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Finsler geometry modeling and Monte Carlo study of skyrmion shape deformation by uniaxial stress
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Skyrmions in chiral magnetic materials are topologically stable and energetically balanced spin configurations
appearing under the presence of ferromagnetic interaction (FMI) and Dzyaloshinskii-Moriya interaction (DMI).
Much of the current interest has focused on the effects of magnetoelastic coupling on these interactions under
mechanical stimuli, such as uniaxial stresses for future applications in spintronics devices. Recent studies suggest
that skyrmion shape deformations in thin films are attributed to an anisotropy in the coefficient of DMI, such
that Dx �=Dy, which makes the ratio λ/D anistropic, where the coefficient of FMI λ is isotropic. It is also
possible that λx �=λy while D is isotropic for λ/D to be anisotropic. In this paper, we study this problem using
a modeling technique constructed based on Finsler geometry (FG). Two possible FG models are examined:
In the first (second) model, the FG modeling prescription is applied to the FMI (DMI) Hamiltonian. We find
that these two different FG models’ results are consistent with the reported experimental data for skyrmion
deformation. We also study responses of helical spin orders under lattice deformations corresponding to uniaxial
extension/compression and find a clear difference between these two models in the stripe phase, elucidating
which interaction of FMI and DMI is deformed to be anisotropic by uniaxial stresses.

DOI: 10.1103/PhysRevB.104.024402

I. INTRODUCTION

Skyrmions are topologically stable spin configurations
[1–6] observed in chiral magnetic materials such as FeGe,
MnSi, etc. [7–11], and are considered to be applicable for
future spintronics devices [12]. For this purpose, many exper-
imental and theoretical studies have been conducted [13–16],
specifically on responses to external stimuli such as mechani-
cal stresses [17–24]. It has been demonstrated that mechanical
stresses stabilize/destabilize or deform the skyrmion configu-
ration [25–29].

Effects of magnetostriction of chiral magnets are ana-
lytically studied using spin density waves by a Landau-
type free-energy model, in which magnetoelastic coupling
(MEC) is assumed [30–32]. In a micromagnetic theory
based on chiral symmetry breaking, anisotropy in the ex-
change coupling is assumed in addition to a magnetostriction
term to implement nontrivial effects on helical states and
stabilize skyrmions [21,22]. Using such a model imple-
menting MEC into Ginzburg-Landau free energy, Wang
et al. reported simulation data for spins’ responses under
uniaxial stresses [33], and their results accurately explain
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both the skyrmion deformation and alignment of helical
stripes.

Among these studies, Shibata et al. reported an experi-
mental result of large deformation of skyrmions by uniaxial
mechanical stress, and they concluded that the origin of this
shape deformation is an anisotropy in the coefficient D of
Dzyaloshinskii-Moriya interaction (DMI), such that Dx �=Dy

[34]. Such an anisotropic DMI can be caused by uniaxial
mechanical stresses, because the origin of DMI anisotropy is
a spin-orbit coupling [12]. It was reported in Ref. [35] that
this anisotropy in D comes from a quantum mechanical effect
of interactions between electrons and atoms resulting from
small strains. Moreover, skyrmion deformation can also be
explained by a DMI anisotropy in combination with antifer-
romagnetic exchange coupling [36,37].

However, we have another possible scenario for skyrmion
deformation; it is an anisotropy in the FMI coefficient λ such
that λx �=λy. This direction-dependent λ causes an anisotropy
λ/D even for isotropic D as discussed in Ref. [34], al-
though the authors concluded that anisotropy λ/D comes
from anisotropy in D. Such an anisotropy in λ, the direction-
dependent coupling of FMI, also plays an important role in
the domain wall orientation [38].

Therefore, it is interesting to study which coefficient of
FMI and DMI should be anisotropic for the skyrmion de-
formation and stripe alignment by a geometric modeling
technique. On the stripe alignment, Dho et al. experimentally
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FIG. 1. A regular triangular lattice of size N =L2 =100, where
the total number of vertices is L=10 along each of the edges. This
number, L=10, is fixed to be very small to visualize the lattice
structure. Simulations are performed on a lattice of size N =104.
Periodic boundary condition (PBC) is assumed in both directions.
The lattice spacing a is fixed to a=1 in the simulations.

studied the magnetic microstructure of an La0.7Sr0.3MnO3

(LSMO) thin film and reported magnetic-force microscope
images under tensile/compressive external forces [39].

In this paper, using Finsler geometry (FG) modeling,
which is a mathematical framework for describing anisotropic
phenomena [40–42], we study two possible models for the de-
formation of skyrmions and the alignment of magnetic stripes
[43]. In one of the models, the FMI coefficient is deformed
to be λx �=λy while DMI is isotropic, and in the other model,
the DMI coefficient is deformed to be Dx �=Dy while FMI is
isotropic. Both model 1 and model 2 effectively render the
ratio λ/D anisotropic for modulated states, implying that a
characteristic length scale is also rendered to be anisotropic
[22]. Note also that the present FG prescription cannot directly
describe an anisotropic magnetization expected from MEC. In
this sense, FG models in this paper are different from both
the standard Landau-type model of MEC and micromagnetic
theory for thin films studied in Ref. [22,30–32], although these
standard models implement MEC by an extended anisotropy
of FMI in the sense that a magnetization anisotropy or higher
order term of magnetization is included in addition to the
exchange anisotropy.

II. MODELS

A. Triangular lattices

We use a triangular lattice composed of regular triangles
of side length a, called lattice spacing [44] (Fig. 1). Tri-
angular lattices are used for simulating skyrmions on thin
films [45,46], where a frustrated system or antiferromagnetic
interaction is assumed for studying possible mechanisms of
skyrmion formation on chiral magnetic materials. However,
the purpose in this paper is not the same as in Refs. [45,46].
On the other hand, skyrmions are known to be stabilized on
thin films [24]. On the thin film of MnSi, hexagonal skyrmion
crystal is observed, which can be realized on the triangular
lattice. This is one of the reasons why we use triangular
lattice, though the results in this paper are expected to remain
unchanged on the regular square lattice because ferromagnetic

interaction is assumed, or in other words, the system is not
frustrated.

The lattice size N , which is the total number of vertices,
is given by N =L2, where L−1 is the total number of tri-
angles in both horizontal and vertical directions. The side
length of the lattice is (L − 1)a along the vertical direction
and (

√
3/2)(L − 1)a along the horizontal direction. Bound-

ary conditions for dynamical variables are assumed to be
periodic in both directions, as assumed in 3D simulations
in Ref. [14]. Skyrmions are topological solitons which de-
pend on the boundary condition. The boundary condition also
strongly influences skyrmions in motion such as those in
transportation. However, in our simulations, every skyrmion
is only allowed to thermally fluctuate around a fixed position.
For this reason, to avoid unexpected boundary effects, we
assume the periodic boundary condition.

The lattice spacing is fixed to a=1 for simplicity, and
the lattice size is fixed to N =104 for all simulations. As
we describe in Sec. III, the numerical results are completely
independent of the lattice size up to 400×400 at the bound-
ary region between skyrmion and ferromagnetic phases and,
therefore, all simulations are performed on the lattice of size
100×100.

B. The Hamiltonian and a new variable for mechanical strains

The discrete Hamiltonian is given by the linear combina-
tion of five terms such that

S = λSFM − SB + DSDM + γ Sτ − αS f , (α = 1), (1)

where FMI and DMI energies SFM and SDM are given in two
different combinations denoted by model 1 and model 2 [43]
(see Appendix A),

SFM =
∑
�

[λi j (1 − σi · σ j ) + λ jk (1 − σ j · σk )

+ λki(1 − σk · σi )],

λi j = 1

3

(
vi j

vik
+ v ji

v jk

)
, vi j = |τi · �ei j | + v0, (model 1),

SDM =
∑

i j

�ei j · σi × σ j, (2)

and

SFM =
∑

i j

(1 − σi · σ j ),

SDM =
∑
�

[λi j (�ei j · σi × σ j ) + λ jk (�e jk · σ j × σk )

+ λki(�eki · σk × σi )],

λi j = 1

3

(
vi j

vik
+ v ji

v jk

)
, vi j =

√
1 − (τi · �ei j )

2 + v0,

(model 2), (3)

where FG modeling prescription is only applied to SFM (SDM)
in model 1 (model 2). Note that SFM in model 1 and SDM

in model 2 are defined by the sum over triangles
∑

�. The
coefficients λ and D of SFM and SDM represent the strength of
FMI and DMI. The coefficients λi j inside the sum

∑
� of SFM

and SDM are obtained by discretization of the corresponding
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FIG. 2. A regular triangle of vertices i, j, k, and a strain direction
τi at vertex i. The unit Finsler length vi j from vertices i to j is defined
by using the tangential component τi · �ei j of τi along the direction �ei j ,
which is the unit tangential vector from i to j.

continuous Hamiltonians with Finsler metric (see Appendix
A). i, j, k of vi j in λi j denote the three vertices of the triangle
(Fig. 2).

The symbol σi(∈ S2 : unit sphere) denotes the spin vari-
able at lattice site i, which is a vertex of the triangle. The
symbol τi(∈ S1 : unit circle) in vi j denotes a direction of
strain. Microscopically, strains are understood to be connected
to a displacement of atoms, which also thermally fluctuate or
vibrate without external forces. Thus, an internal variable can
be introduced to represent the direction of movement or po-
sition deformation of atom i. For this reason, τi is introduced
in models 1 and 2. A random or isotropic state of τi effec-
tively corresponds to a zero-stress or zero-strain configuration,
while an aligned state corresponds to a uniaxially stressed or
strained configuration. The zero-strain configuration includes
a random and inhomogeneous strain configuration caused by
a random stress, because the mean value of random stress
is effectively identical with zero stress from the microscopic
perspective. We should note that the variable τi is expected to
be effective only in a small stress region to represent strain
configurations ranging from random state to aligned state. In
fact, if the variables once align along an external force direc-
tion, which is sufficiently large, no further change is expected
in the configuration. Therefore, the strain representation by τi

is effective only in a small stress or strain region.
One more point to note is that the variable τ is assumed to

be nonpolar in the sense that it is only direction dependent
and independent of the positive/negative direction. Indeed,
the direction of τ is intuitively considered to be related to
whether the external mechanical force is tension or compres-
sion. However, to express an external tensile force, we need
two opposite directions in general. This assumption (⇔ τ

is nonpolar) is considered sufficient because the interaction,
implemented via vi j in Eqs. (2) and (3) for λi j , is simply
dependent on |τi · �ei j | and (τi · �ei j )2, respectively, where �ei j

is the unit tangential vector from vertex i to vertex j and,
hence, the interaction is dependent only on strain directions
and independent of whether τ is polar or nonpolar.

We should note that λλi j and Dλi j in the FMI and DMI are
considered to be microscopic interaction coefficients, which
are both position (⇔ i) and direction (⇔ i j) dependent. The
expression of λi j of model 1 is the same as that of model 2,
and the relation λi j =λ ji is automatically satisfied. However,
the definitions of vi j are different from each other. Hence, the
value of λi j of model 1 is not always identical to that of model

2. Indeed, if τi is almost parallel to the x axis (see Fig. 2), vi j is
relatively larger (smaller) than vik and v jk in model 1 (model
2) and, as a consequence, λi j also becomes relatively large
(small) compared with the case where τi is perpendicular to
the x axis.

To discuss this point further, we introduce effective cou-
pling constants of DMI such that

〈Dx〉 = (1/NB)
∑

i j

λi j

∣∣�e x
i j

∣∣,
〈Dy〉 = (1/NB)

∑
i j

λi j

∣∣�e y
i j

∣∣, (4)

where �e x
i j and �e y

i j are components of �ei j = (�e x
i j, �e y

i j )∈ R2,
which is the unit tangential vector from vertex i to vertex j as
mentioned above, and NB =∑

i j 1(=3N ) is the total number
of links or bonds. Expressions of 〈λx〉 and 〈λy〉 for FMI are
exactly the same as those of 〈Dx〉 and 〈Dy〉 in Eqs. (4). The
symbol 〈·〉 for the mean value is henceforth removed for
simplicity. Suppose the effective coupling constants λx and λy,
for SFM in model 1 satisfy λx > λy. In this case, the resulting
spin configurations are expected to be the same as those in
model 2 under Dx < Dy for SDM because an skx configuration
emerges as a result of competition between SFM and SDM. This
is an intuitive understanding that both models are expected to
have the same configuration in the skx phase. If λi j is isotropic
or locally distributed at random, almost independent of the
direction i j, then the corresponding microscopic coupling
constants λi j |�e x

i j | and λi j |�e y
i j | in Dx and Dy of Eqs. (4) also

become isotropic and, consequently, Dx =Dy is expected. In
contrast, if the variable τ is aligned by the external force �f ,
then λi j becomes anisotropic or globally direction dependent
and, as a consequence, Dx and Dy become anisotropic such
that Dx �=Dy.

We should comment that our models include a shear com-
ponent of stress effect on the coefficient λi j in Eqs. (2) and
(3). To simplify arguments, we tentatively assume v0 =0 in
model 1. Let �f be �f = ( f , 0) or parallel to �ei j , which represents
the first local coordinates axis (Fig. 2), implying that τi is
almost parallel to �ei j for sufficiently large f . Then, we have
vi j 	|τi|=1, which represents an effect of the tensile stress �f
along �ei j . For the same τi, we have vik 	0.5|τi|=0.5 along �eik ,
which represents the second local coordinate axis. Thus, we
obtain the ratio vi j/vik 	2, and by moving the local coordinate
origin to vertex j and from the same calculation, we obtain
v jk/v ji 	2 and, therefore, λi j =4/3. Since the variables τ at
all other vertices are naturally considered to be parallel to �ei j ,
we have λik =1/3 from the same argument. The fact that λik is
nonzero under �f = ( f , 0) is considered to be an effect of shear
stress.

The other terms SB, Sτ , and SF in S of Eq. (1) are common
to both models and are given by

SB =
∑

i

σi · �B, �B = (0, 0, B),

Sτ = 1

2

∑
i j

(1 − 3(τi · τ j )
2), S f =

∑
i

(τi · �f )2,

�f = ( fx, fy), (5)
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FIG. 3. Lattice deformations represented by (a) ξ <1 and (b)
ξ >1 in Eqs. (6). In (a) for ξ <1 and (b) for ξ >1, the corresponding
external tensile forces’ direction is horizontal and vertical, respec-
tively. The dashed arrows represent the direction of forces, implying
that the force is assumed compressive, and the shaded thick lines
denote the stripe directions experimentally observed and reported in
Ref. [39].

where SB is the Zeeman energy with magnetic field �B, and
Sτ is a Lebwohl-Lasher type potential [47], which is always
assumed for models of liquid crystals [41].

In S f , �f = ( fx, fy) represents an external mechanical force,
which aligns the strain direction τ along the direction of �f .
The reason why S f is not linear concerning �f (or τ ) is that the
force �f has a non-polar interaction given by Sτ . Therefore, it is
natural to assume the square type potential. In liquid crystals,
such a square type potential is also assumed for external
electric fields [41]. The coefficient α of S f in Eq. (1) is fixed
to α = 1 for simplicity. This is always possible by re-scaling
f to

√
α f .

Alignment of the direction of τ is essential for modeling
the stress effect in models 1 and 2. In this paper, we assume
the following two different sources for this alignment:

(i) Uniaxial stresses by �f = ( f , 0) and �f = (0, f ) with
γ =0 (for skyrmion deformation),

(ii) Uniaxial strains by lattice deformation by ξ with γ >

0 (for stripe deformation),
where ξ in (ii) is defined by the deformations of side

lengths such that (Fig. 3)

Lx → ξ−1Lx, Ly → ξLy, (6)

where f >0 is assumed, implying that �f is tensile, and Lx and
Ly are actually given by Lx = (L−1)a and Ly = (

√
3/2)(L−

1)a as shown in Fig. 1. In both cases (i) and (ii), the variable
τ is expected to be aligned, and this alignment causes defor-
mations in the interactions of SFM and SDM to be direction
dependent like in the forms λλi j and Dλi j as mentioned above.
In case (i), the lattice is undeformed, implying that ξ is fixed
to ξ =1. In case (i), uniaxial stresses by the external force
are only applied to check the skyrmion shape deformation,
and the coupling constant γ of Sτ is assumed to be γ =0.
On the contrary, in case (ii), the external force �f is assumed
to be ineffective and fixed to �f = (0, 0), while the parameter
γ for Sτ is fixed to a non-negative constant γ >0 so τ can
spontaneously align to a certain direction associated with the
lattice deformation by ξ . In case (ii), SDM is expected to
play a nontrivial role in both models 1 and 2 because lattice

TABLE I. List of symbols and descriptions of the input parameters.

Symbol Description

T Temperature
λ Ferromagnetic interaction coefficient
D Dzaloshinskii-Moriya interaction coefficient
B Magnetic filed
γ Interaction coefficient of Sτ

f Strength of mechanical force �f = ( f , 0) or
�f = (0, f ) with f >0

v0 Strength of anisotropy
Symbol Description (assumed typical value)
ξ Deformation parameter for the side lengths

of lattice: ξ =1 ⇔ nondeformed

deformations originally influence DMI. This will be a check
on whether or not a coupling of strain and spins (or magneti-
zation) is effectively implemented in DMI. It is clear that SFM

of model 2 in Eqs. (3) is completely independent of the lattice
deformation by ξ .

The partition function is defined by

Z =
∑

σ

∑
τ

exp [−S(σ, τ )/T ], (7)

where
∑

σ and
∑

τ denote the sum over all possible config-
urations of σ and τ , and T is the temperature. Note that the
Boltzmann constant kB is assumed to be kB =1.

Here, we show the input parameters for simulations in
Table I.

C. Monte Carlo technique and snapshots

The standard Metropolis Monte Carlo (MC) technique is
used to update the variables σ and τ [48,49]. For the update
of σ , a new variable σ ′

i at vertex i is randomly generated on
the unit sphere S2 independent of the old σi and, therefore,
the rate of acceptance is not controllable. The variable τ is
updated on the unit circle S1 by almost the same procedure as
that of σ .

The initial configuration of spins is generated by searching
the ground state (see Ref. [50]). One MC sweep (MCS) con-
sists of N consecutive updates of σ and that of τ . In almost
all simulations, 2 × 108 MCSs are performed. At the phase
boundary between the skyrmion and ferromagnetic phases,
the convergence is relatively slow, and therefore 5 × 108

MCSs or more, up to 1.6 × 109 MCSs, are performed. In
contrast, a relatively small number of MCSs are performed in
the ferromagnetic phase at large |B| or high T region. Here,
we show snapshots of skyrmion configuration obtained by
model 2 for f =0 and f �=0(=1.7) in Figs. 4(a) and 4(b). The
assumed parameters other than f are T =0.2, D=0.45, γ =0,
v0 =0.7, and ξ =1 for both (a) and (b). The cones represent
spins σi, and the colors of cones correspond to z-component
σ z

i . We find from both snapshots that the direction of cones in
the central region of skyrmions is −z while it is +z outside.
Skyrmion configurations of model 1 are the same as these
snapshots. This vortexlike configuration [Fig. 4(a)] is called
Bloch type and symmetric under rotation along the z axis [51].
In this paper, we study skyrmions of Bloch type.
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FIG. 4. Snapshot of skyrmions for (a) f =0 and (b) f �=0(=1.7)
with T =0.2, D=0.45, γ =0, v0 =0.7, and ξ =1. These snapshots
are obtained by model 2 and the same as those obtained by model
1. This vortexlike skyrmion is called Bloch type, which is studied in
this paper.

III. SIMULATION RESULTS

A. Responses to uniaxial stress

1. Magnetic field versus temperature diagram

A phase diagram of model 1 is shown in Fig. 5(a), where
the temperature T and magnetic field B are varied. The
symbols skx, str, and ferro denote the skyrmion, stripe, and
ferromagnetic phases, respectively. The stripe phase is the
same as the so-called helical phase, where the spins are ro-
tating along the axis perpendicular to the stripe direction. Be-

tween these two different phases, intermediate phases appear,
denoted by the skyrmion ferromagnetic (sk-fe) and skyrmion
stripe (sk-st) phases. The parameters λ, D, γ , f , v0 are fixed to
(λ, D, γ , f , v0)= (0.8, 0.9, 0, 0.5, 0.15) in Fig. 5(a). The ap-
plied mechanical stress is given by �f = (0.5, 0), which implies
that a thin film is expanded in the x direction by a tensile force
f =0.5.

The phase diagram in Fig. 5(a) is only a rough estimate for
identifying the regions of different states. These boundaries
are determined by viewing their snapshots. For example, if a
skyrmion is observed in the final ferromagnetic configuration
of simulation at the boundary region between the skx and ferro
phases, this state is written as sk-fe. If two skymion states are
connected to be an oblong shape and all others are isolated in
a snapshot, then this state is written as sk-st. Thus, the phase
boundaries in these digital phase diagrams are not determined
by the standard technique such as the finite scaling analyses
[50,52] and, therefore, the order of transition between two
different states is not specified.

Figure 5(b) shows a snapshot of deformed skyrmions of
model 1 at a relatively low temperature T =0.1. To mea-
sure the shape anisotropy, we draw rectangles enclosing
skyrmions, as shown in Fig. 5(c), where the edge lines are
drawn parallel to the x and y directions. The details of how
the edge lines are drawn can be found in Appendix B. This

FIG. 5. (a) Phase diagram of magnetic field B and temperature T of model 1, (b) snapshot obtained at (B, T )= (−0.6, 0.1), (c) correspond-
ing snapshot to measure the shape anisotropy δ of skyrmion, (d) histograms of δ, where a reported histogram (expt) for the experimental result
in Ref. [34] is also plotted, (e) snapshot at (B, T )= (−0.6, 0.85), and (f) snapshot in the stripe phase at (B, T )= (0, 0.85). The symbols skx, str,
and ferro denote skyrmion, stripe, and ferromagnetic phases, respectively. The symbols sk-fe and sk-st denote intermediate phases of skyrmion
ferromagnetic and skyrmion stripe, respectively. On the dashed horizontal line, physical quantities are calculated in the following subsection.
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FIG. 6. (a) Phase diagram of magnetic field B and temperature T of model 2, (b) snapshot obtained at (B, T )= (−0.5, 0.1), (c) correspond-
ing snapshot to measure the shape anisotropy of the skyrmion, (d) the corresponding histogram of δ, where a reported histogram (expt) for the
experimental result in Ref. [34] is also plotted, (e) snapshot at (B, T )= (−0.5, 0.35), and (f) snapshot in the stripe phase at (B, T )= (−0.3, 0.6).
On the dashed horizontal line, physical quantities are calculated in the following subsection.

technique can also be used to count the total number of
skyrmions, at least in the skx phase, which will be presented
below. Figure 5(d) shows the distribution of shape anisotropy
δ defined by

δ = (1 − wy/wx )/(1 + wy/wx ), (8)

where wx and wy are the edge lengths of the rectangle [34].
The solid histogram is the experimental data (expt) reported
in Ref. [34]. In Ref. [34], simulations were also performed by
assuming that the DMI coefficients D are direction dependent
such that Dx/Dy =0.8, and almost the same result with expt
was obtained. The result of model 1 in this paper, shown in
the shaded histogram, is almost identical to that of expt. In
these histograms, the height is normalized such that the total
height remains the same. Another snapshot obtained at higher
temperature T =0.8 is shown in Fig. 5(e), where the shape of
the skyrmion is not smooth and almost randomly fluctuating
around the circular shape. Therefore, this configuration is
grouped into the sk-fe phase, even though such fluctuating
skyrmions are numerically stable, implying that the total num-
ber of skyrmions remains constant for long-term simulations.
Figure 5(f) shows a snapshot obtained in the stripe phase. The
direction of the stripes is parallel to the direction of the tensile
force �f = ( f , 0).

The results of model 2 in Figs. 6(a)–6(f) are almost iden-
tical to those in Fig. 5. The parameters λ, D, γ , f , v0 are
fixed to (λ, D, γ , f , v0)= (1.2, 0.9, 0, 1.7, 0.7) in Fig. 6(a)
for model 2. The unit of T depends on the ratio of T and

the coefficients of Hamiltonians SFM, SB, SDM, Sτ , and S f .
However, the ratios themselves cannot be compared with each
other because the first two parameters, (λ, D) at least for
model 1, are not proportional to these parameters for model
2. In fact, D in model 2 is effectively deformed to be direction
dependent such that DDx and DDy by Dx and Dy in Eqs. (4),
while D in model 1 remains unchanged. Therefore, the unit of
the horizontal T axis in Fig. 5(a) is not exactly identical but
almost comparable to that of model 1 in Fig. 6(a).

The parameter v0 =0.7 assumed in vi j of Eqs. (3) for model
2 is relatively larger than v0 =0.15 in vi j of Eqs. (2) for model
1. If v0 in model 2 is fixed to be much smaller, such as v0 =
0.15 just like in model 1, then the shape of the skyrmions be-
comes unstable. This fact implies that the anisotropy of DMI
caused by the FG model prescription is too strong for such
a small v0 in model 2. Conversely, if v0 in model 1 is fixed
to be much larger, such as v0 =0.7, then the skyrmion shape
deformation is too small, implying that anisotropy of FMI
caused by the FG model prescription is too weak for v0 = 0.7.

Here, we should note that the skx region in the BT dia-
grams of Figs. 5 and 6 changes with varying B at the relatively
low T region. Indeed, if |B| is increased from B=0 at T =0.1
in Fig. 6 for example, the connected stripes like in Fig. 6(f)
start to break, and the stripe phase changes to sk-st at |B|=
0.4, and skx emerges at |B|=0.5 as shown in Fig. 6(b). The
skyrmion shape in the skx phase is oblong in the (1,0) direc-
tion, which is the same as the stripe direction for smaller B
region. This shape anisotropy of skyrmions as well as the size
itself becomes smaller and smaller with increasing |B|, and
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FIG. 7. (a) Spin variables σi(i=1, 2, 3) at the three vertices of a
triangle and (b) a small triangle area defined by σi(i=1, 2, 3) on the
unit sphere. This small area can be used to calculate the total number
of skyrmions.

for sufficiently large |B| such as |B|=0.8, the skx turns to be
ferromagnetic.

2. Temperature dependence of physical quantities

The total number of skyrmions Nsk is defined by

Nsk = (1/4π )
∫

d2x σ · ∂σ

∂x1
× ∂σ

∂x2
, (top) (9)

which can be calculated by replacing differentials with dif-
ferences [53,54]. This Nsk is denoted by “top” and plotted in
the figures below. Another numerical technique for calculating
Nsk is to measure the solid angle of the triangle cone formed
by σ1, σ2, and σ3 [Fig. 7(a)]. Let a� be the area of the shaded
region in Fig. 7(b) and Nsk can then be calculated by

Nsk = 1

4π

∑
�

a�, (are), (10)

and this is denoted by “are.” One more technique to count
Nsk is denoted by “gra,” which is a graphical measurement
technique (see Appendix B).

Figure 8(a) shows the dependence of |Nsk| of model 1
on the temperature variation at B=−0.6, where the absolute
values of Nsk are plotted. These curves in Fig. 8(a) are ob-
tained along the horizontal dashed line in Fig. 5(a). We find
that |Nsk| discontinuously reduces at T 	0.45 and that the
reduced |Nsk| in the region T >0.45 of top and are remain
finite up to T 	1. Because of this discontinuous change of
|Nsk|, the skx phase of model 1 is divided into two regions at
T 	0.45. This skx phase at higher temperatures is numerically
stable. However, Nsk evaluated graphically, denoted by gra,
increases at T 	0.6. This behavior of Nsk implies that the skx
configuration is collapsed or multiply counted. Therefore, the
skx configuration should be grouped into the sk-fe phase in
this region, and we plot a dashed line as the phase boundary
between the skx and sk-fe phases. The curves |Nsk| of model
2 in Fig. 8(b) are obtained along the horizontal dashed line
in Fig. 6(a) at B=−0.5 and we find that Nsk discontinuously
reduces to Nsk 	 0. This reduction implies that the skx phase
changes to the sk-fe or ferro phase at T 	0.3 in model 2.

To see the internal configuration of the 2D nonpolar vari-
able τ , we calculate the order parameter by

Mτ = 2(〈σx〉2 − 1/2). (11)

This Mτ continuously changes with respect to T [Fig. 8(c) for
model 1], and no discontinuous change is observed. However,
it is clear that τ is anisotropic (isotropic) in the temperature

FIG. 8. Total number of skyrmions |Nsk| of (a) model 1 and
(b) model 2, where the gra, are, and top correspond to three dif-
ferent calculation techniques for |Nsk|; gra’ denotes the graphical
measurement technique presented in Appendix B, are and top de-
note the techniques of using the formulas in Eqs. (9) and (10). The
corresponding order parameter Mτ of (c) model 1 and (d) model 2 is
plotted.

region T <0.2 (0.5<T ). The Mτ plotted in Fig. 8(d) for
model 2 is very large compared with that in Fig. 8(c). This
behavior of Mτ implies that τ is parallel to the direction of �f in
the whole region of T plotted, resulting from the considerably
large value of f (=1.7) assumed in model 2 for Fig. 6.

We should note that the variations of |Nsk| with respect to
T in Figs. 8(a) and 8(b) are identical to those (which are not
plotted) obtained under �f = (0, 0) and with the same other pa-
rameters. In this case, γ for Sτ is fixed to γ =0 and, therefore,
τ becomes isotropic. This result, obtained under �f = (0, 0) and
γ =0, implies that the skyrmion deformation is caused by the
alignment of τ , and the only effect of �f �= (0, 0) is to deform
the skyrmion shape to anisotropic in the skx phase.

The DMI and FMI energies SDM/N and SFM/N are shown
to have discontinuous changes at T 	0.4 in both models
[Figs. 9(a) and 9(b)], where N is the total number of vertices.
The gaps of these discontinuities in SFM/N are very small.

Anisotropy ηλ and ηD of effective FMI and DMI coeffi-
cients can be evaluated such that

ηλ = 1 − λy/λx (model 1),

ηD = 1 − Dx/Dy (model 2),
(12)

where the expressions for Dx, Dy and λx, λy are given in
Eqs. (4). The direction dependence of the definition ηλ of
model 1 is different from ηD of model 2, and this difference
comes from the fact that the definition of vi j in Eqs. (2)
for model 1 is different from that in Eqs. (3) of model 2.
We find from the anisotropy ηλ of model 1 in Fig. 9(c) that
ηλ is decreasing with increasing T , and this tendency is the
same for ηD of model 2 in Fig. 9(d). It is interesting to note
that ηD of model 2 is ηD 	0.2 in the skx phase at T <0.4.
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FIG. 9. (a) SDM/N versus T of models 1 and 2, (b) SFM/N versus
T of models 1 and 2, the anisotropy of effective interaction coef-
ficient ηλ and ηD versus T of (c) model 1 and (d) model 2. The
vertical dashed lines in (a) and (b) roughly indicate the positions
where SDM/N and SFM/N discontinuously change in models 1 and
2. The horizontal dashed line in (d) is drawn at ηD =0.2, which is the
value assumed in Ref. [34] to simulate the skyrmion deformation.

This value ηD =0.2 corresponds to Dx/Dy =0.8 explicitly
assumed in Ref. [34] to simulate the skyrmion deformation.
This ηD is slightly larger than 0.2 at T 	 0.1, where the shape
anisotropy is comparable to the experimentally observed one,
as demonstrated in Fig. 6(d). It must be emphasized that ηD

or, equivalently, Dx and Dy of model 2, are not the input
parameters for the simulations, where the input is �f , and the
output is a skyrmion deformation like in the experiments.

Finally, in this subsection, we show how the simulations
are convergent by plotting |Nsk| (top) in Eq. (9) versus MCS
and discuss how the stress influences the skx phase. The
data |Nsk| of model 1 plotted in Figs. 10(a)–10(c), which
are obtained on the dashed line in Fig. 5 at the transition
region T 	0.5, indicate that the skyrmion number is inde-
pendent of whether the stress is applied or not. This implies
that the distortion of the FMI coefficient by uniaxial stress
does not influence the skx and sk-fe phases. In contrast, we
find in the remaining plots in Figs. 10(d)–10(f), which are
obtained on the dashed line in Fig. 6, that |Nsk| of model 2
depends on the stress. Indeed, |Nsk| remains unchanged for
the stressed condition in the skx phase [Fig. 10(d)], while
|Nsk| is considerably increased from |Nsk|=finite in the sk-fe
phase [Fig. 10(e)] and also from |Nsk|=0 in the ferro phase
[Fig. 10(f)]. It is interesting to note that such skyrmion prolif-
eration is experimentally observed by uniaxial stress control
not only in low-temperature region [19,27,28] but also in
the high-temperature region close to the boundary with the
ferro phase [20]. Thus, effects of uniaxial stress on skyrmion
proliferation are considered to be implemented in model 2.

FIG. 10. |Nsk| versus MCS obtained on the dashed lines in Figs. 5
and 6 at the boundary between skx and sk-fe phases in (a)–(c) model
1 and (d)–(f) model 2. |Nsk| is independent of whether the stress
is applied or not in model 1, while it clearly depends on the stress
in model 2. The other parameters λ, D, γ , v0 are the same as those
shown in Figs. 5 and 6.

3. Stress versus magnetic field diagram

The external force f and magnetic field B are var-
ied, and f B phase diagrams of models 1 and 2 are
obtained (Figs. 11 and 12). The parameters are fixed to
(T, λ, D, γ , v0)= (0.1, 0.8, 0.9, 0, 0.15) in Fig. 11 for model
1 and (T, λ, D, γ , v0)= (0.1, 1.2, 0.45, 0, 0.7) in Fig. 12 for
model 2. The parameters (λ, D, γ , v0) for model 1 and model
2 are the same as those assumed for the BT phase diagrams
in Figs. 5 and 6. The symbol (skx) for skyrmion and those for
other phases are also exactly the same as those used in Figs. 5
and 6.

For the external force �f = ( f , 0) in the positive x direction,
we assign positive f in the vertical axis of the diagrams.
In the case of �f = ( f , 0) for positive f , the internal variable
τ is expected to align along �f in the direction (1,0) or x
direction. In contrast, the negative f in the diagrams means
that �f = (0, f ). In this case, τ aligns along the direction (0,1)
or y direction. Such an aligned configuration of τ along the y
axis is also expected for α=−1 with �f = ( f , 0) because the
energy αS f for α=1 with �f = (0, f ) is identical to αS f for
α=−1 with �f = ( f , 0) up to a constant energy.

Figures 11(b) and 12(b) are snapshots of deformed
skyrmions, where the shape anisotropy is slightly larger than
the experimental one in Ref. [34]. In contrast, the snap-
shots in Figs. 11(c) and 12(c) are almost comparable in their
anisotropy δ, as shown in Figs. 11(d) and 12(d) with the ex-
perimentally reported one denoted by expt. The word thinner,
corresponding to the solid circle enclosed by a blue-colored
square, indicates that the shape deformation is thinner than
that of expt, and the word compa corresponding to that en-
closed by a pink-colored diagonal indicates that the shape
deformation is comparable to that of expt. For f =0, the
skyrmion shape is isotropic, as we see in Figs. 11(e) and 12(e),
and the shape vertically deforms for the negative f region,
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FIG. 11. (a) f B phase diagram of model 1, where f and B are the external force and magnetic field, (b) snapshot of skyrmions at ( f , B)=
(1.1, −0.7), (c) snapshot obtained at ( f , B)= (0.7,−0.7), (d) histogram of δ corresponding to (c), which is close to expt data in Ref. [34], and
(e), (f) snapshots obtained at ( f , B)= (0,−0.7) and ( f , B)= (−0.5,−0.7), where the negative f implies �f = (0, f ), and the skyrmion shape
deforms vertically. The assumed parameter values are written in the figure.

FIG. 12. (a) f B phase diagram of model 2, where f and B are the external force and magnetic field, (b) snapshot of skyrmions at ( f , B)=
(1.1, −0.45), (c) snapshot obtained at ( f , B)= (0.9,−0.45), (d) histogram of δ corresponding to (c), which is close to expt data in Ref. [34],
and (e), (f) snapshots obtained at ( f , B)= (0,−0.45) and ( f , B)= (−0.5,−0.45), where the negative f implies �f = (0, f ) and the skyrmion
shape deforms vertically. The assumed parameter values are written on the figure.
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FIG. 13. Snapshots of τ corresponding to (a) Fig. 5(c) of model
1, (b) Fig. 6(c) of model 2, and (c) Fig. 12(e) of model 2. The small
cylinders correspond to τ . The total number of cylinders is reduced
to 2500, which is a quarter of N (=10 000), to clarify the directions.
The arrows (↔) in (a) and (b) denote the direction of tensile force �f .

which implies positive f in �f = (0, f ), in Figs. 11(f) and
12(f). Thus, we can confirm from the snapshots that the shape
deforms to oblong along the applied tensile force direction.
Moreover, the deformation is almost the same as expt for a
certain range of f in both models 1 and 2.

We should note that the skx phase changes to the sk-st
phase with increasing f at a relatively small B region, how-
ever, it does not change to the ferro phase at an intermediate
region of B even if f increases to sufficiently large, where τ

saturates in the sense that no further change is expected. This
saturation is because the role of �f is only to rotate the direction
of τ . Hence, the modeling of stress by �f and τ is considered
effective only in small stress regions, as mentioned in Sec. II.
This point is different from the reported numerical results in
Ref. [33], where the skx phase terminates, and the stripe or
ferro phase appears for sufficiently large strain in the strain
versus magnetic field diagram.

Finall, in this subsection, we show snapshots of the variable
τ in Figs. 13(a)–13(c), which correspond to the configurations
shown in Fig. 5(c) of model 1, Fig. 6(c) of model 2, and
Fig. 12(e) of model 2, respectively. To clarify the directions
of τ , we show a quarter of τ (⇔ the total number of τ is
2500) in the snapshots. We find that τ is almost parallel to
�f , denoted by the arrows in Fig. 13(a) and Fig. 13(b), and

it is almost random in Fig. 13(c), where f is assumed to be
f =0. The reason why τ in Fig. 13(b) is more uniform than in
Fig. 13(a) is because f (=1.7) in Fig. 13(b) is relatively larger
than f (=0.5) in Fig. 13(a).

B. Responses to uniaxial strains

To summarize the results in Sec. III A, both models 1 and
2 successfully describe the shape deformation of skyrmions
under external mechanical forces �f . The skyrmion deforma-
tion comes from the fact that the skx phase is sensitive to the
direction τ of the strain field influenced by f in �f = ( f , 0),
which is assumed to be positive or equivalently tensile, as
mentioned in Sec. II. This successful result implies that the
interaction between spins and the mechanical force is ade-
quately implemented in both models at least in the skx phase.

In addition, the response of spins in the stripe phase in both
models or, more explicitly, the stripe direction as a response
to �f , is also consistent with the reported experimental result
in Ref. [39]. In Ref. [39], as mentioned in the introduction,

Dho et al. experimentally studied magnetic microstructures
of LSMO thin film at room temperature and zero magnetic
fields. The reported results indicate that the direction of the
strain-induced magnetic stripe becomes dependent on whether
the force is compression or tension.

On the other hand, the definition of SDM in Eqs. (2) and
(3) is explicitly dependent on the shape of the lattice and,
therefore, we examine another check for the response of spins
in the stripe phase by deforming the lattice itself, as described
in Fig. 3. To remove the effect of �f , we fix �f to f =0 in S f and,
instead, γ in γ Sτ is changed from γ =0 to γ =0.5 for model 1
and γ =0.65 for model 2. As a consequence of these nonzero
γ , the variable τ is expected to align to some spontaneous
directions. If the lattice deformation nontrivially influences
τ , this spontaneously and locally oriented configuration of
τ is expected to influence spin configurations strongly in the
stripe phase. As a consequence, the stripe direction becomes
anisotropic on deformed lattices (⇔ ξ �=1), while the stripe is
isotropic on the undeformed lattice (⇔ ξ =1).

To check these expectations by the lattice deformations
shown in Fig. 3, we modify the unit tangential vector �ei j ,
which originally comes from ∂�ri/∂x j (Appendix A). Indeed,
∂�ri/∂x j is understood to be the edge vector �
i j (=�r j −�ri ) from
vertex i to vertex j in the discrete model, and therefore,
both the direction and the length of �
i j are changed by the
lattice deformations in Fig. 3. Thus, the unit tangential vector
�ei j = (ex

i j, ey
i j ) in SDM in Eqs. (2) and (3) is replaced by

�e ′
i j = (

e′x
i j, e′y

i j

) = (
ξ−1ex

i j, ξey
i j

)
. (13)

This generalized vector �e ′
i j is identical to the original unit

vector �ei j for ξ =1. Note also that �ei j in vi j in Eqs. (2) and
(3) is replaced by �e ′

i j as follows:

SFM =
∑
�

[λi j (1 − σi · σ j ) + λ jk (1 − σ j · σk )

+ λki(1 − σk · σi )],

SDM =
∑

i j

�e ′
i j · σi × σ j,

λi j = 1

3

(
vi j

vik
+ v ji

v jk

)
,

vi j =
{|τi · �e ′

i j | + v0 (|τi · �e ′
i j | < 1)

1 + v0 (|τi · �e ′
i j | � 1)

, (model 1), (14)

and

SFM =
∑

i j

(1 − σi · σ j ),

SDM =
∑
�

[λi j (�e ′
i j · σi × σ j ) + λ jk (�e ′

jk · σ j × σk )

+ λki(�e ′
ki · σk × σi )],

λi j = 1

3

(
vi j

vik
+ v ji

v jk

)
,

vi j =
{√

1− (τi · �e ′
i j )

2+ v0 (|τi · �e ′
i j | < 1)

v0 (|τi · �e ′
i j | � 1)

, (model 2),

(15)
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FIG. 14. (a) Regular triangular lattice corresponding to ξ =1,
and deformed lattices corresponding to (b) ξ =0.9 and (c) ξ =1.1.
The bond length a in (a) is a=1, while in (b) and (c), a changes to
a > 1 or a < 1 depending on the direction of bonds. The symbol θ

in (a) is the angle between τi and the direction of bond i j, and the
arrows (↔) and (
) in (b) and (c) indicate the elongation direction.

and the corresponding models are also denoted by model 1
and model 2. The difference between models in Eqs. (14), and
(15) and Eqs. (2) and (3) comes from the definition of vi j .
However, the variables vi j in Eqs. (14) and (15) are identical
with vi j in Eqs. (2) and (3) for the nondeformed lattice cor-
responding to ξ =1 and, therefore, both models in Eqs. (14)
and (15) are simple and straightforward extensions of models
in Eqs. (2) and (3). From the definitions of vi j in Eqs. (14)
and (15), vi j no longer have the meaning of a component of
τi along or perpendicular to the direction from vertex i to
vertex j. It is also possible to start with models 1 and 2 in
Eqs. (14) and (15) from the beginning, however, models 1 and
2 in Eqs. (2) and (3) are relatively simple and used to study
responses to the external stress �f in Sec. III A.

Since the definition of vi j in Eqs. (14) and (15) depends on
the bond vector �e ′

i j , we first show the lattices corresponding to
ξ = 1, ξ = 0.9, and ξ = 1.1 in Figs. 14(a)–14(c). Let the bond
length or the lattice spacing a(=|�ei j |) be a=1 on the regular
lattice, then a(=|�e ′

i j |) becomes a > 1 or a < 1 depending on
the bond direction on the deformed lattices. For ξ =0.9, all
bonds in the horizontal direction, such as bond i j in Fig. 14(b),
satisfy a > 1, and all other bonds, such as bond ik, satisfy
a < 1. To the contrary, for ξ =1.1, all bonds in the horizontal
direction satisfy a < 1 and all other bonds satisfy a > 1 as
shown in Fig. 14(c).

We should comment on the influences of lattice deforma-
tion described in Eqs. (6) on SFM and SDM in models 1 and 2
in detail. First, the definition of SDM initially depends on the
lattice shape. Moreover, in SDM of model 2, the influences of
lattice deformation come from both �e ′

i j and λi j , which depends
on vi j . SFM in model 1 is also dependent on the lattice shape
due to this λi j . In contrast, SFM in model 2 depends only on
the connectivity of the lattice and is independent of the lattice
shape. To summarize, the lattice deformation by ξ in Eqs. (6)
influences both SFM and SDM in model 1, and it influences only
SDM in model 2.

Figures 15 and 16 show phase diagrams for the stripe phase
in models 1 and 2 under variations of ξ and T . The symbols
(
�

), (©),and (�) denote horizontal, isotropic, and vertical
alignments of stripe direction. In Fig. 16(g), the alignment
direction is not exactly vertical to the horizontal direction, but
it is parallel to the triangle’s edge directions (see Fig. 1). This
deviation in the alignment direction is in contrast to the case

FIG. 15. (a) T ξ diagram in the stripe phase of model 1, where T
and ξ are the temperature and deformation parameter in Eqs. (6). The
arrows (↔) and (
) denote the lattice elongation direction, whereas
the symbols (

�
), (©), and (�) denote alignments of the stripe

direction. (b)–(d) are snapshots obtained at ξ =0.88 and (e)–(g) are
those obtained at ξ =1 and ξ =1.12. The parameters λ and D are
the same as those used in Figs. 5 and 11, and (B, γ , f ) are fixed to
(B, γ , f )= (0, 0.5, 0). Fluctuations of spins increase with increasing
temperature.

of model 1 in Figs. 15(b)–15(d) and is also in contrast to the
case that �f = (0, f ) is applied, where the stripe direction is
precisely vertical to the horizontal direction (which is not
shown). For ξ =1, the lattice is not deformed, and uniaxial
strains, and hence, aligned stripes, are not expected. Indeed,
we find from the snapshots in Figs. 15 and 16 that the
stripe direction is not always uniformly aligned, except for
at relatively low temperatures such as T =0.9. From this,
it is reasonable to consider τ to be a strain direction in a

FIG. 16. (a) T ξ diagram in the stripe phase of model 2, where T
and ξ are the temperature and deformation parameter in Eqs. (6).
The arrows (↔) and (
) denote the lattice elongation direction,
whereas the symbols (

�
), (©),and (�) denote alignments of the

stripe direction. (b)–(d) are snapshots obtained at ξ =0.88, and (e)–
(g) are those obtained at ξ =1 and ξ =1.12. The parameters λ and
D are the same as those used in Figs. 6 and 12, and (B, γ , f ) are
fixed to (B, γ , f )= (0, 0.65, 0). Fluctuations of spins increase with
increasing temperature.
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FIG. 17. Snapshots of τ of model 2 obtained at (a) (T, B)=
(0.9, 0.88), (b) (T, B)= (1.05, 1), and (c) (T, B)= (0.9, 1.12), which
correspond to Figs. 16(d), 16(f), and 16(g), respectively. The small
cylinders represent τ . The total number of cylinders is reduced to
2500, which is a quarter of N (=10000), to clarify the directions. The
arrows in (a) (↔) and (c) (
) denote the lattice elongation directions.

microscopic sense. If γ is fixed to a larger value, such as γ =1
in both models, then the stripe pattern or, equivalently, the
direction of τ , becomes anisotropic even at ξ =1 like those
in the case of ξ �=1.

We find that the results of model 2 in Fig. 16 are consistent
with the reported experimental data in Ref. [39] (see Fig. 3),
implying that τ in model 2 correctly represents the direction
of strains expected under the lattice deformations by ξ . On the
contrary, the results of model 1 in Fig. 15 are inconsistent with
the experimental data. This difference in the stripe direction
comes from the fact that the lattice deformation incorrectly
influences the alignment of τ or, in other words, τ in model 1
is not considered as the strain direction corresponding to the
lattice deformation.

Thus, the strains caused by lattice deformations are consis-
tent (inconsistent) to their stress type, compression, or tension,
which determines the direction of stripe pattern in model 2
(model 1) at T 	1 and B=0. For the low-temperature re-
gion, the responses of lattice deformation in model 2 and
model 1 are partly inconsistent with the experimental result
in Ref. [39]. To summarize, the numerical results in this
paper support that the reason for skyrmion shape deforma-
tion, described in Ref. [34], is an anisotropy in the DMI
coefficient.

Here we show snapshots of τ in Figs. 17(a)–17(c) corre-
sponding to Figs. 16(d), 16(f), and 16(g), respectively. We
find that almost all τ align along the horizontal direction in
Fig. 17(a), the direction locally aligns and is globally isotropic
in Fig. 17(b), and almost all τ align along the vertical direc-
tion or the triangle edge direction in Fig. 17(c). The random
state of τ in Fig. 17(b) implies that the direction of the D
vector is globally at random and considered to correspond to a
noncoplanar distribution of D vectors in the bulk system with
inhomogeneous distortion expected from the effective mag-
netic model [30,31]. Thermal fluctuations in such a random
state may grow on larger lattices, and if such an unstable phe-
nomenon is expected, the deformed skyrmion shape changes
with increasing lattice size. However, no difference is found
in the simulation results on the lattice of size 100×100 and
those on the lattices of 200×200 and 400×400 on the dashed
lines in Figs. 5 and 6. Due to the competing interactions in our
model, the spin configuration is nonuniform with topological
textures. However, skyrmion structures cannot be generated
by random anisotropies.

FIG. 18. Responses of the original model, in which the FG pre-
scription is not applied, to the lattice deformations (a) ξ =0.98,
(b) ξ =1 and (c) ξ =1.02 in the stripe phase for (T, λ, D, B)=
(1, 1.6, 0.9, 0). The direction of stripes for ξ �=1 is inconsistent with
the experimental result in Ref. [39]. The arrows inside the snapshots
of (a) (↔) and (c) (
) denote the lattice elongation direction.

To further check the response of spins to the lattice defor-
mation, we examine the original model defined by [53,54]

S = λSFM + DSDM − SB,

SFM =
∑

i j

(1 − σi · σ j ), SDM =
∑

i j

�e ′
i j · σi × σ j, (16)

where both SFM and SDM are not deformed by FG modeling
prescription, and SB is the same as in Eqs. (5). The SDM is de-
fined by using the generalized �e ′

i j in Eq. (13). The parameters
are assumed as (T, λ, D, B)= (1, 1.6, 0.9, 0). The snapshots
are shown in Figs. 18(a)–18(c) for ξ =0.98, ξ =1, and ξ =
1.02, respectively. We find that the result is inconsistent with
the reported experimental data in Ref. [39]. This inconsistency
implies that the effective coupling constants, such as Dx and
Dy in Eqs. (4), play a nontrivial role in the skyrmion deforma-
tion and the stripe direction. It must also be emphasized that
the stress effect implemented in model 2 via the alignment
of τ correctly influences helical spin configurations of the
skyrmion shape deformation and the stripe direction.

For smaller (larger) ξ , such as ξ =0.94 (ξ =1.06), the
vertical (horizontal) direction of stripes becomes more appar-
ent in Fig. 18. Interestingly, the vertical direction of stripes
is parallel to the y direction and not parallel to the triangle
edge directions. This result indicates that the vertical direction
shown in Fig. 16(g) comes from nontrivial effects of λi j of SFM

and SDM in Eqs. (14) and (15). We note that the parameters are
not always limited to those used in Fig. 18. It is possible to use
a wide range of (T, λ, D) where isotropic stripe configurations
like in Fig. 18(b) are expected for ξ =1. In Fig. 19(a), the
Finsler length vi j defined by Eqs. (14) for ξ =0.9 are plotted,
where the horizontal axis θ is the angle between τi and �e ′

i j
[see Fig. 14(a)]. For ξ =1, vi j (dashed line) is identical with
the original vi j in Eqs. (2), which is also plotted (solid line)
and is found to be shifted from [0,1] to [v0, 1+v0] by a
constant v0(=0.15) in Figs. 19 (a) and 19(b) and v0(=0.7) in
Figs. 19(c) and 19(d). We find that vi j (dashed line) deviates
from vi j (solid line) only slightly at the region θ → 0 or,
equivalently, θ → π , while at θ →π/2, vi j (dashed line) is
identified with vi j (solid line) for any ξ . On the lattice of
ξ =1.1 in Fig. 19(b), the behavior of vi j (dashed line) is almost
comparable to the case of ξ =0.9 in Fig. 19(a). In addition,
the curve of vi j (dashed line) of model 2 on the long bond
a>1 also includes a constant part (=v0) at θ →0 like in the
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FIG. 19. The variation of vi j versus θ of model 1 for (a) ξ =0.9
and (b) ξ =1.1, and vi j versus θ of model 2 for (c) ξ =0.9 and (d)
ξ =1.1, where θ is the angle between τi and �e ′

i j [see Fig. 14(a)]. All
the curves of vi j (dashed lines) continuously reduce to the curve of
vi j (solid line) in the limit of ξ →1.

case of model 1. This constant part disappears in the limit
of ξ →1, and hence, model 2 in Eqs. (15) as well as model
1 in Eqs. (14) is understood to be an extension of those in
Eqs. (2) and (3) as mentioned above. Now we discuss why
the results of model 2 are considered to be more realistic. We
show the variation of effective coupling constants λμ and Dμ

(μ=x, y), defined by Eqs. (4), with respect to ξ [Figs. 20(a)
and 20(b)], where the anisotropies ηλ and ηD, defined by
Eqs. (12), are also plotted. We find that in the region ξ >1,
both ηλ and ηD are decreasing and smaller than those in ξ <1
in Figs. 20(a) and 20(b). Remarkably, the variations of Dx, Dy,
and ηD versus ξ in model 2 almost discontinuously change at
ξ =1 and are in sharp contrast to those of model 1. In model 2,
if ηD is positive (negative), which implies Dx <Dy (Dx >Dy),

FIG. 20. (a) The effective coupling constants λx, λy and the
anisotropy ηλ versus ξ of model 1, and (b) Dx, Dy and ηD of model 2.
The behaviors of λμ and ηλ of model 1 are almost identical to those
of model 2 except the jumps at ξ =1 in model 2. These data of model
1 (model 2) are obtained from the simulations in Fig. 15 (Fig. 16) at
T =1.

then the stripe direction is horizontal (vertical). Thus, we find
that model 2 on the deformed lattices for ξ <1 [Fig. 14(b)]
shares the same property as that on the nondeformed lattice
with a tensile stress �f = ( f , 0). Indeed, the stripe direction of
model 2 is horizontal [Fig. 6(f)] and ηD is positive [Fig. 9(d)]
under the tensile stress of the horizontal direction �f = ( f , 0).
In other words, the response of model 2 on the nondeformed
lattice with uniaxial stress �f = ( f , 0) is the same as that on
the deformed lattice in Fig. 14(b) corresponding to ξ <1. This
is considered to be the reason why model 2 provides the
consistent result of stripe direction with experimental data.

From these observations, we find that the small value re-
gion of vi j plays an important role in the model’s response.
The small value region in model 1 is θ 	π/2 [Figs. 19(a) and
19(b)], where τi is almost vertical to �e ′

i j , and vi j for ξ �=1 is
almost the same as vi j for ξ =1 and, therefore, no new result
is expected in model 1. In contrast, the small value region in
model 2 is θ 	0 [Figs. 19(c) and 19(d)], where τi is almost
parallel to �e ′

i j , and even a small deviation of vi j (dashed line)
from vi j (solid line) is relevant. Such a nontrivial behavior
of model 2 emerging from the small vi j region is understood
from the fact that the effective coupling constant λi j is given
by a rational function of vi j .

We should emphasize that the result, supporting that model
2 is consistent with both skyrmion deformation and stripe
direction, is obtained by comparing models 1 and 2, and that
the result of model 2 is consistent with that in Ref. [33],
where an additional energy term for MEC is included in a
Landau-Ginzburg free energy. In this additional interaction
term, strains and magnetization are directly coupled. In our
models, the strain field τ is introduced in S f , and τ represents
strain direction, though S f includes no direct interaction of τ

and magnetization or spin variable σ . Thus, we consider that
model 2 supports the model in Ref. [34], where an anisotropy
in the DMI coefficient is explicitly assumed, implying that
uniaxial stress deforms DMI anisotropic.

Another choice is that both FMI and DMI are modified by
FG modeling prescription. This model is certainly expected
to reproduce the experimentally observed shape deforma-
tion of skyrmions. However, this choice is not suitable for
reproducing the stripe direction alignment by lattice defor-
mation because model 1 is contradictory for this purpose, as
demonstrated above. Therefore, we eliminate this choice from
suitable models and find the conclusion stated above.

IV. SUMMARY AND CONCLUSION

Using a FG model on a 2D triangular lattice with periodic
boundary conditions, we numerically study skyrmion defor-
mation under uniaxial stress and the lattice deformation. Two
different models, models 1 and 2, are examined: the ferro-
magnetic energy SFM and Dzyaloshinskii-Moriya energy SDM

are deformed by FG modeling prescription in models 1 and
2, respectively. In these FG models, the coupling constants
λ and D of SFM and SDM are dynamically deformed to be
direction dependent such that λx �=λy and Dx �=Dy. In both
models, the ratio λ/D is dynamically distorted to be direction
dependent with an internal degree of freedom τ for strains and
a mechanical force or stress �f .
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We find that the results of both models for skyrmion defor-
mation under uniaxial stress are consistent with the reported
experimental data. For the direction of stripes as a response to
the stresses, the numerical data of both models are also con-
sistent with the reported experimental result observed at room
temperature with zero magnetic field. However, we show that
the responses of the two models to lattice deformations are
different from each other in the stripe phase. In this case, only
the data obtained by model 2 are shown to be consistent with
the experimental result. We conclude that in real systems only
lattice deformations due to the DMI are relevant. Note that the
original model, in which both FMI and DMI energies are not
deformed by FG modeling prescription, is also examined un-
der the lattice deformations and the produced stripe directions
are found to be different from those of the experimental data.
This shows that the lattice deformations naturally introduced
into the system by the FG modeling are necessary to explain
the experimental results.

Combining the obtained results for responses to both uni-
axial stresses and lattice deformations, we conclude that the
anisotropy of the DMI coefficient is considered to be the
origin of the experimentally observed and reported skyrmion
deformations by uniaxial mechanical stresses. Thus, the FG
modeling can provide a successful model to describe modu-
lated chiral magnetic excitations on thin films caused by the
anistropy in the ratios λ/D.
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APPENDIX A: FINSLER GEOMETRY MODELING OF
FERROMAGNETIC AND DZYALOSHINSKII-MORIYA

INTERACTIONS

In this Appendix A, we show detailed information on how
the discrete forms of SFM and SDM in Eqs. (2) and (3) are
obtained. To simplify descriptions, we focus on the models
on nondeformed lattices in Eqs. (2) and (3). Note that de-
scriptions of models on deformed lattices in Eqs. (14) and
(15) remain unchanged except the definition of vi j . Let us
start with the continuous form of SFM. Since the variable σ (∈
S2 : unit sphere) is defined on a two-dimensional surface, the
continuous SFM and SDM are given by

SFM = 1

2

∫ √
gd2xgab ∂σ

∂xa
· ∂σ

∂xb
,

SDM =
∫ √

gd2xgab ∂�r
∂xa

· σ × ∂σ

∂xb
,

(A1)

FIG. 21. (a) A triangle of vertices 123 and a strain field τ1 at
vertex 1, and its tangential components τ1 · �e12 and τ1 · �e13 along the
directions �e12 and �e13, which are the unit tangential vectors from
vertices 1 to 2 and 1 to 3. (b) Three possible local coordinates on
the triangle 123, (c) two neighboring triangles i jk and jil .

where gab is the inverse of the metric gab, and g is its de-
terminant (see also Ref. [54]). Note that the unit tangential
vector �ea can be used for ∂�r/∂xa, which is not always a unit
vector. Indeed, the difference between �ea and ∂�r/∂xa is a con-
stant multiplicative factor on the regular triangular lattice, and
therefore, we use �ea for ∂�r/∂xa for simplicity. For simulations
on deformed lattices, this unit vector �ea is replaced by a more
general one �e ′

a in Eq. (13).
Here we assume that gab is not always limited to the in-

duced metric (∂�r/∂xi ) · (∂�r/∂x j ) but is assumed to be of the
form

gab =
(

v−2
12 0

0 v−2
13

)
(A2)

on the triangle of vertices 123 [see Fig. 21(a)], where vi j is
defined by using the strain field τi(∈ S1 : unit circle) such that

vi j = |τi · �ei j | + v0, (for SFM; model 1),

vi j =
√

1 − (τi · �ei j )2 + v0, (for SDM; model 2). (A3)

Note that the definition of vi j in SFM in model 1 is different
from that in SDM in model 2.

We should comment that the usage of FG in this paper for
chiral magnetism is not the standard one of non-Euclidean
geometry such as in Ref. [55]. In the case of Ref. [55], a
nonflat geometry is assumed to describe real curved thin films
in R3 and to extract curvature effect on a magnetic system. In
contrast, the film in this paper is flat and follows Euclidean ge-
ometry; however, an additional distance called Finsler length
is introduced to describe Hamiltonian SFM or SDM. Even when
the surface is curved, in which the surface geometry fol-
lows the induced metric or Euclidean geometry in R3 as in
Ref. [55], a Finsler length can also be introduced in addition
to the surface geometry. Such a non-Euclidean length scale
can constantly be introduced to the tangential space, where
the length of the vector or the distance of two different points
is defined by the newly introduced metric tensor such as gab

in Eq. (A2). Therefore, in the FG modeling prescription, we
have two different length scales; one is the Euclidean length
for thin films in R3 and the other is dynamically changeable
Finsler length for Hamiltonian.

The Finsler length scale is used to effectively deform the
coefficient λi j in Eqs. (2) and (3), which will be described
below in detail. This λi j varies depending on the internal strain
variable τ , which is integrated out in the partition function
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and, therefore, all physical quantities are effectively integrated
over different length scales characterized by the ratio λ/D of
interaction coefficients for FMI and DMI. Here, this ratio is
fluctuating and its mean value can be observed and expressed
by using the effective coupling constant in Eqs. (4). Thus, dy-
namically deformed D means that all-important length scales
are effectively integrated out with the Boltzmann weight to
calculate observable quantities. Note that this is possible if
gab is treated to be dynamically changeable. For this reason,
this FG modeling is effective, especially for anisotropic phe-
nomena, because we can start with isotropic models such as
the isotropic FMI and DMI. Therefore, the FG model is in
sharp contrast to those models with explicit anisotropic inter-
action terms such as Landau-type theory for MEC. This FG
modeling is a coarse-grained one like the linear chain model,
of which the connection to monomers is mathematically con-
firmed [56]. In such a coarse-grained modeling, the detailed
information on electrons and atoms is lost from the beginning,
like in the case of FMI. In other words, no specific information
at the scale of atomic level is necessary to calculate physical
quantities even in such complex anisotropic phenomena.

To obtain the discrete expressions of SFM, we replace∫ √
gd2x → ∑

�(1/v12v13) and g11∂σ/∂x1 · ∂σ/∂x1 →
v2

12(σ2 − σ1)2, g22∂σ/∂x2 · σ/∂x2 → v2
13(σ3 − σ1)2 on

the triangle of vertices 123 [Fig. 21(a)], where the local
coordinate origin is at vertex 1, and

∑
� denotes the sum over

triangles. The discrete form of SDM is also obtained by the re-
placements g11∂�r/∂x1 · (σ × ∂σ/∂x1) → v2

12e12 · (σ1 × σ2),
g22∂�r/∂x2 · (σ × ∂σ/∂x2) → v2

13e13 · (σ1 × σ3). Then, we
have

SFM = 1

2

∫ √
gd2x

(
g11 ∂σ

∂x1
· ∂σ

∂x1
+ g22 ∂σ

∂x2
· ∂σ

∂x2

)

→
∑
�

[v12

v13
(1 − σ1 · σ2) + v13

v12
(1 − σ1 · σ3)

]
(A4)

and

SDM =
∫ √

gd2x

(
g11 ∂�r

∂x1
· σ × ∂σ

∂x1
+ g22 ∂�r

∂x2
· σ × ∂σ

∂x2

)

→
∑
�

[v12

v13
(�e12 · σ1 × σ2) + v12

v13
(�e13 · σ1 × σ3)

]
. (A5)

The local coordinate origin can also be assumed at vertices
2 and 3 on the triangle 123 (Fig. 21(b)). Therefore, summing
over the discrete expressions of SFM and SDM for the three
possible local coordinates, which are obtained by replacing
the indexes 1 → 2, 2 → 3, · · · with the factor 1/3, we have

SFM = 1

3

∑
�

[(
v12

v13
+ v21

v23

)
(1 − σ1 · σ2)

+
(

v23

v21
+ v32

v31

)
(1 − σ2 · σ3)

+
(

v13

v12
+ v31

v32

)
(1 − σ3 · σ1)

]
(A6)

and

SDM = 1

3

∑
�

[(
v12

v13
+ v21

v23

)
(�e12 · σ1 × σ2)

+
(

v23

v21
+ v32

v31

)
(�e23 · σ2 × σ3)

+
(

v13

v12
+ v31

v32

)
(�e31 · σ3 × σ1)

]
. (A7)

Replacing the vertices 1,2,3 with i, j, k, we have the following
expressions for SFM and SDM such that:

SFM =
∑
�

[λi j (1 − σi · σ j ) + λ jk (1 − σ j · σk )

+ λki(1 − σk · σi )],

SDM =
∑
�

[λi j (�ei j · σi × σ j ) + λ jk (�e jk · σ j × σk )

+ λki(�eki · σk × σi )],

λi j = 1

3

(
vi j

vik
+ v ji

v jk

)
, (A8)

where k in λi j is the third vertex number other than i and j.
Note that λi j =λ ji is satisfied.

The sum over triangles
∑

� in these expressions can also
be replaced by the sum over bonds

∑
i j , and we also have

SFM =
∑

i j

λ̄i j (1 − σi · σ j ), SDM =
∑

i j

λ̄i j (ei j · σi × σ j ),

(A9)
where the coefficients λ̄i j on the triangles are given by

λ̄i j = 1

3

(
vi j

vik
+ v ji

v jk
+ vi j

vil
+ v ji

v jl

)
. (A10)

In this expression, the vertices k and l are those connected
with i and j [see Fig. 21(c)]. The coefficient λ̄i j is also sym-
metric; λ̄i j = λ̄ ji, where k and l should also be replaced by
each other if i is replaced by j. For numerical implementation,
the expressions in the sum of triangles are easier than the
sum over bonds, and we use the sum over triangles in the
simulations in this paper.

Now, the origin of the form of gab in Eq. (A2) is briefly
explained [57–60]. Let L(x(t ), y(t )) be a Finsler function on a
two-dimensional surface defined by

L(x(t ), y(t )) =
√

(y1)2 + (y2)2/|�v|

=
√(

dx1

dt

)2

+
(

dx2

dt

)2

/|�v|,

|�v| =
√(

dx1

ds

)2

+
(

dx2

ds

)2

, �v

=
(

dx1

ds
,

dx2

ds

)
, (A11)

where �v is a velocity along C other than y(t )=
(dx1/dt, dx2/dt ), and �v is assumed to be identical to
the derivative of (x1, x2) with respect to the parameter s
[Fig. 22(a)]. It is easy to check that

s =
∫ t

t0

L(x(t ), y(t ))dt

(
⇔ ds

dt
= L(x(t ), y(t ))

)
, (A12)

and this s is called Finsler length along the positive direction
of C. The Finsler metric gab, (a, b = 1, 2), which is a 2 × 2
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FIG. 22. (a) A curve C parameterized by t on a two-dimensional
continuous surface, where a point x(t ) = (x1, x2) on C and its deriva-
tive y(t ) = (ẋ1, ẋ2) are represented by a local coordinate. (b) A
regular square lattice with a local coordinate axes x1 and x2 at vertex
1 and strain fields τi(i=1, 2) at vertices 1 and 2. Note that v12 �=v21,
implying that the velocity from 1 to 2 is different from the velocity
from 2 to 1, while v21 =v24.

matrix, is given by using the Finsler function such that

gab = 1

2

∂2L

∂ya∂yb
. (A13)

Now, let us consider the Finsler function L(x, y) on the
square lattice (for simplicity). Note that L is defined only on
the local coordinate axes on the lattice, and therefore we have

L(x(t ), y(t )) = y1/v12 (A14)

on x1 axis from vertices 1 to 2 [Fig. 22(b)], where v12 is the
velocity from vertex 1 to vertex 2 defined in Eqs. (A3). From
this expression and Eq. (A13), we have g11 =v−2

12 . We also
have g22 =v−2

13 from the Finsler function L=y2/v13 defined
on x2 axis from vertex 1 to vertex 3. Thus, we have the
discrete and local coordinate expression of Finsler metric in
Eq. (A2) on square lattices shown in Fig. 22(b), though the
expression of gab in Eq. (A2) for triangular lattices. Indeed, on
triangular lattices, the expression of gab is the same as that on
square lattices, and the only difference is that there are three
possible local coordinates on triangles, while there are four
possible local coordinates on squares. Due to this difference,

FIG. 23. (a) The definition of shape anisotropy δ with a snapshot
of skyrmion enclosed by a rectangle for the graphical measurement
of wx and wy, and (b) two lines 
X and 
Y , passing through the local
minimum of σz, are used to find the four points A, B, C, and D for the
rectangle.

the coefficient λi j in Eqs. (A8) becomes slightly different from
that on square lattices; however, we have no difference in the
expression of gab for the dependence on the lattice structure.

APPENDIX B: GRAPHICAL MEASUREMENT
OF SKYRMION SHAPE ANISOTROPY

Here we describe how to measure the side lengths wx and
wy of a skyrmion for the shape anisotropy δ [Fig. 23(a)],
where a snapshot of the skyrmion is shown simply by two-
color gradation in blue and red using σz(∈ [−1, 1]). Two lines

X and 
Y in Fig. 23(b) are drawn parallel to the x and y direc-
tions, and the point where two lines cross is a vertex where σz

is the local minimum (or maximum depending on the direction
of �B). This local minimum σz is numerically determined to be
smaller than those of the four nearest-neighbor vertices in all
directions. The point A is the first vertex, where the sign of
σz changes from minus to plus, encountered moving along 
X

from the crossing point. The other vertex B is also uniquely
determined in the same way. Note that the crossing point is
not always located at the center of A and B on 
X . The vertices
C and D on 
Y are also uniquely determined. The values of σz

at these four points A, B, C, and D are not always exactly
identical to σz =0 but are small positive close to σz =0.
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