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Spin waves in alloys at finite temperatures: Application to the FeCo magnonic crystal
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We study theoretically the influence of temperature and disorder on the spin-wave spectrum of the magnonic
crystal Fe1−cCoc. Our formalism is based on the analysis of a Heisenberg Hamiltonian by means of the wave
vector and frequency-dependent transverse magnetic susceptibility. The exchange integrals entering the model
are obtained from the ab initio magnetic force theorem. The coherent potential approximation is employed to
treat the disorder and random phase approximation in order to account for the softening of the magnon spectrum
at finite temperatures. The alloy turns out to exhibit many advantageous properties for spintronic applications.
Apart from a high Curie temperature, its magnonic band gap remains stable at elevated temperatures and is
largely unaffected by the disorder. We pay particular attention to the attenuation of magnons introduced by
the alloying. The damping turns out to be a nonmonotonic function of the impurity concentration due to the
nontrivial evolution of the value of exchange integrals with the Co concentration. The disorder-induced damping
of magnons is estimated to be much smaller than their Landau damping.
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I. INTRODUCTION

Magnon spintronics, or magnonics, is a novel promising
strategy in the engineering of data processors [1]. It takes
advantage of spin waves (also called magnons) in order to
perform logical computations [2,3]. Magnons emerge as col-
lective excitations of magnetically ordered solids and can
be pictured as a wavelike coherent precession of atomic
moments [4]. In periodic structures, including atomic lat-
tices, these quasiparticles are Bloch waves, carrying energy
and crystal momentum. Magnonic computers avoid numer-
ous drawbacks of classical semiconductor-based computers,
but they rely heavily on suitably designed magnon propa-
gation media. Their particularly relevant class are magnonic
crystals [5,6] featuring spin-wave propagation properties not
typically found in common magnetic solids such as elemental
ferro- and antiferromagnets, especially the emergence of a
magnonic gap, i.e., frequency bands in which magnon states
cannot propagate in the solid [7,8]. This feature, combined
with a unique spin-wave dispersion close to the band edges,
provides a rich toolbox for magnon mode engineering, in-
cluding the possibility of selective spin-wave excitations and
propagation, magnon mode confinement and deceleration, and
band-gap soliton generation [9–11].

The bulk of the current research in this domain revolves
around the utilization of long-wavelength magnons with ener-
gies in the gigahertz band. Nevertheless, in order to definitely
push the size and speed limits of modern semiconductor com-
puters, one must resort to the spin waves in the terahertz
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regime. While the foundations are laid for magnonic infor-
mation processing in the terahertz regime, the potential for
terahertz magnonics remains vastly unexplored [12]. At the
same time, one expects well-defined spin waves in this energy
range [13], and in systems with many different atoms in the
primitive cell, the modes may well arrange in bands separated
by a magnonic gap [14], yielding natural magnonic crystals.

Here, we concentrate on the ferromagnetic Fe1−cCoc alloy.
With typical magnon energies well within the terahertz range,
a high Curie temperature [15,16], and the band gap in the
spectrum, opening due to the large difference in the interac-
tion strengths and magnetic moments of the constituents and
remaining stable at elevated temperatures, the alloy family
shows all the necessary properties for terahertz magnonic
crystals. It is interesting to note that the magnonic crystals
used in terahertz applications are typically artificial het-
erostructures obtained from elaborate fabrication processes.
On the contrary, in the terahertz range, the natural microscopic
arrangement of atoms in alloys such as Fe1−cCoc would suf-
fice to create cheap magnonic crystals.

In metals, the lifetime of the modes is limited by the in-
teraction of these collective modes with the single-particle
continuum, called Landau damping [17–19], but means of
the viable engineering of long-living magnons has been pro-
posed, such as reducing the system’s dimensionality and
alloying [20]. The latter method leads to a further momentum
dissipation mechanism, in which the Bloch waves cease to be
the eigenstates of the magnetic Heisenberg-like Hamiltonian
and acquire a finite lifetime arising from the scattering on
the crystal imperfections [21,22]. This picture of the weak
attenuation might break down if the magnon spectra become
dominated by strongly spatially localized modes. A further
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mechanism limiting the lifetime of the magnon modes, and
thus their potential to propagate dissipationlessly through the
medium, is the interaction of the modes with a thermal bath.

Solids, and in particular nanostructures, often feature struc-
tural imperfections. Furthermore, in order to be usable, the
magnonic computers must be able to operate at and typi-
cally well above room temperature. Thus, it is prudent to
delve into the central question of this paper, namely how
the magnonic properties evolve in real, imperfect, or alloyed
solids at nonzero temperatures. We show that the increase
of the disorder in the Fe1−cCoc alloy not only preserves the
magnonic gap but can even be used to precisely engineer its
value and further properties.

Among others, we address the influence of temperature and
disorder on the magnonic band gap as well as on the disper-
sion and lifetimes of the spin waves. Our formalism is based
on the coherent potential approximation (CPA) applied to the
disordered Heisenberg ferromagnet [21]. This description of
magnetic degrees of freedom with an effective Heisenberg
Hamiltonian, although originally put forth for the description
of magnetic insulators, has been shown to yield remarkably
accurate results for metallic magnets also beyond the long-
wavelength limit in which it can be shown to be formally
accurate [23–26]. The superiority of our method compared
to other treatments of the same problem is the possibility to
account for complex crystal structures. To incorporate finite-
temperature effects, we implemented a modified version of the
random phase approximation (RPA) discussed in Ref. [27].
Our formalism does not include the Landau damping of the
spin waves. This attenuation mechanism can be pronounced
in metallic magnonic crystals and can be described within the
framework of many-body perturbation theory (MBT) [28,29]
or time-dependent density functional theory (TDDFT) [18]
(called “dynamical methods”). Unfortunately, at the moment,
no feasible formal and computational methodology allowing
one to incorporate the effects of disorder into these two ap-
proaches has been put forward. However, those dynamical
methods reveal that in most ordered three-dimensional 3d
itinerant magnets, except for moderate Landau broadening,
well-defined magnons are indeed expected in the entire Bril-
louin zone, possibly with the exception of bcc Fe where the
“spin-wave disappearance” phenomenon sets in in limited
parts of the Brillouin zone [18]. Relevant for the case of
FeCo, the MBT calculations of Şaşıoğlu et al. [28] predict
the existence of well-defined spin waves in the entire zone
both for the acoustic and optical modes. Correspondingly,
neutron scattering experiments (cf. references in Ref. [18])
and spin-polarized electron energy loss spectroscopy [30–33]
probe clear high-energy spin-wave signals in the entire zone.
Although neither calculations based on the magnetic force
theorem (MFT) nor TDDFT can properly describe spin waves
in Ni, magnons in Co and Fe are well reproduced for almost
the whole Brillouin zone (BZ) and a large frequency range
(see, e.g., Refs. [32,33]). An even better agreement between
the MFT calculations and experiment is achieved in layered
materials [34–39], caused by a significantly weaker interac-
tion with the Stoner continuum compared to 3D materials.
When the associated Heisenberg model is employed at ele-
vated temperatures it yields a very good account of the phase
transition temperatures (even in bcc Fe), indicating that the

high-temperature phase is essentially correctly captured as
well [40,41]. Thus it is reasonable to apply the Heisenberg
model to study the impact of disorder on the damping of spin
waves.

The paper is organized as follows: In Sec. II, the theoretical
background of the RPA-CPA theory for disordered Heisen-
berg ferromagnets is discussed. Some numerical details are
given in Sec. III. The results are presented in Sec. IV.

II. THEORY

The Heisenberg ferromagnet is characterized by the Hamil-
tonian

H = −1

2

∑
i, j

Ji j ei · e j, (1)

where Ji j are the exchange parameters which can be obtained
from the magnetic force theorem [42,43] and ei is a unit vector
in the direction of the magnetic moment. To calculate the
magnon properties, the transverse susceptibility [44]

χi j (t, t ′) = −i �(t − t ′)[μ+
i (t ), μ−

j (t ′)], (2)

with μ±
i = μx

i ± iμy
i , μα

i being the α component of the
magnetic moment μi on the lattice site i, and the overline
represents a thermal average, is computed. The corresponding
equation of motion reads

zχi j (z) = 2gδi j μ
z
i − g

∑
�

μz
i

μiμ�

Ji� χ� j (z)

+ g
∑

�

μz
�

μiμ�

Ji� χi j (z). (3)

with the electron Landé factor g and the energy z = E + iε.
The disorder is modeled by defining the occupation variables

piα (R) =
{

1 species α on basis site i in unit cell R,

0 else,
(4)

and a species resolved Fourier transformation of the suscepti-
bility,

χ
αβ
i j (k, k′) :=

∑
R,R′

piα (R)e−ik·R χi j (R, R′)pjβ (R′)eik′ ·R′
. (5)

In the following, it is useful to introduce a combined site and
species index denoted by (i) = iα, ( j) = jβ, etc. Writing the
susceptibility given in formula (3) as a series and performing
the Fourier transformation [Eq. (5)] leads to expressions with
products of Fourier transformed occupation variables

	(i)(k) =
∑

R

p(i)(R)e−ik·R. (6)

The averaging process needs to be done very carefully as
described in Refs. [21,45] and leads to the appearance of
cumulants of order n given by

Cn
(�1 )(�2 )···(�n )(k1, k2 · · · kn) = Pn

(�1 )(�2 )···(�n )(c)

· 
BZ δ(k1 + k2 + · · · + kn), (7)

where c is a matrix with the concentrations of each species on
the sublattices and the weight functions Pn

(�1 )(�2 )···(�n )(c). There
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FIG. 1. Diagrammatic representation of the main results of the
CPA theory. (a) Fourier transformation of series (3), (b) average of
the second term in (a), (c) the averaged susceptibility X written as
a product of the effective medium propagator Ξ (thick line) and
the spin weight W , (d) Dyson equation for the effective medium
propagator, (e) definition of the self-energy Σ , and (f) definition of
the spin weight W .

is no analytic representation of the latter but the first two are
given by

P1
(i) = c(i),

P2
(i)( j) = δi j (δαβ c(i) − c(i) c( j) ). (8)

A summary of the resulting formulas after the Fourier
transformation and the averaging can be found in Fig. 1 in
diagrammatic form where the following symbols have been
used:

(1) The τ matrix

τ
(�)
(i)( j)(k, k′) = gμ−1

( j)

(
J( j)(�)(k − k′)

μz
(�)

μ(�)
δ(i)( j)

−J(�)( j)(k
′)

μz
(i)

μ(i)
δ(i)(�)

)
, (9)

where

J(i)( j)(k) =
∑

R

J(i)( j)(R)e−ik·R, (10)

is represented by a solid square.
(2) The solid circle represents a T matrix,

T(i)( j)(k, k′) =
∑
(�)

	(�)(k − k′)τ (�)
(i)( j)(k, k′). (11)

(3) An open square stands for an σ matrix,

σ
(�)
(i)( j) = 2gδ(i)( j)δ(i)(�)μ

z
(�). (12)

(4) The S matrix is depicted as an open circle and is given
by

S(i)( j)(k, k′) =
∑
(�)

	(�)(k − k′)σ (�)
(i)( j). (13)

(5) The propagator of uncoupled magnetic moments, rep-
resented by a solid line, is given as

Γ(i)( j)(z) = z−1δ(i)( j). (14)

(6) A cumulant of order n is represented by a crossed circle,
where the order is given by the number of dashed lines ending
at it.

Furthermore, two rules for the interpretation of the dia-
grams need to be followed:

(1) The elements brought together in a diagram undergo
a matrix multiplication in the (i)( j) space. The correspond-
ing matrix indices are written as subscripts in the definitions
above.

(2) Every internal free propagator is assigned a momentum
which is integrated over,

1


BZ

∫

BZ

d3k1. (15)

Every term of the series for the susceptibility in Fig. 1(a)
is averaged independently. The result for the second term is
shown in Fig. 1(b). In the CPA, crossed terms, which appear
in the fourth- and higher-order terms, are neglected. This
model represents a single-site approximation and neglects all
correlations between two or more sites. As these averaged
diagrams consist of two different vertices (solid and open
squares), the averaged susceptibility can be written as a prod-
uct of two different contributions which we call the effective
medium propagator Ξ and the spin weight W as is shown in
Fig. 1(c). The effective medium propagator is given in terms
of a Dyson equation shown in Fig. 1(d) with a self-energy
defined in Fig. 1(e). Together with the definition of the spin
weight in Fig. 1(f), all noncrossed diagrams of the averaged
susceptibility can be constructed.

The calculation of the self-energy is done through the par-
tial self-energies defined by

ciαΣ̂
iα = P1

iα1 + P2
iβ,iαM iβ + P3

iγ ,iβ,iαMiγ M iβ + · · · , (16)

where the M matrix is given by

M (i)(z, k, k′) = τ (i)(k, k′)Ξ(z, k′). (17)

With that the self-energy is given by

Σ(z, R, R′) =
∑

(i)

c(i)
∑
R1

Σ̂
(i)

(z, R, R1)τ (i)(R1, R′), (18)

which can also be seen through its diagrammatic defini-
tion. The self-consistency equation inspired by the works of
Refs. [45,46] is given by

Σ̂
(i) = [1 − (M (i) − Σ̄

i )]−1, (19)

where the helping quantity

Σ̄
i(R, R′) =

∑
α∈Ii

∑
R1

ciαΣ̂
iα

(R, R1)Miα (R1, R′) (20)
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FIG. 2. Integration contour used to calculate Φ(i). The crosses on
the imaginary axis mark the poles of 1

eβz−1
.

is used. Equation (19) is used to calculate a new self-energy
from the effective medium propagator with which through
Fig. 1(c) a new effective medium propagator can be calcu-
lated.

The temperature dependence is calculated through the av-
erage magnon number

Φ(i) = Im
∫ ∞

−∞
dz

D(i)(z)

e
z

kBT − 1
, (21)

where

D(i)(z) = − 1

π

∫

BZ

d3k
X(i)(i)(z, k)

2gc(i)μ
z
(i)

. (22)

Note that the imaginary part of this quantity D(i)(z) is
the magnonic density of states. Following the theory of
Callen [27] and its implementations in simple disordered and
complex ordered systems [40,47,48], the thermally averaged
z components of the magnetic moments are

μz
(i) = g

(μ(i)

g − Φ(i)
)
(1+ Φ(i) )μ(i)+1+(μ(i)

g + 1+ Φ(i)
)
Φ

μ(i)+1
(i)

(1 + Φ(i) )μ(i)+1 − (Φ(i) )μ(i)+1 .

(23)

III. IMPLEMENTATION

The integrals in k space [see Eq. (22)] were computed
using the tetrahedron method [49]. The energy integral is
problematic as D(i)(z) is a rapidly changing function along the
real axis and in addition to that the Bose factor 1

e
z

kBT −1
has a

pole at z = 0. Therefore, the energy integral was implemented
using complex contour integration. The problem was tackled
by calculating two complex integrals, which are shown in
Fig. 2. C is a semicircle with radius zMAX and C′ is a closed
contour consisting of the same arc as C but in the opposite
direction and a straight line infinitesimally close to the real
axis. The closed contour C′ was evaluated using the residue
theorem as the Bose factor has poles along the imaginary axis
at zn = 2nπ ikBT with n ∈ Z. The values of the residues are
given by

R(zn) = kBT D(i)(zn). (24)

The sum of both contours C and C′ gives the integral parallel
and infinitesimally close along the real axis. This method is

based on the fact that the integrand in Eq. (21) is analytic
almost everywhere in the complex upper half plane and on the
fact that it vanishes for very large positive and negative ener-
gies. The radius of the integration contour zMAX was estimated
using the Gershgorin disk theorem [50].

Another complication arises from the fact that the Bose
factor has a singularity at z = 0. As mentioned above, the
method used here gives the integral parallel to the real axis at
an infinitesimal distance Δ. Therefore the integral calculated
through the complex contour integral described above is

Φ(i) = Im
∫ ∞

−∞

D(i)(E + iΔ)

eβE − 1 + iΔβeβE
dE , (25)

where eΔx ≈ 1 + Δx was used. This can be rewritten using
the Shokotski-Plemelj theorem

lim
�→0

1

x + i�
= P

x
− iπδ(x), (26)

where P is the Cauchy principal value. Now, Φ(i) is given by
the principal value integral but because of the extension of the
integration contour, an additional contribution

iπkBT D(i)(0) (27)

is picked up. This contribution is spurious and needs to be
subtracted from the result of the integral.

In the limit T → TC, the average magnon number Φ(i) goes
to infinity, which allows a series expansion of Eq. (23) in 1

Φ(i)
:

μz
(i) = μ(i)(μ(i) + g)

3gΦ(i)
+ O

[(
1

Φ(i)

)2]
. (28)

Expanding the exponential in formula (21) and inserting it in
the series expansion above leads to

μz
(i) = −π

μ(i)(μ(i) + g)

3gkBTC

[∫
dz

∫
d3k

X(i)(i)(z, k)

2gc(i)μ
z
(i)z

]−1

. (29)

An important point is that the latter equation still holds if
all the averaged magnetic moments are scaled by an arbi-
trary constant factor. This fact is obvious in ordered systems
as is shown in Ref. [40] and also holds in substitutionally
disordered systems. Using this property, the calculation of
the Curie temperature can be done by treating the averaged
moments as a vector and solving the equation

μz
(i) = −π

μ(i)(μ(i) + g)

3gkB

[∫
dz

∫
d3k

X(i)(i)(z, k)

2gc(i)μ
z
(i)z

]−1

(30)

iteratively while also normalizing this vector to an arbitrary
length in each step. Note that in Eq. (30) the factor TC is
omitted. After convergence is reached, the Curie temperature
is given by the length of the vector.

One of the main advantages of the presented formalism is
that the two main parameters entering the model, magnetic
moments μα

i and exchange constants Ji j , can be calculated
from first principles. Thus, our approach in a combination
with a density functional theory method provides a parameter-
free description of spin waves in substitutional magnetic
alloys and ordered materials at finite temperatures.
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FIG. 3. Thermally averaged magnetic moments’ z component of
iron in Fe1−cCoc for different temperatures and cobalt concentra-
tions. Lines are meant as a guide to the eye.

IV. RESULTS

The magnetic moments μα
i and exchange parameters Ji j

of iron-cobalt alloys at various concentrations were evalu-
ated using a first-principles Green’s function method within a
generalized gradient approximation of density functional the-
ory [51]. The method is designed for bulk materials, surfaces,
interfaces, and real-space clusters [52–54]. Disorder effects
were taken into account within a coherent potential approx-
imation [55] as it is implemented within multiple scattering
theory [56]. The exchange interaction was estimated using the
magnetic force theorem formulated for substitutional alloys
within the CPA approach [57].

We consider the interaction between 12 shells of neighbors.
To ensure the convergence of the calculated properties with
the number of neighbor shells, several calculations were per-
formed for up to 30 shells showing practically the same results
as with 12.

For better comparability, all the results were calculated us-
ing a bcc structure. Furthermore, the interaction parameters Ji j

are held constant (at their value at T = 0 K) while increasing
the temperature.

A. Random disorder

1. Curie temperatures

As cobalt has a higher Curie temperature than iron, one
would expect a rise of the critical temperature as the concen-
tration of cobalt c is increased. Our results shown in Fig. 3
display this behavior. The points in this figure are the numeri-
cal results which were calculated using the methods described
in the previous section. Near the magnetic phase transition the
characteristic behavior of the averaged magnetic moments is
given by

μz ∝
(

1 − T

TC

)β

. (31)

The critical exponent β has a numeric value of 1/2 in the
case of the Heisenberg model in the RPA [58], which is well
known to differ from the experimental value of β ≈ 1/3 [44].
For a system with c = 0.2, we used the latter equation as a
fitting function with β = 1/2 for our results close to TC. It fits

FIG. 4. Thermally averaged magnetic moments’ z component in
Fe0.8Co0.2 for different temperatures within the RPA (crosses) and
the MFA (lines). The blue line represents iron while the red line
represents cobalt. The dashed line represents the expected behavior
of the Heisenberg model near the Curie temperature.

very well with our data (cf. Fig. 4). Apart from deploying the
RPA, we estimated the Curie temperature using the mean-field
approximation (MFA). The MFA is a purely classical model
in which the thermally averaged magnetic moments are given
by [44]

μz
(i) = μ · Bμ(i)

(
gμBBm

(i)μ(i)

kBT

)
, (32)

with the Bohr magneton μB, the Brillouin function Bμ(x), and
the mean field

Bm
(i) = 1

μBμ(i)

∑
R( j)

J(i)( j)(R)c( j)

μz
( j)

μ( j)
. (33)

While the RPA is known to underestimate the Curie tempera-
ture [40], the MFA overestimates it. This is caused by the fact
that the MFA neglects the influence of magnons and there-
fore only allows spin flips as elementary excitations, which
naturally arises at higher energies than magnons [44]. Thus,
the combination of these two methods may be used to provide
bounds for the approximate theoretical predictions. The MFA
equations can be solved iteratively and yield the results shown
in Fig. 4 for Fe0.8Co0.2. They are almost twice as large as their
RPA counterparts, thus providing a rather poor account of the
high-temperature behavior of the alloy considered.

The results are summarized in Table I together with exper-
imental results from Refs. [15,16]. While RPA performs fairly
well, a clear trend to overestimating the Curie temperature can

TABLE I. Comparison of the Curie temperatures calculated in
this work with experimental results in Refs. [15,16].

c T RPA
C (K) T MFA

C (K) TC (K) in Ref. [16] TC (K) in Ref. [15]

0.1 1069 2199 1164 1144
0.2 1369 2684 1225 1211
0.3 1510 2844 1260 1243
0.4 1547 2837 1268 1250
0.5 1568 2803 1265 1243
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FIG. 5. Magnonic spectrum (trace of the imaginary part of the
averaged transverse susceptibility) of Fe0.8Co0.2 at T = 0 K (top) and
T ≈ 0.9TC (bottom).

be seen. Partially, the behavior can be attributed to the fact that
in our calculations we restrict the system to a bcc lattice, while
the real iron-cobalt system will undergo a structural phase
transition at elevated temperatures [16] which is expected to
influence the Curie temperature.

2. Magnonic spectrum

We extract the magnonic spectrum from the imaginary part
of the retarded averaged susceptibility by calculating its trace∑

(i) X (i)(i)(z, k). The most prominent feature is its band gap
appearing due to strongly different interaction strengths and
magnetic moments between different constituents. Our results
suggest that this band gap is stable up to high temperatures, as
can be seen in the result for Fe0.8Co0.2 presented in Fig. 5. In
the upper (lower) plot the spectrum for the case of T = 0 K
(T ≈ 0.9TC) is shown. Interestingly, the main features of the
band structure are preserved as the temperature increases. The
scaling (softening) of the magnonic spectrum propositional
to the thermally averaged magnetic moment is a feature of
the RPA. In this approximation, the magnon energies van-
ish above the Curie temperature. In a more sophisticated
treatment, the spectrum above the critical temperature should
feature paramagneticlike excitations emerging as a manifesta-
tion of the short-range magnetic order [59].

Let us note that the peaks feature a finite width appearing
due to the presence of disorder in the system. The damping
is relatively small and increases somewhat only at elevated
energies, in particular close to the edges of the band gap.
Within the RPA, the width of the peaks is independent of
temperature, as can be seen from Eq. (3).

3. Width of the band gap, spin stiffness, and lifetimes

We investigate the spin-wave stiffness constant C describ-
ing the quadratic magnon dispersion of the acoustic mode in
the long-wavelength limit,

E = Ck2, (34)

as well as the size of the band gap. Both decrease roughly
proportionally to the average magnetization (see Fig. 6) as the
temperature is increased. The reference values at c = 20% and

FIG. 6. Relative width of the band gap EG
E0

G
and relative spin stiff-

ness C
C0

for different cobalt concentrations at T = 0 K (bottom) and
for different temperatures at c = 20% (top). All quantities are nor-
malized to their values at c = 20% and T = 0 K (C0 ≈ 477 meV Å2,
E 0

G = 115 meV).

T = 0 K,

C0 ≈ 477 meV Å2, E0
G = 115 meV, (35)

are in reasonable agreement with values from other studies of
iron and cobalt [17,60].

Furthermore, we determine the full width at half maximum
(FWHM) of the magnon peaks for several wave vectors. The
FWHM is computed using a Lorentzian fit function for the
imaginary part of the susceptibility as a function of the energy,

Im χ (E ) ≈ h
1
2 FWHM

(E − E0)2 + (
1
2 FWHM

)2 , (36)

with the location of the maximum E0 of the peak with scaling
factor h. The FWHM is interpreted as the inverse magnon
lifetime. In order to facilitate a quantitative comparison, we
normalize the width to the energy of the magnon for a partic-
ular wave vector. This feature can be interpreted as the inverse
of the quality factor, giving the amount of energy leaking from
the mode per cycle of the precession.

We recall that in our formalism the finite widths of the
magnon resonances arise only due to the action of the disor-
der. Nevertheless, at constant Co concentration c, the FWHM
varies with the temperature as well. In a simple picture,
this somewhat unexpected observation can be interpreted as
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FIG. 7. FWHM at k1 = (0.1, 0, 0) 1
aB

, k2 = (0.57, 0, 0) 1
aB

(mid-
way between � and H ), H and the optical mode at � for different
cobalt concentrations at T = 0 K (bottom), and for different temper-
atures at c = 20% (top). The FWHM is normalized by the magnon
energy E0 at the corresponding temperature and concentration.

follows: The scattering rate of magnons of a particular energy
on the crystal imperfections (or alternatively the FWHM for
weak coupling) is proportional to the concentration of dopants
and the density of final magnon states with this energy, as
the scattering potential is static. Even though the density of
states decreases with temperature, it does not necessarily re-
tain its shape. Thus, for different modes with different wave
vectors the density of available finite states will vary as the
temperature is raised. As is evident from Fig. 7, this effect
depends on the magnon state. With rising temperature, the
normalized widths increase for low-energy acoustic magnons,
but decrease for magnons at the top of the acoustic branch and
in the optical branch.

However, we note again that our prediction concerning the
evolution of the width with the temperature, due to the use of
the RPA, does not include the main mechanism, i.e., the cou-
pling of the magnons to the thermal bath. In the RPA, without
disorder, the magnons would feature an infinite lifetime. In
general, it is expected that the thermally induced width should
increase with the temperature [61].

The disorder-induced broadening of the magnon peaks in
the alloys studied here is found to be in general smaller
than 50 meV. Other studies of similar ordered systems
which include Landau damping, generally estimate much
higher damping. Şaşıoğlu et al. [28] study tetragonal FeCo

FIG. 8. Exchange interaction in iron-cobalt alloy nearest neigh-
bors (blue circles), and next-nearest neighbors (red triangles). The
interaction with atoms in the outer shells is comparably weak.

compounds predicting acoustic magnon modes with widths
between 50 and 100 meV and optic modes with widths be-
tween 60 and 200 meV at the edges of the Brillouin zone
based on MBT. Buczek et al. [18] predict widths of more than
100 meV for high-energy modes in bulk fcc Co, and more
than 60 meV in the case of bulk bcc iron based on TDDFT
calculations. They also report spin-wave disappearance in bcc
iron close to the H point with widths as high as 550 meV in
that region. Consequently, we come to the conclusion that the
disorder-induced damping is rather small compared to Landau
damping in the considered systems.

The evolution of the magnonic spectrum with the disorder
shows several interesting features. For small Co concentra-
tions, the band gap increases slightly and above c ≈ 0.1 starts
to decrease with c (cf. Fig. 6). As mentioned before, in sim-
ple terms, the gap arises because of the large difference in
the exchange integrals (magnetic interactions) and magnetic
moments between different constituents. Figure 8 shows that
this difference is pronounced most strongly for low concen-
trations. The strong increase of the nearest-neighbor Fe-Fe
interaction as the Co concentration increases causes the band
gap to get narrower, as this exchange integral becomes similar
in magnitude to the Co-Co interaction. The enhancement of
the Fe-Fe exchange interaction with an increase of Co con-
centration can be explained by a strong hybridization between
the 3d states of Fe and Co atoms. In addition, the presence
of Co leads to an enhancement of the density of states at the
Fermi level, increasing the Stoner factor and the exchange
interaction. An increase of the Co concentration fills up the
bands mainly in the minority spin channel. Figure 9 shows the
calculated electronic band structure (Bloch spectral function)
for c = 0.5% and c = 10% for both majority and minority
spin channels, respectively. The most important changes for
different Co concentrations occur along the �-H line for the
majority bands and in the vicinity of the � point for the mi-
nority bands. At low Co concentrations a band along �-H is in
the Fermi level’s vicinity but is not occupied. It is filled up at
higher Co concentrations (c > 5%) and leads to a significant
increase of the magnetic interaction in the systems. At high
cobalt concentrations, it is mainly the difference of the mag-
netic moments which prevents the closing of the band gap. To
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FIG. 9. Bloch spectral functions for Fe0.995Co0.005 (upper panels) and Fe0.9Co0.1 (lower panels) for majority (left) and minority spin
channels, respectively. The red dotted line represents the Fermi energy.

verify this statement we show the spectrum of Fe0.5Co0.5 with
equal magnetic moments for both constituents μFe = μCo. As
can be seen in Fig. 10, the band gap closes in this case.

Finally, we note that the FWHM shows maxima at cer-
tain concentrations, which are caused by the change of the
exchange parameters. In Fig. 11, we show the FWHM at
k1 = (0.1, 0, 0) 1

aB
and T = 0 K for different concentrations

compared to the FWHM for the case of fixed interactions.

B. Short-range order

Our theory is formulated in the framework of the single-
site CPA, which by definition is not able to account for the

FIG. 10. Magnonic spectrum of Fe0.5Co0.5 at T = 0 K and
μFe = μCo.

appearance of short-range order or any other correlations be-
tween the occupation of different sites. However, through our
generalization of the theory to lattices with multiple atoms
per unit cell, we are able to include short-range order through
different occupation probabilities within the unit cell. In this
section, we discuss the influence of short-range order using
a very simple model. Instead of performing the calculations
for the primitive unit cell, we choose for the case of an alloy
exhibiting short-range order the usage of a cubic unit cell with

FIG. 11. FWHM/E0 for different concentrations if the interac-
tion parameters are held constant (blue circles) and if they change
with the cobalt concentration (orange crosses). The FWHM is nor-
malized by the magnon energy E0 at T = 0 K and the corresponding
concentration.

024403-8



SPIN WAVES IN ALLOYS AT FINITE TEMPERATURES: … PHYSICAL REVIEW B 104, 024403 (2021)

TABLE II. Occupation probabilities for the case of short-range
order.

Element Site 1 Site 2

Fe 1 0.6
Co 0 0.4

two atoms and the occupation probabilities listed in Table II.
This configuration corresponds to an alloy in which two cobalt
atoms never sit next to each other. The results for the case
of random disorder and short-range order are compared in
Fig. 12. As there are now two basis sites occupied with two
elements according to Table II, the spectrum now consists of
three bands. The main result of this test is the verification that
the band gap remains present in the case of an alloy exhibiting
short-range order.

The magnonic properties discussed above in the alloy with
short-range order (SRO) compute to

EG ≈ 115 meV,

C

C0
= 1.03,

FWHM

FWHM0
= 1.92. (37)

It can be seen that the width of the band gap and the spin
stiffness hardly change at all, but the FWHM nearly doubles
its value. Obviously, this is far from a complete study of the
influence of SRO, but it suggests that the inclusion of SRO
will only have a minor impact on the width of the band gap.

V. SUMMARY

We presented a first-principles approach to calculate criti-
cal magnetic phenomena and spin waves at finite temperatures
for complex disordered materials. The method is based on a
mapping of a Green’s function, obtained within the multiple
scattering theory, on the Heisenberg model using a coherent
potential approximation. The temperature effects were taken
into account within an RPA for the magnonic Green’s func-
tion.

Our approach is illustrated on disordered iron-cobalt al-
loys which exhibit many of the properties demanded from
magnonic crystals: They exhibit a band gap whose width
shows an interesting behavior in the concentration and
temperature range studied in this work. The influence of
short-range order on the band gap turns out to be of minor im-

FIG. 12. Magnonic spectrum of Fe0.8Co0.2 with random disorder
(top), and in a configuration in which all cobalt atoms are isolated
from each other according to the occupation probabilities given in
Table II at T = 0 K (bottom).

portance in our calculations. However, the latter result should
only be seen as an intermediate step obtained for one specific
type of SRO and needs further investigation.

The temperature dependence of the bandwidth and the spin
stiffness mirrors the decreasing magnetization as the temper-
ature is increased. Thus the treatment of temperature is far
from complete. Moreover, the inclusion of Landau damping
in the description of disordered systems is a further necessary
improvement of the theory which we currently develop.
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