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Two-flux tunable Aharonov-Bohm effect in a photonic lattice
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We study the Aharonov-Bohm (AB) caging effect in a one-dimensional lattice of θ -shaped units defining a
chain of interconnected plaquettes, each one threaded by two synthetic flux lines. In the proposed system, light
trapping results from the destructive interference of waves propagating along three arms. This implies that the
caging effect is tunable and it can be controlled by changing the tunnel couplings J . These features reflect on the
diffraction pattern allowing us to establish a clear connection between the lattice topology and the resulting AB
interference.
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I. INTRODUCTION

In the early 1980’s the geometrical interpretation of some
phenomenological observables introduced a new paradigm for
the explanation of different effects [1], modifying, for exam-
ple, our view of nonrelativistic quantum phenomena such as
the quantum Hall effect [2], and prompting new developments
and discoveries of paramount relevance ranging from modern
polarization theory [3] to topological phases [4].

Nowadays, the geometry of the Hilbert space, with its met-
ric, defining the distance between two quantum states, and its
connection [5], fixing the phase accumulated along quantum
trajectories, is a central object in condensed matter research,
holding great promise for quantum information applications.
In photonics and atomic physics the quest to engineer and
control the geometric and topological properties of artificial
lattices fostered remarkable efforts to implement effective
electromagnetic fields for neutral particles [6]. Just to mention
a few examples, uniform magnetic fields were achieved in op-
tical lattice-based experiments [7], in ring resonator arrays [8],
and in optomechanical systems [9]. In photonic lattices, arti-
ficial gauge fields were generated using different techniques,
i.e., introducing topological defects in two-dimensional struc-
tures [10,11], applying time-dependent modulation [12–14],
employing synthetic modal dimensions [15], and, very re-
cently, controlling the orbital angular momentum of the input
light beam [16]. What underlies most of the observations
carried out in the above systems is the first discovered and
most basic consequence of the existence of gauge fields, the
Aharonov-Bohm (AB) effect [17]. The paramount importance
of this effect ranges from metrological applications to basic
physics [18]. It is a nonlocal effect, arising from the inter-

*laura.pilozzi@isc.cnr.it

ference of electron beams traveling along paths enclosing a
magnetic flux. As first recognized by Wu and Yang [19], it
naturally leads to the concept of a path-dependent phase factor
as a basis to describe electromagnetism and gauge theories
in general. Furthermore, as it clearly emerges in path-integral
derivations, AB interference reflects the multiply connected
nature of the space and it may have impressive consequences
on transport. An example is Aharonov-Bohm caging, a single-
particle localization effect arising from the interplay between
the lattice structure and the magnetic flux, first predicted by
Vidal et al. [20] for two-dimensional electronic lattices and for
interacting particles in a one-dimensional periodic structure
[21], and subsequently extended and experimentally verified
in different contexts [22–25], including photonic lattices (see,
e.g., Refs. [12,26–31]). It has been shown to occur for peri-
odic lattices, such as the well-known rhombi chain (rc), when
the magnetic flux per plaquette equals a given critical value
φrc = φc.

In the present paper we show that by properly engineering
the lattice it is possible to tune the caging away from this
critical value and control it by changing the lattice couplings.
To this end we study the propagation of light through a one-
dimensional array of θ -shaped plaquettes threaded by two
fluxes as shown in Fig. 1(a), that, for brevity, we call the
θ lattice. It reduces to the simple rhombi chain with only
a single flux φrc, for specific couplings going to zero, as
shown in Fig. 1(b). The presence of two fluxes in the θ lattice
allows us to investigate, in a simple but nontrivial framework,
the signatures of Aharonov-Bohm interference on diffraction
patterns, highlighting its topological significance and showing
how in this case the caging effect becomes fully tunable. As
known, the AB is a topological effect in that it requires the
particle to be confined to a multiply connected region where
there is no way to relate a phase shift to any arm of the path:
It depends only on the topology of the path with reference to
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FIG. 1. (a) Sketch of the structure of the θ lattice composed of
interconnected plaquettes, each one threaded by two synthetic flux
lines, φ1 and φ2. An arrow means a phase eiφ . Each plaquette shows
three arms connecting the A site with respectively the b, c, and d
ones. (b) For J1, J2 = 0 the θ lattice reduces to the rhombi chain (rc)
with a single flux per plaquette φrc.

the enclosed flux. The presence of three arms and two fluxes
allows us to better highlight this property with respect to the
simple rhombi chain.

II. MODEL

We consider a one-dimensional lattice of θ -shaped units as
shown in Fig. 1(a). Its unit cell consists of four sites indicated,
respectively, as A, b, c, and d . The three arms of each ring,
defined by the sites An, An+1, and respectively bn, cn, and dn,
enclose two synthetic flux lines, indicated respectively as φ1

and φ2.
The Hamiltonian of the θ lattice can thus be written as

H =
∑

n

[Jt1(a†
ncne−iφ1 + a†

ndneiφ2 ) + Jt2(a†
ndn−1 + a†

ncn−1)

+ J1a†
nbn + J2a†

nbn−1 + H.c.], (1)

where mn, m†
n with m = a, b, c, d are bosonic annihilation

and creation operators corresponding to the sites A, b, c, d
of the cell n. Switching to k space we obtain

H (k, φ1, φ2) =
∑

k

[Jb(k)a†
kbk + Jc(k, φ1)a†

kck

+ Jd (k, φ2)a†
kdk + H.c.], (2)

where mk = 1√
N

∑
n mneikn, with N denoting the number

of unit cells in the lattice, while Jb(k) = J1 + J2e−ik and
Jc(k, φ) = Jd (k,−φ) = Jt1e−iφ + Jt2e−ik , where J1 and Jt1

and J2 and Jt2 denote the intra- and intercell hopping am-
plitudes. The φ1, φ2 dependence of Jc and Jd is due to the
presence of the synthetic gauge fields. We note that setting
Jt1 = 0, the θ lattice reduces to the non-Abelian Lieb lattice
model [32] while setting Jb = 0 it reduces to the standard
rhombi chain. The Hamiltonian H (k, φ1, φ2) is invariant, up
to a gauge transformation, under permutations of the three
arms b, c, and d , i.e., under elements of the non-Abelian group
S3. This implies that the state

|φs(k)〉 = Jb|bk〉 + Jc|ck〉 + Jd |dk〉, (3)

invariant under elements of S3, yields two dispersive modes,

|ψ±(k)〉 = 1√
2

[
|ak〉 ± |φs(k)〉

�(k, φ1, φ2)

]
, (4)

FIG. 2. (a) Spectrum of H (k, φ1, φ2) for Ji = J with i ∈
(1, 2, t1, t2) and φ1 = φ2 = φ. The red dashed lines show the φ

values that give four flat bands. (b) Cylindrical plot of the sur-
face ρ(φ, ζ ) = 1 + ζ cos(φ). (c)–(e) Spectrum support on the (κ, φ)
plane for different values of ζ . They are obtained by projecting the
3D bands on the (κ, φ) plane.

with longitudinal momenta κ±(k, φ1, φ2) = ±�(k, φ1, φ2)
and

�(k, φ1, φ2) =
√

|Jb(k)|2 + |Jc(k, φ1)|2 + |Jd (k, φ2)|2. (5)

On the other hand, the states

|w1〉 = J∗
b |ck〉 − J∗

c |bk〉, (6)

|w2〉 = J∗
b |dk〉 − J∗

d |bk〉, (7)

spanning a two-dimensional noninvariant subspace of S3,
must be degenerate for all J’s. These states thus yield two
nondispersive modes for any φ1 and φ2 with longitudinal
momentum κ = 0. The presence of these modes underlies an
SU(2) non-Abelian gauge symmetry that has been shown to
emerge in non-Abelian Thouless pumping [32].

The overall structure of the spectrum for φ1 = φ2 = φ with
Ji = J for i = (1, 2, t1, t2) can be seen in Fig. 2(a) showing
a band crossing at (k, φ) = (π, 0) and gaps for φ �= 0. We
notice that for certain values of the coupling J and flux per
plaquette all bands in the energy dispersion became flat, as
indicated by the red dashed lines. This condition, a result of
a destructive interference induced by the synthetic magnetic
field, gives rise to light trapping and corresponds to the AB
caging effect.

III. AHARONOV-BOHM CAGING

A peculiarity of the two-flux model is that the caging
arises due to the destructive interference of waves propagat-
ing along three arms. This implies that, at variance with the
standard two-arm single-flux AB cages [33], the values of
φ1 and φ2 where the caging effect appears can be controlled
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by changing the tunnel couplings J . We remark that when
caging arises due to the destructive interference of waves
propagating along two arms, it has to be necessarily located
at φc = π , i.e., the total amplitude is given by the sum of
two identical terms having opposite sign. On the contrary,
as stated above, in the θ lattice we find different caging
conditions depending on the tunnel couplings. In particular,
when all J’s are equal, caging appears for φ1 = φ2 = 2π/3
and φ1 = φ2 = 4π/3, reflecting the trigonal symmetry of the
unit cell. Related geometric and topological effects can be
indeed found in Hamiltonians with these kinds of symmetries
[34]. For arbitrary values of the J’s and φ1 = φ2 = φ, the
k-dependent term in the dispersive bands of the spectrum fea-
tures a factor 1 + 2(Jt2Jt1/J1J2) cos(φ) so that the condition
to have dispersionless bands can be written as follows,

1 + ζ cos(φ) = 0, (8)

where the parameter ζ = 2Jt2Jt1/(J1J2) controls the weight of
finite flux tunneling paths. In the Appendix we briefly outline
the derivation of the caging condition in the most general case
when all tunnel couplings and fluxes in a unit cell are different,
recovering Eq. (8) as a special case. In Fig. 2(b) we show a
cylindrical plot of the surface ρ(φ, ζ ) = 1 + ζ cos(φ), where
we clearly distinguish three cases: For ζ > 1 we have two
values of φ ∈ [0, 2π [ where (8) is satisfied, i.e., the surface
intersects twice the z axis, for ζ < 1 the caging condition is
never fulfilled, while for ζ = 1 (8) admits only the solution
φ = π as in the case of the standard two-arm AB caging.

To further analyze how caging arises when φ1 = φ2 = φ,
in Figs. 2(c)–2(e) we show the evolution of the quasienergy
spectrum support as ζ increases from ζ = 0 to ζ = 2. At
ζ = 0, corresponding to Jt1Jt2 = 0, the spectrum is clearly φ

independent; as we increase ζ we find a pseudolocalization
region around φ = π that evolves in a fully localized spectrum
for ζ = 1; eventually for ζ > 1, the spectrum support shows
two nodes, signaling the emergence of genus 2 AB caging.
Notice that couplings among adjacent sites arise because of
the presence of a mode in each guide and can be determined
based on the waveguide parameters. They strongly depend
on the separation between the waveguides, the dielectric con-
stants of their core, and on the shape and dimension of the
guide cross section, giving the possibility to be tuned in a wide
range and then allowing us to achieve the desired ζ values
in real systems. This tunability can be made dynamical by
exploiting the effective refractive index modulation, enabled,
for example, by phase change materials [35].

Let us now consider the light dynamics in the different
caging regimes. As discussed by several authors (see e.g.,
Refs. [33,36]), assuming evanescent coupling of single-mode
waveguides, it is described by the following coupled mode
equations,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i∂zan = J1bn + J2bn−1 + Jt1(eiφ1 cn + e−iφ2 dn)
+Jt2(cn−1 + dn−1),

i∂zbn = J1an + J2an+1,

i∂zcn = Jt1e−iφ1 an + Jt2an+1,

i∂zdn = Jt1eiφ2 an + Jt2an+1,

(9)

where ∂z indicates the partial derivative with respect to z.
Solving numerically the above equations on a finite lattice

(a) (b) (c)

FIG. 3. Light dynamics in the presence of AB caging for
three different injection configurations: (a) |ψ0〉 = |an0 〉, (b) |ψ0〉 =

1√
3
(|bn0 〉 + |cn0 〉 + |dn0 〉), and (c) |ψ0〉 = |cn0 〉. Lattice parameters:

J1 = J2 = Jt1 = Jt2 = J , φ1 = φ2 = φ = 2π/3, �0 = √
6J , N =

40, n0 = 20.

with N unit cells (4N sites) and open boundary conditions
yields the results shown in Figs. 3 and 4.

In Fig. 3 we simulate the propagation of a light beam
injected at z = 0 in a θ lattice consisting of N unit cells,
4N waveguides, with homogeneous tunnel couplings Ji = J
and fluxes φ1 = φ2 = φ = 2π/3. For these parameters the
dispersive bands κ± become flat and, independently of the
precise position and energy of the incoming beam, light gets
trapped on a cluster of few waveguides. Only the structure of
the caging cluster depends on the initial condition. This is due
to the fact that, depending on the initial condition, different
localized bands enter the dynamics. When the light is injected
in a site A of a cell n, An, only the upper and lower bands
are dynamically occupied; caging then implies that only the
waveguide An and the six surrounding waveguides bn, cn, dn

and bn−1, cn−1, dn−1 are populated as shown in Fig. 3(a). The
wavelength λ0 of the oscillations between the upper and lower
bands is clearly given by the inverse of the spectral gap,
i.e., λ0 = 1/(2�0) with �0 = �(k, 2π/3, 2π/3) = √

6J . A
somewhat similar situation arises when light is injected sym-
metrically in the waveguides bn, cn, dn, i.e., creating the initial
state |ψ0〉 = 1√

3
(|bn0〉 + |cn0〉 + |dn0〉). The peculiar structure

of the initial state implies that in this case, shown in Fig. 3(b),
the light beam undergoes oscillations between the cell n and
n + 1 along z without modifying its shape. Eventually in
Fig. 3(c) we show the propagation of a light beam injected
from the site cn. In this case the evolution involves also
the degenerate bands and the signal spreads over three unit
cells.

When the caging condition is not fulfilled, light spreads
to the entire lattice. This situation is considered in Fig. 4

(a) (b) (c)

FIG. 4. Dispersive light dynamics for φ1 = φ2 = φ = π , i.e.,
away from the AB caging condition, for three different injection con-
figurations: (a) |ψ0〉 = |an0 〉, (b) |ψ0〉 = |bn0 〉, and (c) |ψ0〉 = |cn0 〉.
Other lattice parameters as in Fig. 3.
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where we set φ1 = φ2 = π and the other parameters as in
Fig. 3. These values of the fluxes are special under many re-
spects: First, as discussed in the following section, they yield
[Fig. 4(a)] a weaker dispersion as compared, e.g., to the case
φ1 = φ2 = 0, and second, they yield destructive Aharonov-
Bohm interference on specific sites of the array. For example,
as shown in Fig. 4(b), for a b-type injection waveguide, the
propagation does not involve the sites c and d in the same
plaquette, while, as shown in Fig. 4(c), for a c-type injection
waveguide, the propagation does not involve the site b in the
same plaquette. This is due to the fact that, at φ1 = φ2 = π ,
there are two tunneling paths from b to c and from b to d
having opposite signs and equal amplitudes.

IV. SIGNATURES OF AHARONOV-BOHM
INTERFERENCE IN THE DIFFRACTION PATTERNS

Beside inducing AB caging, synthetic gauge fields mod-
ulate light propagation in photonic lattices through AB
interference, mimicking the action of their electromagnetic
counterparts and yielding synthetic-flux-dependent diffraction
effects. The purpose of the present section is to highlight how
these effects arise in the θ lattice. To characterize diffraction
for different values of the synthetic fluxes we will focus on
two quantities, namely, the inverse participation number P−1,
defined as

P−1 =
∑

x

|�x|4, (10)

where �x denotes the field’s amplitude at position x = na
along the lattice, with a the lattice period, and the average
square width W 2, defined as

W 2 = 〈x2〉 − 〈x〉2

N2
, (11)

with 〈xα〉 = ∑
x xα|ψx|2. The inverse participation number is

always smaller than or equal to 1 and it gives a measure of the
number of sites where photons are confined, so specifically
we have P = 1 when light is confined to a single waveguide
and P ∼ m when light is confined to a cluster of m waveg-
uides. The average width W is useful to characterize how
the signal disperses: It equals zero in the presence of caging
and in standard photonic waveguide lattices it grows as z2.
In Fig. 5(a) we plot the participation ratio as a function of z
and φ for a θ lattice with homogeneous tunnel couplings and
fluxes, i.e., φi = φ and Ji = Jti = J with i = 1, 2. We assume
that the system is initially prepared in the fully localized state
|an0〉, so at z = 0 we thus have P−1 = 1 independently of φ.
As z increases, light starts dispersing and we clearly see the
emergence of two peaks at φ = 2π/3 and φ = 4π/3 due to
AB caging. We also notice that P−1 has a strongly oscillating
behavior with z that is associated with dynamic oscillations
between different bands. The presence of these oscillations
may hinder the characterization of the different interference
regimes by simply measuring the amplitude of the fields in
a small cluster of sites for a given propagation length z = z̄.
For this purpose, the square width W 2 defined in (11) may be
more appropriate, as we show in Fig. 5(b). There, we notice
in particular the emergence of a smooth double-well structure
associated with AB interference. In Figs. 5(c) and 5(d) we

FIG. 5. (a) Inverse participation ratio P−1 and (b) average width
W , as functions of z and φ. Other lattice parameters as in Fig. 3. (c),
(d) Same quantities for the rhombi chain.

show the inverse participation number P−1 and the average
width W for the rhombi chain. In this case we observe, as
expected, the emergence of a single peak for P−1 and a single
valley for W 2, at φrc = φc.

Having a monotonic behavior as a function of z, W can
be used to characterize the different diffraction regimes for
different values of the synthetic fluxes and J’s. This is what
we do, for the θ lattice, in Figs. 6(a) and 6(b) to illustrate
the tunability of the caging effect. In Fig. 6(a) we show a
density plot of the width W calculated at zJ = 10 for the
system initially prepared in the state |an0〉, as a function of
φ1 and φ2 for homogeneous tunnelings. We clearly see that
the contour W = 0.5 represented by the dashed black line
essentially allows us to distinguish between a weakly dis-
persing region including the caging points φ1 = φ2 = 2π/3
and φ1 = φ2 = 4π/3 and a strongly dispersing region for
φ � π/2. In Fig. 6(b) we plot WzJ=10 as a function of φ

and Jt2 setting all other tunnel couplings to J . In this figure
the black dashed line indicates the caging condition given by
(8). We notice that when Jt2 becomes much larger than J the
tunability essentially disappears, and this is due to the fact
that increasing Jt2 corresponds to a decrease of the weight of
interference paths going through the site b bringing the lattice
back to the single-flux regime.

FIG. 6. Density plot of the width W as a function of φ1 and φ2

and as a function of Jt2 and φ = φ1 = φ2.
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V. CONCLUSIONS

We presented a theoretical study of transport of light in
a strip of θ -shaped plaquettes subject to synthetic magnetic
fields. With respect to previous proposals, as, for example,
the simple rhombi chain, the present one with three arms and
two fluxes per plaquette allows us to obtain different regimes
where all the energy bands became nondispersive. This allows
us to realize Aharonov-Bohm cages that prevent the photon
beam from escaping from finite clusters and with suitably
chosen fluxes and input configurations to tune the cage size.
As a second relevant result of our work, we show that it is
possible to analyze the AB effect in photonic lattices by the
study of the average square width W 2 as a function of fluxes
or coupling values.

The caging effect and dispersion management in our
waveguide system might suggest similarities with the well-
known phenomenon of dispersion-controlled optical solitons
[37], but they are different both in the origin and result. For
dispersion-controlled optical solitons the localization of the
field energy in space is due to nonlinearity, while the linear
AB caging is a topological effect.

The observation of AB cages for light can be achieved
using, as realistic platforms, femtosecond laser written waveg-
uides arrays in fused-silica samples. As discussed in detail in
Ref. [32], these give a high degree of control in structuring
the lattice, allowing us to realize complex structures as well as
tuning the nearest-neighbor couplings, and varying the speed
of the writing laser beam. Complex-valued effective couplings
can be realized by a proper modulation of the propagation
constants [12] and by circularly bending the waveguides along
the propagation direction [26,33]. These protocols lead to a
nonzero magnetic flux per plaquette and allow us to study the
evolution of an input state localized on specific lattice sites.
These methods also allow us to tune the effective AB phases
associated with the different tunneling paths, as shown, for
example, in Refs. [26,33] where the synthetic magnetic field
for light can be tuned by varying the phase of the photonic
lattice parameter modulation.

For the simulations of light dynamics in the array we have
considered the case where φ1 = φ2. Considering different
flux configurations is also interesting and it may give rise to
nontrivial results. This will be the subject of a further work
with particular attention to the case φ1 = −φ2 that would
correspond to a vanishing flux in the two-arm single-flux limit.
The topology of this case is analogous to that explored in the
celebrated experiment of Tonomura et al. [18,38] designed to
provide a loophole-free test of AB prediction. In this case,
as shown in the Appendix, the caging condition cannot be

fulfilled and other signatures of Aharonov-Bohm interference
should be identified. Our results have relevance for the fun-
damental properties of topological lattice and various applica-
tions as in nondiffractive image transmission schemes [39,40],
all-optical logic gates [41], and optical data processing.
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APPENDIX: GENERAL CAGING CONDITION

In this brief Appendix we derive the caging condition ful-
filled by the fluxes φ1 and φ2 under the general assumption
that all tunnel couplings within a unit cell are different, i.e.,
we make the replacement

Jc(k, φ1) → Jc1e−iφ1 + Jc2eik, (A1)

Jd (k, φ2) → Jd1eiφ2 + Jd2eik . (A2)

Under these assumptions the gap �(k, φ1, φ2) has the fol-
lowing general expression,

�2(k, φ1, φ2) = J2
1 + J2

2 + J2
c1 + J2

c2 + J2
d1 + J2

d2 + 2(J1J2

+ Jc1Jc2 cos φ1 + Jd1Jd2 cos φ2) cos(k)

+ 2(Jc1Jc2 sin φ1 − Jd1Jd2 sin φ2) sin(k).

(A3)

From the above equation, one sees that the k-dependent part
of the gap is given by the sum of two terms having different
symmetries under inversion of k. In order to have caging both
terms must be set to zero. We therefore obtain two equations
that can be solved with respect to φ1 and φ2, arriving at the
following final result:

cos φ1 = J2
d1J2

d2 − J2
c1J2

c2 − J2
1 J2

2

2Jc1Jc2J1J2
, (A4)

sin φ2 = Jc1Jc2

Jd1Jd2
sin φ1. (A5)

In Eq. (A5) we see that for Jd1Jd2 = Jc1Jc2 caging requires
φ1 = φ2 = φ; in this limit Eq. (A4) reduces to Eq. (8). On
the other hand, since the tunnel amplitudes are by definition
positive, we see that for φ1 = −φ2 caging does not occur.
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