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Polar modes and overtone states in Raman spectra of lithium tantalate crystals
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The conditions for the excitation of transverse and longitudinal polar modes in the processes of Raman scat-
tering of light in mono- and polydomain lithium tantalate single crystals are established using a backscattering
geometry. The relative intensity of the overtone Raman spectrum on the longitudinal and transverse fundamental
polar excitations is much higher in the polydomain sample. Unfortunately, the exact reason for the difference
in the Raman spectra of the mono- and polydomain lithium tantalate samples is unknown. The frequencies of
the two overtone bands exceeded the exact value of the overtone frequency corresponding to the fundamental
longitudinal polar mode 4A1(LO), which clearly indicates the existence of bound phonon pairs (biphonons). This
is consistent with theory and has been shown for both mono- and polydomain samples. On the basis of the general
theory of bound states of quasiparticles, the possibility of the existence of bound states of quadrupole excitations
of the antipolar type in the vibrational spectrum of a polydomain crystal of lithium tantalate is predicted.
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I. INTRODUCTION

Dielectric materials widely used in acoustoelectronics, op-
toelectronics, and robotics [1–4] include single crystals based
on oxide compounds of tantalum, the most important of which
is the ferroelectric crystal of lithium tantalate (LiTaO3, LT).
At room temperature, this crystal is a pyroelectric and is
characterized by a high value of spontaneous polarization
(50 μC/cm2 [5]). The properties of the LiTaO3 crystal largely
depend on the presence of defects that arise during crys-
tal growth or under the influence of external disturbances.
Therefore, the study of the optical properties of LT, both
pure and with various impurities and defects, is an urgent
problem.

The vibrational spectrum of a uniaxial LT crystal contains
transverse and longitudinal polar modes, which are allowed by
the selection rules for observation in both infrared and Raman
spectra due to the absence of an inversion center in the point
symmetry group in the pyroelectric phase (T < Tc). In the
spectra of spontaneous Raman scattering of the first order of
LT crystals, Raman lines corresponding to scattering by trans-
verse (TO) and longitudinal (LO) polar modes were found
[6–11]. Until recently, studies of LT crystals were limited
to the analysis of first-order Raman processes accompanied
by the excitation (or relaxation) of single-particle states of
polar modes. Reference [12] reported the manifestation of
overtone bands in the Raman spectrum of a LT single crystal
in the spectral range of 1300–1920 cm−1. In the second-order
Raman spectra, previously studied in a number of crystals
[13–17], pairs of phonons with oppositely directed quasi-
momenta corresponding to the boundary or inner region of
the Brillouin zone appeared. Previously, the intensity peaks
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observed in second-order Raman spectra in crystals were
interpreted as anomalies in the density of free two-phonon
states. The conditions for the manifestation of so-called bound
states of pairs of phonons (biphonons) in these spectra were
also analyzed.

In this work, the task is to investigate the full Raman
spectrum of polar excitations in lithium tantalate crystals
in the backscattering geometry in a wide spectral region,
including both the range of fundamental polar modes and
the region of the second-order Raman spectrum correspond-
ing to the manifestation of pairs of free and coupled polar
excitations.

II. DESCRIPTION OF SAMPLES FOR RESEARCH

At room temperature LiTaO3 is in the ferroelectric phase
and is a uniaxial optically negative crystal. The space sym-
metry group C6

3V (R3c) belongs to the rhombohedral system.
The unit cell parameters have the following values: a = 5.15
Å and c = 13.78 Å, with 2 f.u. in a unit cell [18–20]. At a
temperature Tc = 898 K [21], a ferroelectric phase transition
to the paraelectric phase occurs in this crystal. Upon slow
cooling of a LT single crystal near Tc, the sample can be
brought to a monodomain state by applying a small electric
field directed along the optical Z axis. Without an electric
field at T < Tc, the single crystal decomposes into antiparallel
(180◦) polarized domains collinear with the Z axis. The space
group of the symmetry of the paraelectric phase is D6

3d (R3c).
The optical representation specifying the types of symme-

tries of polar optical modes at k = 0 in the pyroelectric phase
of LT has the form

Topt = 4A1(Z ) ⊕ 9E (X,Y ) ⊕ 5A2 (1)
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The structures of the other first- and second-order representa-
tions required for analysis are

V = A1(Z ) ⊕ E (X,Y ),

[V ]2 = 2A1(Z ) ⊕ 2E (X,Y ),

[A1(Z )]2 = A1(Z ),

[E (X,Y )]2 = A1(Z ) ⊕ E (X,Y ),

[A2]2 = A1(Z ). (2)

From relations (1) and (2) it follows that the polar modes
A1(Z ) and E (X,Y ) are allowed by the selection rules for ob-
servation in first-order Raman processes; vibrations of types
A1(Z ), E (X,Y ), and A2 are allowed in second-order Raman
processes (for overtone transitions).

For this research we used two commercial LT samples in
the form of oriented single crystals. Sample 1 is nominally
monodomain, cut and polished in the form of a straight prism
with dimensions of 10 × 10 × 15 mm3 with the orientation of
the polar Z axis along the largest dimension. Sample 2 has the
same dimensions but was subjected to repeated heating and
cooling in the region of the ferroelectric phase transformation
temperature Tc with a transition to the polydomain state at
room temperature.

III. EXPERIMENTAL RESULTS

A schematic diagram of the setup for exciting and record-
ing Raman spectra at room temperature using a backscattering
geometry and a BWS465-785H spectrometer was presented
earlier [12,17,21]. Spontaneous Raman scattering in the stud-
ied crystals was excited by a cw semiconductor laser with
a power of up to 100 mW and a radiation wavelength of
λ = 785 nm. The use of exciting infrared radiation ensured
the absence of the formation of optical distortions (“optical
damage”) under the action of intense laser radiation. Excit-
ing laser radiation was introduced into the first channel of a
two-channel fiber and focused after leaving the fiber with the
help of two lenses onto the surface of the sample under study
along or perpendicular to the polar Z axis. The focal waist
was at the center of the crystal under study, which ensured
a small divergence of the exciting radiation inside the single
crystal under study. The scattered light was collected by the
same lenses in the opposite direction and was introduced into
the second channel of the fiber. After a selective light filter
that cuts off the exciting radiation, the Raman signal entered
the slit of a BWS465-785H spectrometer with a multielement
detector, which allows recording the Raman spectrum in the
range of 50–2850 cm−1. In accordance with the fact that
we used a backscattering geometry, the wave vector of polar
excitations, which appear in the first-order Raman spectra,
was comparable to the wave vector of exciting radiation: kp ≈
2klas ≈ 105 cm−1. We did not use polarizers, and control of
the polarization of the scattered radiation was not carried out.

Figures 1(a)–1(d) show the recorded Raman spectra for
samples 1 and 2. In this case, two scattering geometries were
used: Z (XX ;YY ; XY )Z [Figs. 1(a) and 1(c)] and X (ZZ; ZY )X

FIG. 1. Raman spectra in the region of fundamental modes and
overtone transitions for the backscattering geometry of samples
(a) and (b) 1 and (c) and (d) 2 of LiTaO3 with the optical Z axis
oriented (a) and (c) along the direction of propagation of the exciting
radiation [geometry Z (XX ;YY ; XY )Z] and (b) and (d) perpendicular
to this direction [geometry X (ZZ; ZY )X ].
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TABLE I. Frequencies (in cm−1) of the transverse (TO) and
longitudinal (LO) polar modes of LiTaO3, taking into account the
data obtained in this work and in [10,21].

No. A1(Z; TO) A1(Z; LO) E (X,Y ; TO) E (X,Y ; LO)

1 207 255 142 190
2 256 355 208 211
3 358 405 256 279
4 661 864 314 349
5 372 380
6 383 453
7 462 472
8 591 660
9 661 864

[Figs. 1(b) and 1(d)]. As seen from Figs. 1(a) and 1(b),
the spectrum of sample 1 contains intense Raman lines
1A1(Z; LO), 2A1(Z; LO), 3A1(Z; LO), and 4A1(Z; LO), cor-
responding to longitudinal polar modes with polarization
along the Z axis. In addition, in accordance with the form
of the Raman tensor [22,23], doubly degenerate transverse
1E (X,Y ; TO), 2E (X,Y ; TO), 3E (X,Y ; TO), 4E (X,Y ; TO),
5E (X,Y ; TO), 6E (X,Y ; TO), 7E (X,Y ; TO), 8E (X,Y ; TO),
and 9E (X,Y ; TO) vibrations are observed for the same ge-
ometry. The number in front of the irreducible representation
denotes how many such vibrations of the A1 and E symmetries
with different energies are allowed for LT. According to the
results of the group-theoretic analysis, one cannot determine
the ratio energies of these different vibrations of the same type
of symmetry. Table I shows the values of all the frequencies of
the main polar modes of the LT crystal measured in this work
and known from the literature. As can be seen from Table I,
significant differences in frequencies are observed for the TO
and LO modes, which is characteristic of polar vibrations in
noncentrosymmetric crystals. The strong anisotropy of the LT
crystal lattice leads to differences in the vibration frequencies
along the (A1 mode) and perpendicular to (E mode) the polar
axis.

In the region of 50–864 cm−1 for sample 1, intense Ra-
man peaks corresponding to first-order processes are found.
A similar situation in this region of the spectrum is observed
for sample 2 [see Figs. 1(c) and 1(d)]. In addition, weak
second-order Raman bands are found in the frequency range
of 700–1000 cm−1. In particular, the 744–747 cm−1 band (see
Fig. 1) slightly exceeds the exact value of the overtone fre-
quency (710 cm−1) of the 2A1(LO) mode. A similar situation
is realized for weak second-order bands with frequencies 807–
820, 928–951, and 1017–1031 cm−1. In the high-frequency
region of the Raman spectrum (1100–2200 cm−1), the pres-
ence of several intense second-order bands corresponding to
overtone processes was found for both samples. This effect is
especially pronounced for sample 2 [see Figs. 1(c) and 1(d)].
In this case, the intensity of the overtone bands is comparable
to or even exceeds the intensity of the fundamental Raman
lines. Unfortunately, the exact reason for the difference in the
Raman spectra of the two studied LT samples is unknown.

In the case of longitudinal polar waves, the group velocity
weakly depends on the value of the wave vector k and is very
small (Vgr ∼ 102–103 m/s). For transverse polar waves with

wave vectors k � 105 cm−1, their group velocity is also low.
In the region of small values of wave vectors (k < 104 cm−1),
transverse polar modes are characterized by a sharp depen-
dence of the frequency on the wave vector and a significant
increase in the group velocity of the corresponding waves,
comparable to the speed of light in vacuum.

The theory of the formation of bound states of phonons in
crystals was previously developed in [15–17,24–28]. Let us
consider the application of a similar theory to describe bound
states of polar excitations (biphonons). The model Hamilto-
nian for two point-interacting quasiparticles is written as

Ĥ =
∑
−→
k

h̄ω(
−→
k )[a+−→

k
a−→

k
]

+ g4

4!V

∫
ψ (−→r , t )ψ (−→r , t )ψ (−→r , t )ψ (−→r , t )d3−→r dt,

ψ (−→r , t ) = 1√
V

∑
−→
k

√
ω(

−→
k )

2

[
a−→

k
ei[

−→
k −→r −ω(

−→
k )t]

+ a+−→
k

e−i[
−→
k −→r −ω(

−→
k )t]

]
. (3)

Here ω(
−→
k ) is the law of dispersion of single-particle states,

the form of which is given below; g4 is the momentum-
independent dimensionless anharmonic coupling constant
[24], and V is the volume of the analyzed medium. The one-
particle Green’s function of phonons is defined as follows:

D1(−→r , t ;
−→
r′ , t ′) = −iT 〈ψ (−→r , t )ψ (

−→
r′ , t ′)〉. (4)

The Fourier component of the one-particle Green’s function
has the form [29]

D1(
−→
k , ω)=ω(

−→
k )

2

[
1

ω − ω(
−→
k ) + 1

2 i�
− 1

ω + ω(
−→
k )− 1

2 i�

]
.

(5)

Two-particle states are described by the Green’s function

D2(−→r , t ;
−→
r′ , t ′) = −iT 〈ψ (−→r , t )ψ (−→r , t )ψ (

−→
r′, t ′)ψ (

−→
r′, t ′)〉.

(6)

The corresponding Bethe-Salpeter equation for the two-
particle Green’s function is written as a sum of diagrams. The
solution to this equation for the coupling of two quasiparticles
with the same frequencies and quasimomenta has the form

D2(−→r , t ;
−→
r′ , t ′)

= i[D1(−→r , t ;
−→
r′ , t ′)]2 + ig4

∫
[D1(−→r , t ; −→r1 , t1)

× D1(−→r1 , t1;
−→
r′ , t ′)]2d−→r dt + · · · , (7)

D2(
−→
K = 2

−→
k , ω) = 2F (ω)

1 − 1
2 g4F (ω)

,

F (ω) = i

(2π )4

∫
d3−→k

∫
D1(

−→
k , ω − ω′)D1(

−→−k, ω′)dω′.

(8)
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The density of single-particle states is found from the well-
known relationship [30,31]

ρ1(ω) = V

(2π )3

∫ dS−→
k

|∇−→
k
ω| = V k2

2π2
| dk

dω
|. (9)

In the region of small |−→k | near the center of the Brillouin zone
the dispersion law is linear for all crystallographic directions,
and the dispersion relation is isotropic. Consider longitudinal
phonons with a negative effective rest mass. In the quasi-
Newtonian approximation of the dispersion law of phonons
(as heavy quasiparticles with a negative effective rest mass),
the following holds:

ω = ω0 − s2k2

2ω0
,

dω

dk
= − s2k

ω0
,

dk

dω
= − ω0

s2k
,

ρ1(ω) = V k2

2π2
| dk

dω
| = V ω0

2π2s3

√
2ω0(ω0 − ω). (10)

We represent the expression for the density of single-
particle states in the form

ρ1(ω) = α
√

ω0 − ω, α = V ω0
√

2ω0

2π2s3
. (11)

As a result, for the function F (ω) we obtain

F (ω) = 1

4
ω2

0α

∫ 	

0

√
ω′

ω − 2(ω0 − ω′) + i�
dω′, (12)

where 	 is the phonon frequency range taken into account
in integration. It is important to note that the function F (ω)

depends on the effective rest mass of the quasiparticle m0 =
− h̄ω0

s2 and on the damping constant � associated with the
inverse quasiparticle lifetime τ = 1/�.

For a two-particle density of states proportional to the
spectral intensity of the scattered light, taking into account
(8), we obtain

ρ2(ω) = − 1

πω2
0

ImD2(
−→
K , ω)

≈ − 2

πω2
0

ImF (ω)[
1 − 1

2 g4ReF (ω)
]2 + [

1
2 g4ImF (ω)

]2 . (13)

Thus, the calculation of the normalized spectral intensity of
the secondary radiation I (ω) = ImD2(

−→
K , ω) is found using

the form of the functions ImF (ω) and ReF (ω):

ImF (ω) = 1

4
ω2

0α

∫ 	

0

−�
√

ω′

[ω − 2(ω0 − ω′)]2 + �2
dω′,

ReF (ω) = 1

4
ω2

0α

∫ 	

0

[ω − 2(ω0 − ω′)]
√

ω′

[ω − 2(ω0 − ω′)]2 + �2
dω′. (14)

The normalized intensity of the bound state in the spectrum of
secondary radiation has the form

I (ω) = 2ImF (ω)[
1 − 1

2 g4ReF (ω)
]2 + [

1
2 g4ImF (ω)

]2 . (15)

As a result of integration (14), we obtain

ImF (ω) = ω2
0α

32�ψ

{
ψϕ(λ + ω − 2ω0)ln

2
√

	(
√

	 + ϕ) + λ

2
√

	(
√

	 − ϕ) + λ
+ 2�2

[
arctg

(
ϕ − 2

√
	

ψ

)
− arctg

(
ϕ + 2

√
	

ψ

)]}

ReF (ω) = − ω2
0α

32ψ

{
−8ψ

√
	 + ϕψ ln

2
√

	(
√

	 − ϕ) + λ

2
√

	(
√

	 + ϕ) + λ
+ 2(λ + ω − 2ω0)

[
arctg

(
ϕ + 2

√
	

ψ

)
− arctg

(
ϕ − 2

√
	

ψ

)]}
,

where λ =
√

(ω − 2ω0)2 + �2, ψ = √
λ + ω − 2ω0, and ϕ = √

λ − ω + 2ω0.
In the quasi-Newtonian approximation of the dispersion law for phonons with a positive effective rest mass, the following

holds:

ω = ω0 + s2k2

2ω0
,

dω

dk
= s2k

ω0
,

dk

dω
= ω0

s2k
,

ρ1(ω) = V k2

2π2

∣∣∣∣ dk

dω

∣∣∣∣ = V ω0

2π2s3

√
2ω0(ω − ω0). (16)

In this case, the expression for the density of one-particle states is

ρ1(ω) = α
√

ω − ω0, α = V ω0
√

2ω0

2π2s3
. (17)
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As a result, for the function F (ω) we obtain

F (ω) = 1

4
ω2

0α

∫ 	

0

√
ω′

ω − 2(ω0 + ω′) + i�
dω′. (18)

And finally, after integrating (18) we get

ImF (ω) = ω2
0α

32�ϕ

{
ϕψ (λ − ω + 2ω0)ln

2
√

	(
√

	 + ψ ) + λ

2
√

	(
√

	 − ψ ) + λ
+ 2�2

[
arctg

(
ψ − 2

√
	

ϕ

)
− arctg

(
ψ+2

√
	

ϕ

)]}
,

ReF (ω) = ω2
0α

32ϕ

{
−8ϕ

√
	 + ϕψ ln

2
√

	(
√

	 + ψ ) + λ

2
√

	(
√

	 − ψ ) + λ
+ 2(λ − ω + 2ω0)

[
arctg

(
ψ + 2

√
	

ϕ

)
− arctg

(
ψ − 2

√
	

ϕ

)]}
.

The approximate value of the anharmonicity constant g4

can be estimated based on the expression g′
4 = λg4, where

λ = 1
8αω2

0

√
	 [24]. In the limit g′

4 = 0 we have the spectral
density of two noninteracting phonons in the form ρ2(ω) ≈
− 2

πω2
0
ImF (ω) and have the root dependence on frequency in

the region of the exact value of the overtone frequency, which
corresponds to the formation of a pair of free phonons in
elementary second-order Raman processes. For finite values
of g′

4, a sharp peak appears, split off from the band of free two-
particle states. With a decrease in the value of anharmonicity
g′

4 → 0, the peak superimposed on the continuous spectrum
shifts towards a decrease in energy and broadens significantly.
If the anharmonicity is large enough (g′

4 > 1), the two-phonon
bound state splits off from the top of the two-phonon contin-
uum, and a sharp peak appears at energies exceeding twice the
maximum one-phonon energy, in accordance with the results
[32].

Consider, for definiteness, the overtone state of the longi-
tudinal mode 4A1(Z; LO) with frequency ν0 = 864 cm−1. For
the LT crystals under study with dimensions 10 × 10 × 15
mm3, the volume will be V = 1.5 × 10−6 m3; frequency
ω0 = 2πcν0 = 1.63 × 1014 rad/s. Figure 2 shows the results
of comparing the calculations of the spectral distribution of
Raman scattering in the overtone region 2ν0 = 1728 cm−1

and the experimentally observed distribution of the Raman
intensity.

FIG. 2. Comparison of the spectral intensity of Raman scattering
for the geometry X (ZZ; ZY )X in a polydomain LT single crystal
(curve 1) with the calculation in the region of the overtone mode
2ν0 = 1728 cm−1 with the calculated curves 2 and 3 for ρ2(ν ).

As can be seen from Fig. 2, for the band in the region of
1799 cm−1 (curve 2 in Fig. 2), satisfactory agreement for the
bound state of the longitudinal polar mode 4A1(Z; LO) with
ν0 = 864 cm−1 is achieved at the values 	 = 0.1ω0, s = 1000
m/s, � = 2πc × 40 = 7.53 × 1012 rad/s, and g4 = 8.52 ×
10−40. The highest frequency band at 1922 cm−1 (curve 3
in Fig. 2) is interpreted as the overtone of an 4A1(Z; LO)-
type phonon (ν0 = 864 cm−1) with a positive effective rest
mass [Eqs. (16) and (18)]. Satisfactory agreement is achieved
at 	 = 0.1ω0, s = 1000 m/s, � = 2πc × 40 = 7.53 × 1012

rad/s, and g4 = 3.99 × 10−40. The region of integration 	

was chosen due to the fact that we are considering a small
section of the parabolic dispersion law for phonons near the
top of the phonon band. As a constant s, we use a value close
to the speed of sound in LT crystal.

The peak at about 1300 cm−1 corresponds to the over-
tone of the 4A1(Z; TO) mode (ν = 661 cm−1); an intense
maximum with a frequency of 1440 cm−1 corresponds to the
overtone of the 9E (TO) mode (ν = 741 cm−1). The maximum
in the spectrum with a frequency of 1594 cm−1 can be asso-
ciated with the overtone of phonons with an anomalously low
group velocity in the region of 797 cm−1.

IV. CONCLUSION

In a polydomain lithium tantalate single crystal, anoma-
lously intense Raman peaks were found in the overtone region
of polar fundamental vibrations. In this case, two bands were
found whose frequencies (1799 and 1922 cm−1) exceeded
the exact value of the overtone (864 × 2 = 1728 cm−1) of
the 4A1(Z; LO) mode. As a result of a theoretical analy-
sis of the conditions for the formation of a bound state of
two polar excitations of the crystal, it was shown that in
this case there is a bounding of two longitudinal polar ex-
citations with a frequency of 864 cm−1 with a splitting up
from the band of two-particle states at a binding energy of
71 cm−1. The second high-frequency overtone (1922 cm−1) is
interpreted as a coupling of two transverse polar excitations
in the vicinity of the 4A1(Z; LO) mode. Bounding of two
transverse polar excitations with oppositely directed polar-
ization vectors, i.e., excitation of the quadrupole (antipolar)
type, leads to its transformation at the exit from the crystal
into vacuum quadrupole electromagnetic excitations [33–37]
with antiparallel directions of the vectors of the electric field
strength.
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The intensity of radiation of such quadrupole electromag-
netic excitations in spontaneous Raman scattering, taking into
account the intensity of the observed overtone lines and the ra-
tio of the energy of the photons of the exciting radiation to the
energy of the biphonon, is approximately 10−8 of the intensity
of the exciting radiation, i.e., 10−10–10−11 W. In the future, it
will be of interest to study stimulated Raman scattering by

bounded antipolar quadrupole modes, in which the efficiency
of excitation of the Stokes components is 1%–10%.
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