u)
i · S(u)

j

− (J⊥ − δJ⊥)
∑
i∈B

∑
j∈B

S(u)
i · S(u)

j , (10)

where i ( j) runs over spins in the Cr(I,Br)3 (CrBr3) layer of
the same unit cell. Similarly,

H (u)
CrBr3→Cr(I,Br)3

= − (J⊥ − δJ⊥)
∑
i∈A

∑
j∈A

S(u)
i · S(u+1)

j

− (J⊥ + δJ⊥)
∑
i∈B

∑
j∈B

S(u)
i · S(u+1)

j , (11)

where i ( j) runs over spins in the CrBr3 [Cr(I,Br)3] layer
of neighboring unit cells. This results in the effective dimer-
ization pattern depicted in Fig. 7(d). In the absence of exact
values, we have to estimate the interlayer exchange coupling

FIG. 8. Second-order topological magnons in a vdW heterostruc-
ture with the designer unit cell TMD′/CrBr3/TMD/Cr(I,Br)3. (a)–
(c) Magnon spectra along high-symmetry lines. For the definition
of high-symmetry points, see Fig. 3(a). (a) Gapped bulk magnon
spectrum. (b) Gapped zigzag-surface magnon spectrum, with black
lines indicating surface states and gray continua the projection of the
bulk bands. (c) Gapless pillar magnon spectrum, with orange lines
indicating chiral hinge modes and gray continua the projection of
bulk and surface states. The pillar cross section is all-zigzag termi-
nated, as in Fig. 4(a). (d), (e) Probability density of hinge magnons
in a finite stack. Each layer consists of 25×25 honeycomb unit cells.
Black transparent (orange opaque) color indicates zero (maximal)
probability density of the hinge magnon. (d) A stack built from
13 layers, with both the top and bottom terminating layers being
Cr(I,Br)3. (e) Stack built from 12 layers, with the top terminating
layer being CrBr3 and Cr(I,Br)3 for the bottom terminating layer.
Parameters read as J = 1.8 meV, D = 0.07 meV, J ′ = 1.56 meV,
D′ = 0.00 meV, A = 0.12 meV, J⊥ = 0.2 meV, δJ⊥ = 0.1 meV,
and S = 3

2 .

J⊥. From neutron scattering data it was extracted that the
interlayer coupling in bulk CrI3 is about four times smaller
than the intralayer coupling [49]. In our stack, due to the
intermediate TMD layers, the interlayer coupling is expected
to be smaller. We set J⊥ = 0.2 meV but note that the actual
value is not crucial; the ferromagnetic SOTMI phase is stable
as long as

0 < J⊥ <

√
JJ ′(2J + A − J ′)(2J ′ − J − A)

J + J ′ ≈ 0.8 meV.

(12)

Even if J⊥ was antiferromagnetic, an external magnetic field
could overcome the energy for both a spin-flop transition and
field polarization. Finally, for the dimerization, we take δJ⊥ =
0.1 meV. Again, the exact value is not important for magnon
topology; any nonzero δJ⊥ gaps out the surface states.

We proceed with a similar analysis as in Sec. II. The bulk,
surface, and pillar magnon spectra of the vdW layer stack
are depicted in Figs. 8(a)–8(c). The SOTMI phase is readily
verified by noting that both the bulk and the surface spectrum
are gapped but the pillar spectrum supports gapless chiral
hinge states within the band gap.
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Figures 8(d) and 8(e) show the probability density of the
chiral hinge magnon for a finite stack built from an odd and
even number of layers, respectively. For an odd number of
layers, both the top and bottom terminating layer is Cr(I,Br)3,
i.e., layers with nonzero DMI. Consequently, the probability
density of the chiral hinge magnon is well localized to the
vertical as well as the horizontal hinges. In contrast, for an
even number of layers, one of the terminating layers, the top
one in Fig. 8(e), has to be CrBr3, i.e., a layer with zero DMI.
Since this layer is not sandwiched by Cr(I,Br)3 layers, there is
no mechanism to gap out its Dirac magnons. Hence, the top
layer is gapless, causing the “hinge” magnon to spread out
over the entire top layer. (For a stack with CrBr3 for the top
and bottom layer, the hinge magnon spreads over both the top
and bottom layers). This finding is not in contradiction to the
claim of nontrivial second-order topology; in the absence of
DMI in the top layer, the hinge mode just hybridizes with a
gapless surface state. However, to facilitate an experimental
detection of chiral hinge magnons, it seems best to terminate
the stack with a Cr(I,Br)3 layer instead of a CrBr3 layer. In
any case, the hinge mode is strongly localized to the vertical
hinges.

IV. DISCUSSION OF NONLINEARITIES

So far, our analysis of chiral hinge magnons relied on
the harmonic approximation: we neglected magnon-magnon
interactions in the calculation of the magnon spectra and used
small excitation amplitudes in spin dynamics simulations.
Here, we comment on the effects of magnon-magnon inter-
actions and other nonlinearities to argue that second-order
topological magnons are robust against many-body effects. In
contrast to electrons, for which there is no small parameter to
perturbatively include electron-electron interactions, magnons
do allow for a perturbative analysis. The small parameter is
1/S or, effectively, temperature T in spin-wave theory and
the spin vectors’ deviation from the magnetization direction
(i.e., their opening angle) in spin dynamics simulations.

A. Zero-temperature magnon lifetime

Although the influence of disorder and defects is sup-
pressed by the topological gap, a finite lifetime of chiral
hinge magnons can still originate from phononic or, in metals,
electronic baths. For the nonmetallic stack under consider-
ation, spontaneous decays due to inelastic magnon-phonon
scattering cause a finite magnon lifetime, e.g., a magnon
spontaneously decays into another magnon at lower energy
under emission of a phonon. Similarly, magnetic interactions
that break spin rotation symmetry and connect in-plane with
out-of-plane spin components (e.g., SxSz) cause spontaneous
magnon decay into two other magnons [65]. However, both
effects should be small because to leading order (order 1/S)
they scale quadratically with the magnetoelastic coupling con-
stant and magnetic interactions originating from spin-orbit
coupling, respectively. (Enhancing effects due to van Hove
singularities in the joint magnon-phonon or two-magnon den-
sity of states [66] can always be avoided by magnetic-field
tuning). On top of that, at present, the influence of the chirality
of a topologically protected edge mode on the respective scat-

tering vertices has not been studied in detail. In the absence
of a detailed analysis, we model the finite magnon lifetime
τ = h̄/(αε) [67] by an intrinsic Gilbert damping α [68] that
we assume to be smaller than that of bulk magnons, i.e., of the
order α ∈ [10−5, 10−4]. With the hinge magnons appearing
approximately at an energy ε = 8.2 meV [cf. Fig. 8(c)], their
lifetime is estimated as τ ∈ [0.8 ns, 8 ns]. In spectral terms,
this corresponds to a zero-temperature linewidth no larger
than 1 μeV. The chiral hinge mode is well defined as long
as its supporting spectral gap is larger than its linewidth, as is
the case in Fig. 8(c).

B. Finite temperatures

When both magnetoelastic coupling and U(1) symmetry-
breaking magnetic interactions are negligible, number-
nonconserving interactions and spontaneous magnon decay
are ruled out. Then, number-conserving four-magnon interac-
tions become the leading-order many-body perturbation. They
are frozen out at zero temperature but renormalize the magnon
energy and damping at finite temperature [69]. At order 1/S,
four-magnon interactions cause a purely real renormalization
that uniformly shifts the magnon energies downwards in en-
ergy. For a single honeycomb layer, this effect was already
studied and found to scale with T 2 [70], with the exponent
determined by the dimension of the magnet. Extending this
analysis to three dimensions, we expect the scaling T 5/2.
The uniform compression of the magnon spectrum leads to
a reduction of the group velocities, implying that the chiral
hinge magnons slow down as temperature increases. Complex
self-energies appear first at order 1/S2 and describe addi-
tional magnon damping, which also scales with T 2 in two
dimensions [70] and, hence, with T 5/2 in three dimensions.
The stability of the chiral hinge modes is lifted when their
temperature-induced lifetime broadening becomes as large as
the spectral gap they cross. This condition defines a critical
temperature T ′ below which chiral hinge magnons can be
detected. The larger the spectral gap, the larger is T ′.

The above considerations apply to the case of zero mag-
netic field and in the absence of easy-axis anisotropy. Both
finite fields and easy-axis anisotropies shift the magnon
spectrum uniformly towards higher energies, exponentially
freezing out thermal effects due to a finite spin-wave gap.
Hence, thermal effects can be systematically suppressed by
external control or by an engineering of magnetic anisotropies
by strain [71].

C. Large excitation amplitudes

For the spin dynamics simulations in Sec. II C, we used
small excitation amplitudes, i.e., in-plane dynamic magnetic
fields with amplitude B0 � J . Then, the internal magnetic
fields due to the exchange interaction are much larger than the
external field and the spins are only slightly canted away from
the ferromagnetic ground-state direction. In this limit, nonlin-
earities of the equation of motion are suppressed, facilitating
the comparison with results obtained within the harmonic
approximation.

Here, we compare the B0 � J limit with the opposite
B0 	 J limit, in which the excited spin almost completely
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FIG. 9. Comparison of linear and nonlinear excitation of chiral hinge magnons in a finite-sized SOTMI. Snapshots show the time evolution
upon a local coherent excitation (indicated by the wavy arrow) with an energy within the global band gap of the magnon spectrum. Black
transparent (orange opaque) color indicates zero (maximal) probability density. (a) Excitation with a dynamic magnetic field the amplitude of
which is much smaller than the exchange energy: B0 = 0.05J . (b) Excitation with a dynamic magnetic field the amplitude of which is much
larger than the exchange energy: B0 = 20J . The magnetic interaction parameters are identical to those in Fig. 5.

aligns with the dynamic field. Hence, its opening angle is
approximately 90◦ and the linear spin-wave approximation
does not hold. Nonetheless, the results of spin dynamics sim-
ulations shown in Fig. 9 reveal very similar features for both
B0 � J [Fig. 9(a)] and B0 	 J [Fig. 9(b)]. The signal of the
excited chiral hinge magnon is clearly visible and excellently
compares with the results extracted from the linear theory. A
direct comparison of snapshots at equal times reveals that the
strongly excited chiral hinge magnon has a slightly smaller
propagation velocity. We conclude that chiral hinge magnons
and second-order magnon topology are remarkably robust
against nonlinearities.

V. CHIRAL HINGE MAGNONS FOR MAGNONICS

The SOTMI realized in vdW heterostructures may find
application in terahertz magnonics [72]. The group ve-
locity of the chiral hinge magnon along the stacking
direction is approximately v = 400 m/s, as extracted from
Fig. 8(c) and assuming a spacing of 1 nm between mag-
netic layers. Thus, a chiral hinge magnon propagates 	 =
vτ ∈ [0.32 μm, 3.2 μm] before decaying (τ is taken from
Sec. IV A). It crosses several hundred vdW layers during
its lifetime. To exploit the phase information of the chiral
magnon, the ratio 	/λ, with λ = 2π/k being the magnon
wavelength, must be large [67]. Thus, according to Fig. 8(c),
the excitation frequency must be chosen such that chi-
ral modes at k �= 0 are excited. For example, chiral hinge
magnons at k = 0.1 nm−1 have a wavelength λ ≈ 63 nm.
This corresponds to 	/λ ≈ 50 for an effective Gilbert damp-
ing α = 10−5 of chiral hinge magnons. Aside from the vdW
layers platform, an atomistic SOTMI may also be realized by
relying on recent advances in atomic-scale magnonic crystals
[73] or magnetic organic materials [74].

Our design principle for magnonic SOTMIs can also
be carried over to magnonic metamaterials for gigahertz
magnonics where ratios 	/λ ≈ 3000 are typical [67]. In par-
ticular, one may stack two-dimensional topological magnonic
crystals realized as (i) arrays of iron islands in an yttrium iron
garnet matrix [5], (ii) arrays of ferromagnetic particles [75],

(iii) arrays of magnetic rings [76], (iv) hexagonally arranged
triangular holes in patterned ferrimagnetic insulators [77], or
(v) artificial spin-ice metamaterials [78,79]. The Chern num-
bers of volume-mode bands are, respectively, determined by
(i) the aspect ratio of the islands, (ii), (iii) the external mag-
netic field, (iv) the orientation of the triangular holes, and (v)
the sign of the effective coupling between islands constituting
the spin ice. Within the description of Hamiltonian (1), layers
with alternating Chern number have to be stacked in such a
way that the stack exhibits no mirror symmetry in stacking
direction. Such stacks will realize gigahertz hinge magnons
with mean-free paths up to a millimeter. Using a similar
design idea, SOTMIs can also be implemented in magnonic
metamaterials built from three-dimensional coupled arrays of
spin torque oscillators [80], magnetic vortex structures [81],
magnonic quantum networks [82], or superconducting spin
qubits [83].

VI. CONCLUSION

We introduced a topological phase of matter dubbed
SOTMI to be realized either in magnetic metals or insula-
tors. Its hallmarks are chiral magnon states along its hinges.
We proposed to realize a SOTMI in van der Waals designer
materials. We demonstrated that a heterostructure of mag-
netic and nonmagnetic vdW layers exhibits a second-order
topological magnon spectrum and explicitly presented its chi-
ral hinge magnons. We showed that chiral hinge magnons
are remarkably robust against defects, disorder, periodic bulk
perturbations that break specific crystalline symmetries, and
nonlinearities, in particular, many-body perturbations both at
zero and nonzero temperature. Aside from being an exotic
second-order topological phase that could allow one to ex-
perimentally test the foundations of higher-order topology,
chiral hinge magnons open up possibilities to design 3D
magnonic “information highways,” circumventing the prob-
lem of nontopological magnon propagation in bent magnonic
waveguides [84]. Thus, SOTMIs are a promising candidate for
3D magnonics [85].
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APPENDIX A: LINEAR SPIN-WAVE THEORY

The excitations above a magnetically ordered ground state
can be addressed within spin-wave theory, whose main idea is
to map the spin operators Si onto bosonic creation and anni-
hilation operators a†

i and ai. In the limit of low temperatures,
within which the density of excitations is sufficiently small
that interactions between them may be neglected, a truncated
Holstein-Primakoff transformation [86]

Sx
i ≈

√
S

2
(ai + a†

i ), (A1a)

Sy
i ≈ −i

√
S

2
(ai − a†

i ), (A1b)

Sz
i = S − a†

i ai (A1c)

is appropriate; i2 = −1. For the model under consideration,
there are four spins in the basis because the dimerization
pattern due to δJ⊥ doubles the honeycomb unit cell in the

stacking direction. The bosonic operators may be labeled
an,Ri , where Ri is the coordinate vector of the ith magnetic
basis and n = 1, . . . , 4 enumerates the nth basis spin. After a
Fourier transformation

an,Ri = 1√
N

N∑
i=1

eik·Ri an,k, (A2)

to momentum k, where N is the number of unit cells, the
Hamiltonian reads as H − E0 ≈ H2 = ∑

k Ψ †
k · Hk · Ψ k. Here,

E0 is the unimportant classical ground-state energy and ΨT
k =

(a1,k, a2,k, a3,k, a4,k ) a vector built from Holstein-Primakoff
bosons associated with the four sublattices. The Fourier kernel
of the bilinear Hamiltonian H2 reads as

Hk = SJ

(
H‖,+

k H⊥
k

(H⊥
k )∗ H‖,−

k

)
. (A3)

The intralayer and interlayer submatrices of the Fourier kernel
are given by

H‖,±
k = (3 − b + 2 j⊥)σ0 + h‖,±

k · σ, (A4a)

H⊥
k = −( j+⊥ + j−⊥ cos kz )σ0 + i j−⊥ sin kzσ3, (A4b)

respectively. We used reduced parameters b = Bz/(JS), j⊥ =
J⊥/J , d = D/J , and δ j⊥ = δJ⊥/J , abbreviated j±⊥ = j⊥ ±
δ j⊥, and introduced the Pauli matrices σ0 (identity) and σ =
(σ1, σ2, σ3). Furthermore,

h‖,+
k =

⎛
⎜⎝

− cos[k · (−τ2)] − cos[k · τ3] − cos[k · (τ3 − τ2)]

sin[k · (−τ2)] + sin[k · τ3] + sin[k · (τ3 − τ2)]

2d
∑3

i=1 sin(k · τ i )

⎞
⎟⎠, (A5)

and

h‖,−
k =

⎛
⎜⎝

− cos[k · (λ − τ2)] − cos[k · (λ + τ3)] − cos[k · (λ + τ3 − τ2)]

sin[k · (λ − τ2)] + sin[k · (λ + τ3)] + sin[k · (λ + τ3 − τ2)]

−2d
∑3

i=1 sin(k · τ i )

⎞
⎟⎠ (A6)

with vectors

τ1 = (
√

3, 0, 0), (A7a)

τ2 = (−
√

3/2, 3/2, 0), (A7b)

τ3 = (−
√

3/2,−3/2, 0), (A7c)

λ = (0, 0, 1). (A7d)

The nearest-neighbor distance is set to one. The reason for
λ only entering h‖,−

k and not h‖,+
k is found in the inversion-

symmetric choice of the unit cell. While sites 1 and 2 belong
to the same unit cell, sites 3 and 4, although being in the same
honeycomb layer, belong to different unit cells.

The magnon energies εn,k and corresponding eigen-
vectors |n, k〉 are obtained by a unitary diagonalization
of Hk. The ferromagnetic order is stable for |δ j⊥| �
1
2

√
(−b + 2 j⊥)(−b + 2 j⊥ + 6); note that b < 0 for a spin

polarization along the z direction. Larger |δ j⊥| gives rise to
an antiferromagnetic phase.

APPENDIX B: WINDING NUMBER OF A SINGLE
HONEYCOMB LAYER

After a Holstein-Primakoff expansion about the ferro-
magnetic state polarized along the z direction, the bilinear
magnon Hamiltonian of a single honeycomb layer reads as
H2 = ∑

k Φ†
k · H̃k · Φk, where ΦT

k = (a1,k, a2,k ) is built from
the Fourier-transformed Holstein-Primakoff bosons associ-
ated with the two sublattices of the honeycomb. Relying on
the well-established analysis of two-level systems [87], the
Hamilton kernel

H̃k = d0
k σ0 + dk · σ (B1)

is expanded in terms of Pauli matrices σi (i = 0, 1, 2, 3). Its
eigenvalues read as

εk,± = d0
k ± |dk|. (B2)

As far as topology is concerned, d0
k = 3JS + B is an irrelevant

offset and the crucial information is encoded in the vector dk
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that determines the winding number

w = 1

4π

∫
BZ

dk

|dk|3 ·
(

∂dk

∂kx
× ∂dk

∂ky

)
dkxdky. (B3)

The integration is over the entire Brillouin zone (BZ). The
winding number measures how often the unit vector dk/|dk|
wraps around the unit sphere. Using the explicit expression

dk =
3∑

i=1

⎛
⎝−JS cos(k · δi )

JS sin(k · δi )
2DS sin(k · τ ′

i )

⎞
⎠, (B4)

where the vectors to nearest and second-nearest neighbors are
given by

δ1 = (
√

3/2, 1/2), (B5a)

δ2 = (−
√

3/2, 1/2), (B5b)

δ3 = (0,−1), (B5c)

and

τ ′
1 = (

√
3, 0), (B6a)

τ ′
2 = (−

√
3/2, 3/2), (B6b)

τ ′
3 = (−

√
3/2,−3/2), (B6c)

respectively, the integral (B3) may be evaluated numerically.
Alternatively, one may reexpress the winding number in terms
of the sign of the mass term d3

k at the K and K ′ points of the
Brillouin zone as [87,88]

w = 1
2

[
sgn

(
d3

K ′
) − sgn

(
d3

K

)]
. (B7)

Using K = (−4π/(3
√

3), 0) and K ′ = −K, one obtains

d3
K = −d3

K ′ = 3
√

3DS (B8)

and arrives at

w = −sgn(D). (B9)

In the stack of honeycomb layers at hand, the sign of DMI al-
ternates between adjacent layers. Hence, the winding number
of the lth layer reads as w(l ) = (−1)lsgn(D).

For a ferromagnetic state pointing along the negative-z
direction, one finds w = sgn(D) because a reversal of the
magnetization acts like a reversal of time that flips the chi-
rality of the edge modes. Denoting the ferromagnetic order
by m = ±1, with m = +1 (m = −1) referring to polarization
along the positive- (negative-) z direction, the winding number
of each layer reads as w(l ) = (−1)lsgn(mD).

APPENDIX C: MAGNONIC TOPOLOGICAL
CRYSTALLINE INSULATOR PHASES

For d �= 0, j⊥ �= 0 but δ j⊥ = 0, each honeycomb layer is a
mirror plane of the entire stack. This gives rise to a nontrivial
mirror Chern number [37,89] that stabilizes a surface Dirac
cone at the L point in the surface Brillouin zone [see surface
spectrum in Fig. 10(a)]. Thus, there is nontrivial first-order
topology, referred to as “topological crystalline insulator” and
labeled TCIL.

FIG. 10. Magnonic surface Dirac cones in topological crystalline
insulating (TCI) phases. (a) For δ j⊥ = 0, the honeycomb layers
are mirror planes, stabilizing a surface Dirac cone at the L point.
Other parameters read as d = j⊥ = 0.2 and b = 0. (b) For j⊥ = 0,
a surface Dirac cone at the M point is found. Other parameters
read as d = δ j⊥ = −b = 0.2. A finite b is necessary to stabilize the
ferromagnetic order.

Moreover, for d �= 0, δ j⊥ �= 0 but j⊥ = 0, the coupling
along the z direction is alternating in sign, effectively van-
ishing at kz = 0 and, hence, stabilizing a surface Dirac cone
at M [denoted as TCIM in Fig. 10(b)]. (Note that −b �√

9 − 4δ j2
⊥ − 3 must hold for a stable ferromagnetic phase

at j⊥ = 0).

APPENDIX D: SIGN REVERSAL OF δ j⊥

As explained in Sec. II B, the sign of δ j⊥ determines
whether the SSH-type chains at the surface are topologically
trivial or nontrivial. For an even number of layers, this means
that the chains’ ends either host or do not host end bound
states. For an odd number of layers, a dangling spin (hosting
the end bound state) is either found at one end or the opposite
end. Hence, by reversing the sign of δ j⊥ the path of hinge
magnons has to adapt accordingly.

Figure 11 shows the hinge magnons’ probability density
for stacks identical to those studied in Fig. 4, with the only
difference being the sign of δ j⊥. One verifies that those hinges
at the top and bottom surface that hosted hinge magnons for
δ j⊥ > 0 (Fig. 4) do not host hinge magnons for δ j⊥ < 0
(Fig. 11) and vice versa. Note that only the vertical hinges, i.e.,
those along the stacking direction, must host hinge magnons
because of the domain wall pattern being independent of the
sign of δ j⊥. A complete removal of hinge magnons is only
possible if there are no domain walls [see Fig. 11(j)] and the
stack is built from an even number of layers [see Fig. 11(l)],
with the SSH-type chains being topologically trivial.

APPENDIX E: SECOND-ORDER TOPOLOGY
FOR INVERSION-SYMMETRIC SAMPLES

A special situation is found for samples that hold spa-
tial symmetries, here, inversion symmetry, as present in
Figs. 4(a) and 4(g). A domain wall necessarily is accompa-
nied by another domain wall supporting a counterpropagating
mode at the symmetry-related position. The two positions
are separated by half of the sample’s circumference, the
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FIG. 11. Same as Fig. 4 but with reversed sign of dimerization pattern: δ j⊥ = −0.2.

largest possible spatial distance, maximally suppressing the
hybridization of counterpropagating chiral hinge modes. (We
assumed a convex sample cross section). In this spatially
symmetric case, a pair of chiral hinge magnons is dictated by a
bulk-hinge correspondence [40], a concept recently developed
in the field of higher-order topological phases [24–26,90–97].
Here, we demonstrate how to apply these tools to the
magnonic case at hand.

For the Fourier kernel Hk of the Hamiltonian in Eq. (A3)
we chose a magnetic basis that respects inversion with respect
to a hexagon’s center of mass. Hence, Hk = Hk+G, with G
being a reciprocal lattice vector [98]. Inversion symmetry

(or parity symmetry) implies HkU = UH−k, with U = σ0 ⊗
σ1. At a time-reversal-invariant momentum (TRIM) Γ abc =
(ag1 + bg2 + cg3)/2, with a, b, c ∈ {0, 1} and the gi’s (i =
1, 2, 3) being primitive reciprocal lattice vectors, we thus
have [HΓ abc , U] = 0. Consequently, the eigenvectors |n, k =
Γ abc〉 of HΓ abc are eigenvectors of U, with parity eigenvalue
pn(Γ abc) = ±1 (n = 1, . . . , 4) [89,98].

As shown in Fig. 3(b), the global band gap appears
between the lower and upper pair of bands. Hence, we in-
troduce the number n−(Γ abc) [n+(Γ abc)] of bands below
the third band with negative- (positive-) parity eigenvalue
at Γ abc. It enters the quadruple (νx, νy, νz; μ1) of symmetry

024406-13



MOOK, DÍAZ, KLINOVAJA, AND LOSS PHYSICAL REVIEW B 104, 024406 (2021)

TABLE I. Energy eigenvalues εn(Γ abc ), parity eigenvalues pn(Γ abc ) of all magnonic bands (n = 1, . . . , 4) at the eight TRIM Γ abc. The
associated number n−(Γ abc ) [n+(Γ abc )] of negative- (positive-) parity eigenvalues of the lowest two bands is given in dependence on j⊥. The
small table in the bottom right corner gives the respective symmetry indicators νx , νy, νz, and μ1, as defined in the text.

n−(Γ abc ) [n+(Γ abc )]

TRIM Γ abc Name εn(Γ abc ) pn(Γ abc ) j⊥ < 1
2

1
2 < j⊥ < 3

2
3
2 < j⊥

−b +1
−b + 4 j⊥ +1

Γ 000 Γ 0[2] 0[2] 1[1]−b + 6 −1
−b + 6 + 4 j⊥ −1

−b + 2 −1
−b + 2 + 4 j⊥ −1

Γ 010, Γ 100, Γ 110 M 2[0] 1[1] 1[1]−b + 4 +1
−b + 4 + 4 j⊥ +1

−b + 3 + 2 j⊥ − √
9 + 4δ j2

⊥ +1
−b + 3 + 2 j⊥ − √

9 + 4δ j2
⊥ −1

Γ 001 A 1[1] 1[1] 1[1]−b + 3 + 2 j⊥ + √
9 + 4δ j2

⊥ +1
−b + 3 + 2 j⊥ + √

9 + 4δ j2
⊥ −1

−b + 3 + 2 j⊥ − √
1 + 4δ j2

⊥ +1
−b + 3 + 2 j⊥ − √

1 + 4δ j2
⊥ −1

Γ 011, Γ 101, Γ 111 L 1[1] 1[1] 1[1]−b + 3 + 2 j⊥ + √
1 + 4δ j2

⊥ +1
−b + 3 + 2 j⊥ + √

1 + 4δ j2
⊥ −1

Symmetry indicator j⊥ < 1
2

1
2 < j⊥ < 3

2
3
2 < j⊥

νx 0 0 0
νy 0 0 0
νz 0 0 0
μ1 2 3 0

indicators [40,99–103], which is used to characterize second-
order topology. The weak indices read as [40]

νx =
∑

b=0,1

∑
c=0,1

n−(Γ 1bc) mod 2, (E1a)

νy =
∑

a=0,1

∑
c=0,1

n−(Γ a1c) mod 2, (E1b)

νz =
∑

a=0,1

∑
b=0,1

n−(Γ ab1) mod 2, (E1c)

and the strong index [40]

μ1 =
∑

a=0,1

∑
b=0,1

∑
c=0,1

n+(Γ abc) − n−(Γ abc)

2

= −
∑

a=0,1

∑
b=0,1

∑
c=0,1

n−(Γ abc) mod 4. (E2)

Nonzero να’s imply weak Chern insulators stacked in α =
x, y, z direction. In contrast, the Z4 indicator μ1 is innately
3D. If μ1 is odd, the Chern numbers in the kz = 0 and π

planes are opposite, enforcing a band crossing somewhere in-
between; this implies a first-order topological Weyl semimetal
phase [104,105]. In contrast, no crossing is enforced for even
μ1, admitting of either trivial (μ1 = 0) or nontrivial (μ1 = 2)
band gaps [103].

The parity eigenvalues of the four magnon bands are listed
in Table I. Since the basis is chosen with respect to a center of
inversion that respects the symmetries of the hexagonal lattice,

the three M points (Γ 010, Γ 100, Γ 110) exhibit the same parity
eigenvalues; so do the three L points (Γ 011, Γ 101, Γ 111). Note
that j⊥ determines the energetic order of the bands. Hence, the
numbers of bands with negative- and positive-parity eigen-
values below the third band also depend on j⊥. So do the

FIG. 12. Topological magnon phase diagram of a stack of ferro-
magnetic honeycomb layers. For j⊥ < 1

2 , a second-order topological
magnon insulator (SOTMI) is found, bounded by two topological
crystalline insulating (TCI) phases, with surface Dirac cones either
at L (TCIL) or M (TCIM ); see Appendix C. At j⊥ = 1

2 , pairs of Weyl
points of opposite topological charge split from the M points and, as
j⊥ increases up to 3

2 , move to the Γ point, where they annihilate (see
insets), giving rise to a trivial insulator phase for 3

2 < j⊥.
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FIG. 13. Evolution of magnon arcs at the surface of the magnonic Weyl semimetallic phase. A stack of finite height with open boundary
conditions in the stacking direction (z direction) but periodic boundary conditions in the honeycomb planes (x and y directions) exhibits six
projections of Weyl points within the surface Brillouin zone (see circles). The circles’ color indicates the opposite topological charge of the
Weyl points (red vs blue). The color plot depicts the spectral function at the energy of the Weyl points, with yellow (pink) features being located
at the bottom (top) surface of the stack. For j⊥ > 0.5, a pair of Weyl points splits from the M points (a). Oppositely charged Weyl points move
in opposite directions towards the Γ point as j⊥ increases (b)–(f). Eventually, the Weyl points annihilate at the Γ point for j⊥ = 1.5. The
magnon arcs always connect Weyl point projections of opposite topological charge. Other parameters read as d = δ j⊥ = 0.2 and b = 0.

symmetry indicators, given in the small table in the bottom
right corner.

Overall, we obtain the topological phase diagram in
Fig. 12. The weak indices νx, νy, and νz are always triv-
ial (cf. small bottom right table in Table I), signaling the
absence of weak topology. In contrast, for the physically
most relevant scenario of weakly coupled layers j⊥ < 1

2 , a
strong nontrivial indicator of second-order topology is found
(μ1 = 2), dictating the existence of chiral hinge magnons.
However, we reiterate that inversion symmetry is not neces-
sary to obtain hinge magnons. They are robust against both
inversion-asymmetric sample shapes (cf. Fig. 4) as well as
magnetic interactions (see Appendix F).

Stronger interlayer coupling, 1
2 < j⊥ < 3

2 , causes a
semimetallic phase with Weyl magnons [106–109] (μ1 = 3).
At j⊥ = 1

2 , pairs of oppositely charged Weyl points split from
the M points. As j⊥ increases, they move along M → Γ until
they meet at Γ , where they annihilate (see insets in Fig. 12).
At the surfaces of the stack Weyl point projections of opposite
charge are connected by magnon arcs, as depicted in Fig. 13.
After the Weyl points have annihilated, a topologically trivial
insulating system is found for 3

2 < j⊥ (μ1 = 0), which does
not exhibit chiral hinge magnons.

The topological invariants are independent of d and δ j⊥;
still, these parameters are necessary to ensure that there is
a bulk and surface gap, respectively, in the SOTMI phase.

For d = 0, there is no bulk gap to begin with, rendering a
discussion of hinge modes moot. Finite δ j⊥ is necessary to
break mirror symmetry (see Appendix C).

APPENDIX F: EFFECTS OF BROKEN
INVERSION SYMMETRY

The symmetry indicator μ1 in Eq. (E2) relies on in-
version symmetry, a crystalline symmetry that is easily
broken in any real material, e.g., by finite-density disorder
or inversion-asymmetric sample shapes. The robustness of
chiral hinge states against disorder is studied in Sec. II D and
Appendix G 2. Here, we provide further evidence that inver-
sion symmetry is not a prerequisite for chiral hinge magnons
by showing that inversion-symmetry-breaking perturbations
do not jeopardize their stability. Three perturbations are con-
sidered:

Hpert =
∑

l

∑
i

Bz
i S

(l ),z
i

− KA

∑
l

∑
i∈A

(
S(l ),z

i

)2 − KB

∑
l

∑
i∈B

(
S(l ),z

i

)2

+ δD

2

∑
l

∑
〈〈i j〉〉

νi j ẑ · S(l )
i × S(l )

j , (F1)

024406-15



MOOK, DÍAZ, KLINOVAJA, AND LOSS PHYSICAL REVIEW B 104, 024406 (2021)

FIG. 14. Magnon spectrum of an infinite stack of honeycomb layers with nontrivial second-order topology in the presence of perturbations.
The pillar has an all-zigzag terminated parallelogram cross section. The gray continua indicate projected bulk and surface states. The orange
lines indicate hinge states. For all cases, these hinge states are chiral. (a) In the presence of a magnetic-field gradient ∇xBz/J = 0.008/a
(a lattice spacing) inversion symmetry is broken. (b) A sublattice-asymmetric easy-axis anisotropy (KA/J = 0.2 and KB/J = 0) also breaks
inversion symmetry. (c) For δD/J = 0.1, adjacent layers have DMI that is not exactly opposite. (d) All perturbations combined, with (e)
showing a blowup of the spectral gap. Other parameters read as d = j⊥ = δ j⊥ = 0.2 and b = 0.

(1) a magnetic field gradient ∇Bz (the local magnetic fields
Bz

i are chosen accordingly), (2) sublattice-dependent easy-axis
anisotropies KA > 0 and KB > 0, and (3) layer-asymmetric
modulus of DMI by adding positive δD to all second-nearest-
neighbor bonds. The first two perturbations break inversion
symmetry. The latter does not but it removes the constraint of
exactly opposite DMI.

Figure 14 shows pillar band structures in the presence of
the above perturbations. The pillar’s cross section is a par-
allelogram with all-zigzag termination, similar to that shown
in Fig. 11(a). For a magnetic field gradient along the x
direction, the two hinge states experience different rigid en-
ergy shifts. Hence, in the spectrum the crossing of the hinge

modes is no longer found at the Γ point but at nonzero kz

[see Fig. 14(a)]. Nonzero KA and KB effectively create onsite
potentials for magnons. For KA �= KB, inversion symmetry
is broken. Nonetheless, as long as these potentials are not
strong enough to close the gap, chiral hinge magnons remain
robust [see Fig. 14(b)]. Finite δD models the situation that the
alternating layers do not have exactly opposite DMI. Although
this does not break inversion symmetry, we point out that the
chiral hinge states are robust [see Fig. 14(c)] even in this more
general model. Finally, Fig. 14(d) depicts the pillar band struc-
ture in the simultaneous presence of all these perturbations.
Although the gap is considerably decreased, Fig. 14(e) proves
that there are still chiral hinge magnons.

We conclude that spin Hamiltonian (1) does not have to
be “fine tuned” to yield nontrivial second-order topology for
magnons. Quite in contrast, even strong perturbations with
energy scales similar to that of D and δ j⊥ do not destroy chiral
hinge magnons. The same robustness is expected against per-
turbations that break the U(1) spin rotation symmetry about
the z direction, e.g., dipolar interactions.

APPENDIX G: ATOMISTIC SPIN
DYNAMICS SIMULATIONS

1. General comments

Due to the semiclassical nature of the harmonic magnon
theory, the nontrivial topology of spin waves can be captured
by classical spin dynamics. It is based on the equation of

motion h̄Ṡi(t ) = −Si(t )×Bi(t ), describing the precession of
each spin vector Si in the effective magnetic field Bi due to
its neighbors. Here, t denotes time. For simplicity, Gilbert
damping is neglected and temperature is set to zero.

Starting from the fully polarized ferromagnetic ground
state (along the z direction), we apply a dynamic magnetic
field br = b0 sin(tεex/h̄)x̂ to a single spin (index r); x̂ is a unit
vector along the x direction. It causes a coherent excitation of
magnons at energy εex, provided they have finite probability
density at site r. A small amplitude b0 � 1 is chosen to avoid
nonlinear dynamics (which correspond to magnon-magnon
interactions). To trace the excitation, we measure the discrete
amplitude Ai(t ) = √

[Sx
i (t )]2 + [Sy

i (t )]2 of each spin upon nu-
merical integration of the equation of motion. For plotting, we
convert Ai(t ) into a continuous density A(t, r), with r denoting
the position in the finite sample.

We consider a finite-sized sample with 30 or 31 layers
of 40×40 honeycomb unit cells with “compensated” bound-
aries (see Appendix H for explanation). The cross section
of the pillar is a parallelogram with all-zigzag termination,
hosting chiral hinge magnons at the two opposite obtuse
corners [cf. Figs. 3(e), 4(b), and 4(c)]. We set εex/(JS) =
3.4, which is right in the middle of the global band gap
[cf. Fig. 3(d)].

2. Simulations with disorder

The excited spin is situated at an obtuse hinge but the
bulk is disordered. We add random magnetic fields bz

i , drawn
from a uniform distribution [− β

2 ,
β

2 ], to all spins. For small
disorder strengths, such that their standard deviation σb =
β/(2

√
3) is smaller than the surface gap � ≈ 0.54 [cf.

Fig. 3(d)], the chiral hinge magnons survive; see Figs. 15(a)–
15(c). However, once σb approaches �, disorder slows down
the hinge magnons and eventually causes localization of
the formerly propagating hinge magnons; see Figs. 15(d)
and 15(e). For movies, see Supplemental Material, videos
5–9 [41]: SuppMov5.mov, SuppMov6.mov, SuppMov7.mov,
SuppMov8.mov, SuppMov9.mov. The respective ratios R =
σb/� between disorder strength and band gap are R = 0.21,
0.43, 0.64, 0.86, and 1.07.
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FIG. 15. Snapshots of Supplemental Material, videos 5–9 [41]: (a) SuppMov5.mov, (b) SuppMov6.mov, (c) SuppMov7.mov,
(d) SuppMov8.mov, and (e) SuppMov9.mov. From top to bottom, the rows show simulations with increasing disorder, (a) R = 0.21,
(b) R = 0.43, (c) R = 0.64, (d) R = 0.86, and (e) R = 1.07, where R = σb/� gives the ratio of disorder strength σb and the surface band
gap �. Upon exciting a spin at an obtuse hinge, a chiral magnon is launched, whose propagation is severely hindered once R � 1.

APPENDIX H: ANALYSIS OF “UNCOMPENSATED”
BOUNDARIES

Throughout this work, we discussed the ideal case of “com-
pensated” boundaries. To explain this term, we first discuss
“uncompensated” boundaries. Boundary spins have a lower
coordination number than bulk spins. Hence, the effective
field acting on a surface spin is reduced, lowering its exci-
tations in energy. (Colloquially speaking, surface spins are
“more floppy” than bulk spins). This causes a downward shift
of the surface states, as shown in Fig. 16(a), if we leave the
surface “uncompensated.” As a consequence, the surface band
gap is decreased [Fig. 16(b)] and the hinges also host trivial
states that may hybridize with the chiral states [Fig. 16(c)],
whose existence is still dictated by bulk topology.

There are several additional effects of this downward shift:
First, the small surface band gap causes a spread of the hinge
states, i.e., their probability density is less sharply localized
at the hinges. Second, there are critical values for d and δ j⊥,
below which a global band gap is absent. Figure 17 depicts
the global gap, i.e., the overlap of bulk and surface gap, in the
SOTMI phase for selected values of d and “uncompensated”

boundaries. For too small a d , the surface gap and bulk gap do
not overlap, because the surface gap at M is below bulk states

FIG. 16. Magnonic spectra for “uncompensated” boundaries.
(a) 2D surface magnon spectrum, with gray continuum indicating
projected bulk states and sharp black lines surface states. Compared
to Fig. 3(c), the surface states are shifted downwards in energy
with respect to the bulk states. (b) Zoom into the surface band gap.
(c) Gapless 1D spectrum with chiral hinge magnons (black lines).
The chiral modes hybridize with a trivial surface state that does not
cross the band gap.
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FIG. 17. Global band gap, defined as the overlap of the bulk and
surface band gap, for selected values of d in dependence on j⊥ and
δ j⊥. “Uncompensated boundaries” are considered. When the surface
and bulk band gaps do not overlap, the global gap vanishes (dark blue
color).

at the K points (surface projections of the K and K ′ points of
the 3D BZ); hence, there is no global gap. Moreover, for too
small a δ j⊥, the surface gaps at M and L do not overlap, also
yielding zero global gap. We find that d � 0.16 and δ j⊥ � j⊥
ensure a finite global gap for “uncompensated boundaries.”

We also considered “uncompensated” boundaries in our
spin dynamics simulations. A sample size of 31 layers of

time

FIG. 18. Snapshots of Supplemental Material, video 10:
SuppMov10.mov. A stack of 31 layers with “uncompensated”
boundaries of 80×80 honeycomb unit cells is simulated.

80×80 honeycomb unit cells is simulated, with εex/(JS) =
2.85 [well within the surface gap; cf. Fig. 16(c)]. Again, the
excitation travels along the hinges but also spreads consider-
ably along the neighboring surfaces due to the less sharply
localized wave function of the hinge magnon (see Fig. 18).
For a movie, see Supplemental Material, video 10 [41]:
SuppMov10.mov.

To engineer the surfaces the finite-size system could be
immersed in (or its surfaces proximitized to) another magnet
with an overlapping but topologically trivial band gap. Then,
the coordination number of boundary spins equals that of the
bulk spins and boundary states are shifted upwards again.
Throughout this work, we simulated such “compensated”
boundaries by boundary-located magnetic fields that exactly
compensate for missing neighbors. Overall, the difference
between “compensated” and “uncompensated” boundaries
offers another degree of freedom for the design of hinge
magnons, which may be exploited in future magnonic
architectures.
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