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This study aims at assessing the thermal nuclei motion effects on the multipole transition channels involved
in two core-level spectroscopies, x-ray absorption spectroscopy (XAS) and x-ray Raman scattering (XRS).
Temperature effects on the 1s → s monopole, 1s → p dipole, and 1s → d quadrupole transitions are investigated
using two reference systems for which we present original experimental data: α-Al2O3 at the Al K edge
probed by XRS at room temperature and rutile TiO2 at the Ti K pre-edge probed by XAS at temperatures
ranging from 6 to 700 K. Through the latter, this work enlightens the part of the pre-edge peak enhancement
due to temperature in the K pre-edge region of 3d transition metal, which is known to be routinely used to
determine the concentration, valence or symmetry of the probed element in a given sample. Nuclear thermal
fluctuations are taken into account using a method based on density functional theory that consists in averaging
spectra over atomic configurations, generated within the harmonic approximation and obeying quantum statistics
at finite temperature. Since only a finite number of such configurations are used, the numerically averaged
spectra generally lose the symmetry of the equilibrium crystal positions. In this paper, we demonstrate that
the physical average has to be symmetric and propose a method to restore the physical angular dependence
of the spectra. The approach is successfully applied to investigate the angular dependent XAS spectra in
rutile as a function of temperature. The two systems under study allow to draw general conclusions regarding
the effect of nuclear quantum fluctuations on the different transition channels available to both core-level
spectroscopies.

DOI: 10.1103/PhysRevB.104.024302

I. INTRODUCTION

Temperature-dependent measurements are widely em-
ployed in x-ray absorption spectroscopy (XAS) to monitor the
evolution of the local atomic and electronic structure of ma-
terials undergoing phase transitions, such as superconductors
[1–4], colossally magnetoresistive manganites [5–7], ferro-
electrics [8–10], or thermochromics [11,12]. While XAS still
appears as a technique of reference, x-ray Raman scattering
spectroscopy (XRS) is becoming increasingly popular in ma-
terials and earth sciences for conducting in situ experiments.
This is mostly due to its bulk sensitivity, its ability to probe
low-energy edges and thus, light elements, and to its high flex-
ibility in terms of sample environments [13,14]. Indeed, this
nonresonant spectroscopy is based on the inelastic scattering
of hard x rays and therefore permits the use of highly absorb-
ing experimental cells for pressure [15–18] and temperature
[19–21] dependent measurements, which are often hindered
by the use of soft x rays in XAS.

Temperature appears therefore as a key parameter in many
studies based on core-level spectroscopies. Understanding
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how atomic thermal fluctuations can influence the shape of
XAS or XRS spectra is, consequently, of fundamental impor-
tance to interpret these data accurately. To this end, strategies
have been developed to account theoretically for atomic vi-
brations when modeling the spectra. Methods that do not
require the explicit calculation of phonon modes have been
implemented first, either based on displacing the core-state
orbital only while treating final states within the crude Born-
Oppenheimer approximation [22,23], displacing the entire
absorbing atom around its equilibrium position [24,25] or
convoluting the spectrum with an approximate phonon spec-
tral function [24,26]. However, heavier numerical approaches
based on averaging spectra calculated for series of vibra-
tionally distorted structures generated either from snapshots
of molecular dynamics simulations [20,27,28] (where the nu-
clear dynamics is always classic) or from the phonon quantum
dynamics [29–31] were later preferred and proved to be nec-
essary for capturing the subtle effects of temperature on the
spectral shape.

In this context, it would be interesting to evaluate the im-
pact of atomic quantum thermal fluctuations on the different
transition channels observed at K edges in x-ray absorption
and x-ray Raman spectroscopies. K pre-edge XAS spectra of
3d transition metal ions are indeed built from a sum of electric

2469-9950/2021/104(2)/024302(13) 024302-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2890-3749
https://orcid.org/0000-0003-4506-8722
https://orcid.org/0000-0001-6343-0006
https://orcid.org/0000-0001-5875-9667
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.024302&domain=pdf&date_stamp=2021-07-06
https://doi.org/10.1103/PhysRevB.104.024302


S. DELHOMMAYE et al. PHYSICAL REVIEW B 104, 024302 (2021)

dipole and quadrupole transitions [32]. Whereas the former
give access to the absorber unoccupied p states and thus, to
the 3d states only indirectly through off-site and, possibly,
on-site hybridization, the latter provide a direct channel for
probing the absorber 3d final states [33]. Along the same line,
under certain scattering conditions where large momenta are
transferred to the specimen, electronic transitions observed
in K pre-edge XRS spectra of light elements can strongly
deviate from the standard electric dipole channel [34] to in-
clude monopole transitions and therefore probe selectively
final states with s or p character [35,36]. Although the impact
of nuclear quantum fluctuations on electric dipole transitions
has been investigated in a number of studies [23,24,30,31],
little is known about their influence on these secondary tran-
sition channels. Here, we present an in-depth experimental
and theoretical investigation of the Ti K pre-edge tempera-
ture dependence in rutile TiO2. In particular, we extend the
numerical approach developed in previous works to account
for lattice quantum fluctuations [30,31] to the calculation
of a weak dichroic signal on the basis of group-theoretical
arguments. We also consider the case of the Al K edge in
corundum α-Al2O3 measured in XRS at 300 K and for a norm
of the scattering vector close to 10 Å−1 to assess the effect of
temperature on both electric monopole and dipole transitions
with this spectroscopy.

The paper is organized as follows. Section II briefly in-
troduces the theory of x-ray absorption and x-ray Raman
spectroscopies, provides a short overview of the method em-
ployed to account for lattice quantum dynamics, which is
based on density functional theory (DFT), and presents the
experimental and computational details related to this work.
A detailed presentation of the group theoretical approach de-
vised to extract the dichroic signal from a set of calculations
performed when accounting for atomic displacements is given
in Appendix B. In Sec. III, we present a systematic com-
parison between measured and calculated spectra obtained at
finite temperatures for the Ti K edge in rutile TiO2 in XAS
and the Al K edge in α-Al2O3 in XRS. In Sec. IV finally, we
present our conclusions on the influence of temperature on
multipole transitions and orientation dependence in core-level
spectroscopies.

II. METHODS

A. General framework

In core-electron excitation spectroscopies such as XAS
and XRS, the spectrum modeling involves the calculation of
transition matrix elements, Mi→ f , between an initial state |i〉
and a final state | f 〉 through a transition operator, O, which
represents the photon-electron interaction

Mi→ f = 〈 f |O|i〉. (1)

In a single-particle DFT-based approach, the |i〉 initial state,
of energy Ei, is an atomic core-level state (1s orbital for a
K edge), the | f 〉 final state, of energy E f , is an unoccupied
single-particle state calculated for a supercell which includes
the core-hole located on the absorbing atom, and the specific
form of the operator O depends on the spectroscopy.

In the case of XAS treated in the electric quadrupole ap-
proximation, which is required in the present study, OXAS is

the sum of electric-dipole (E1) and electric-quadrupole (E2)
terms that read, respectively

OXAS
dip = ε̂ · r, (2)

OXAS
quad = i

2
ε̂ · r k · r, (3)

where i is the imaginary unit, and ε̂ and k are the polarization
unit vector and the wave vector of the incident x-ray beam,
respectively. For nonmagnetic materials and a linear polariza-
tion of the x-ray beam, the XAS cross section is the sum of E1
and E2 contributions [37] given by

σ (h̄ω) = 4π2α0 h̄ω

×
∑

f

[
|〈 f |ε̂ · r|i〉|2 + 1

4
|〈 f |ε̂ · r k · r|i〉|2

]

× δ(E f − Ei − h̄ω), (4)

where α0 is the fine structure constant and h̄ω is the energy of
the incident photon.

In the case of XRS, a nonresonant inelastic photon-in
photon-out scattering experiment, the transition operator is
given by

OXRS = eiq·r, (5)

where q = kin − kout is the scattering vector. The expansion
of Eq. (5) in terms of complex spherical harmonics Y m

l and
spherical Bessel functions jl leads to the XRS monopole and
dipole operators defined by

OXRS
mono = j0(qr), (6)

OXRS
dip = j1(qr) 4iπ

∑
λ

(−1)λY −λ
1 (q̂)Y λ

1 (r̂), (7)

As shown in Ref. [35], the contribution of the XRS quadrupole
term can be safely neglected when investigating K edges
of light elements. The monopole XRS operator depends on
the norm q of vector q, while the dipole operator depends
on both its norm and direction q̂. When considering powder
specimens, cross-terms cancel and the XRS dynamic structure
factor can be seen as a sum of two distinct transition-channel
contributions [35]

S(q, h̄ω) =
∑

f

[∣∣〈 f |OXRS
mono|i〉

∣∣2 + ∣∣〈 f |OXRS
dip |i〉∣∣2]

× δ(E f − Ei − h̄ω), (8)

where h̄ω = h̄ωin − h̄ωout is the energy transfer. Whether in
XAS or XRS, the monopole, dipole and quadrupole operators
each select a specific electronic transition, i.e., 1s → s (for-
bidden in XAS), 1s → p and 1s → d , respectively.

A method has recently been developed by Nemausat et al.
[30,31] to account for temperature effects in the calculation
of XAS or XRS spectra. Within this method the spectra
are obtained by averaging on nonequilibrium atomic config-
urations that obey quantum statistics at finite temperature.
The configurations are obtained from the atomic vibrations
within the framework of both the Born-Oppenheimer and the
(quasi)harmonic approximations. The method is based on a
three-step process: (i) the atomic vibrational modes (phonons)
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of the supercell used in the calculation of the spectra are
determined by using DFT; [38] (ii) for a given temperature,
a set of configurations is then generated by introducing ran-
dom displacements of the nuclear positions in the supercell
following the procedure described in Ref. [31]; and (iii) the
XAS and XRS spectra are finally calculated for each atomic
configuration generated in the previous step and averaged to
get a spectrum to be compared to experiment. The conver-
gence of the average spectrum is achieved as a function of
the number of configurations. The validity of this approach
has been demonstrated in Appendix of Ref. [30], showing in
particular that the use of an average is only justified if the
nuclear kinetic energy is neglected.

B. Experimental details

Ti K edge spectra of rutile TiO2 were measured at the
I16 beam line of the Diamond Light Source using a syn-
thetic single crystal. Rutile TiO2 crystallizes in the tetragonal
system with space group P42/mnm (No. 136), the fourfold
symmetry axis being parallel to the [001] direction. The
experimental setup was designed to study the angular and
temperature dependence of the pre-edge region of the Ti K
edge by using a resonant elastic x-ray scattering geometry, as
shown in Fig. 1(a). The sample (10×10 × 1 mm square) was
mounted on the cold finger of a closed-cycle ARS cryofurnace
and oriented by x-ray diffraction. Sample rotations about the
[001] axis were carried out while maintaining angles of 10
and 70 degrees between the sample surface, and incident and
scattered beams, respectively, in the scattering σ polarization
configuration (polarization vector perpendicular to the scat-
tering plane). In this setup geometry, polarization vector ε̂

was kept normal to the fourfold symmetry axis of the crys-
tal, so that only electric-quadrupole angular dependence was
expected [37]. The angular-dependent spectra were recorded
for different temperatures ranging from 6 to 698 K, by de-
tecting the total fluorescence signal using a Pilatus 100K area
detector. Figure 1(b) displays XAS spectra in the pre-edge
region recorded at 6 K for a π rotation of azimuthal angle
ϕ. The A1 peak, known to be due to E2 transitions [39], does
exhibit the expected π/2 periodicity [37]. The maximum and
minimum intensities of peak A1 define the two spectra that
are considered in the following. Their mean and difference are
denoted E2 in-plane mean spectrum and E2 in-plane dichroic
signal, respectively. Self-absorption correction were applied
using the process described in Ref. [40].

The Al K edge XRS spectrum was recorded at room
temperature on a powder sample of α-Al2O3. The experi-
ment was performed at the ID20 beamline of the European
Synchrotron Radiation Facility (ESRF) in Grenoble, France,
using the large-solid angle XRS spectrometer [41]. The
synchrotron ring was operating at 200 mA and the beam
was monochromated by a combination of Si(111) double-
crystal cryogenically cooled premonochromator and a Si(311)
channel-cut postmonochromator. The total energy resolution
was about 0.6 eV. A total of 24 analyzer crystals using the
Si(660) reflection were utilized at a mean momentum trans-
fer of 9.5 ± 0.5 Å−1, a high value enhancing monopole
transitions.

FIG. 1. (a) Experimental setup used to record the polarization-
dependent x-ray absorption spectra at the Ti K edge of TiO2 rutile,
as a function of temperature. As the polarization remains in the plane
perpendicular to the crystal [001] direction, in-plane dichroism only
arises from electric quadrupole E2 transitions. (b) Ti K pre-edge
spectra obtained at 6 K for azimuthal angle ϕ varying from 0 to π .
The minimum and maximum intensity of peak A1 identify the two
ϕ values that are considered in this study to define E2 in-plane mean
spectrum and E2 in-plane dichroic signal.

C. Computational details

Self-consistent field (SCF) charge densities, phonons,
XAS and XRS spectra were calculated with the QUANTUM

ESPRESSO suite of codes [42,43], which uses plane-wave basis
set, pseudopotentials and periodic boundary conditions. XAS
spectra were calculated with the XSPECTRA module using the
formalism described in Refs. [44,45]. The XRS spectra were
obtained using a modified version of XSPECTRA, where the
XRS dynamic structure factor has been implemented [35].
Ultrasoft pseudopotentials [46] from the PSLIBRARY [47] were
generated in the Rappe, Rabe, Kaxiras, and Joannopoulos
formalism [48]. Each pseudopotential contains two projectors
per angular momentum channel whereas Ti 3s and 3p semi-
core states have been explicitely treated in valence. The pseu-
dopotentials of the absorbing atoms (Ti and Al) were gener-
ated by fixing the occupancy of the 1s core-state to one and by
adjusting the ionic radii to slightly smaller values. The latter
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step is necessary to account for the overall atomic orbital con-
traction associated with this excited electronic configuration.

For α-Al2O3, the calculations were performed within the
generalized gradient approximation using the Perdew, Burke,
and Ernzerhof (GGA-PBE) parametrization [49]. The case of
rutile TiO2, an incipient ferroelectric material, is more subtle
as GGA-PBE predicts the A2u mode to be unstable at the equi-
librium geometry [50,51], leading to a ferroelectric distorsion
of the crystal which qualitatively disagrees with the known
properties of this compound. The use of the local density
approximation (LDA) [52] however, leads to a stable structure
characterized by a slightly smaller equilibrium volume of
the unit cell and provides a correct description of its lattice
dynamics. This justifies our choice of LDA for the present
study of rutile TiO2. For both compounds, the energy cutoffs
were set to 50 and 500 Ry for the electronic wave function and
density, respectively.

For the pre-edge structure analysis, local and partial densi-
ties of states (DOS) were calculated using Löwdin projections
in supercells with the atoms at their equilibrium positions, on
a 4 × 4 × 4 k-point grid with a Gaussian parameter of 0.5 eV.
These DOS calculations were performed using the LDA-
optimized structure for rutile and the experimental structure
at room temperature for corundum [53].

1. Al K edge XRS in α-Al2O3

Phonon calculations were first performed using the room
temperature experimental unit cell of α-Al2O3 [53]. A set
of atomic configurations were then generated in 2 × 2 × 2
(80 atoms) rhombohedral supercells, large enough to min-
imize spurious interactions between periodically repeated
images of the absorber. All spectra were calculated in the full
core-hole (FCH) approximation, where the missing electronic
charge on the 1s core orbital is compensated by a uniform
negative background in the supercell. Monopole and dipole
contributions to the dynamic form factor [see Eq. (8)] were
calculated as continued fractions [35,44] with a broadening
parameter of 0.3 eV, on a 4 × 4 × 4 sampling of the supercell
Brillouin zone and for a module of the scattering vector of
10 Å−1. A converged spectrum was obtained by averaging the
contributions arising from 50 atomic configurations, which
were realigned with respect to each other through standard
	SCF calculations [54] and finally energy shifted to match
the experimental main edge peak energy position.

2. Ti K edge XAS in rutile TiO2

The procedure used for Al K edge XRS in α-Al2O3

has been slightly modified in the case of rutile TiO2

due to the systematic occurrence of imaginary frequen-
cies when performing phonon calculations on experimental
structures. Indeed, as the quasiharmonic approximation [55]
is not applicable in this particular case, phonon calcula-
tions have been performed on a fully relaxed structure.
Atomic configurations were then generated in tetragonal
2 × 2 × 3 (72 atoms) supercells where thermal effects were
only taken into account in the calculated nuclear displace-
ments through the temperature dependence of the modes
normal length (see Eq. (4) of Ref. [31]), whereas the expan-
sion of the lattice parameters with increasing temperatures

was neglected. As in the case of α-Al2O3, spectra were calcu-
lated using the FCH approximation, a broadening parameter
of 0.7 eV and a 4 × 4 × 4 sampling of the supercell Brillouin
zone. Because of the experimental conditions (see Fig. 1), two
types of theoretical spectra were calculated along the follow-
ing procedure: dipole (E1) and quadrupole (E2) contributions
[see Eq. (4)] were calculated for two (ε̂, k) couples yielding,
respectively, the maximum and the minimum of the pre-edge
first peak intensity. These two components were then averaged
to provide a E2 in-plane mean spectrum whereas their dif-
ference was directly associated with the E2 in-plane dichroic
signal. Converged spectra were then obtained by averaging the
contributions arising from 40 atomic configurations, consider-
ing for each configuration the two Ti sites of the conventional
primitive cell to host the absorbing atom (labeled Ti1 and
Ti2 in Fig. 1). As for the α-Al2O3 case, individual spectra
were core-level shifted with respect to each other using 	SCF
calculations [54]. Finally the converged spectra were aligned
with experiment in such a way that the A3 pre-edge peak
of the 300 K calculated spectrum matches the corresponding
experimental structure.

An additional difficulty, inherent to the method employed
to account for thermal fluctuations, arises however in the
latter case. As proved in Appendix A, thermal effects and
vibrations do not modify the angular dependence of the XAS
cross section as imposed by the point group of the crystal.
Thus rutile TiO2 retains its D4h point group symmetry over the
entire temperature range investigated in this study. However,
individual atomic configurations generated to calculate the
spectra do not display the full crystal symmetry any more and
in general, do not display any point symmetry at all. Given
the small amplitude of the displacements from equilibrium
positions introduced in the supercells, the overall loss of sym-
metry barely affects the shape of the E2 in-plane mean spectra.
Its effect is however much more visible on the E2 in-plane
dichroic signal. As mentioned above, under our experimental
conditions, one expects an absence of electric dipole (E1)
contribution to the dichroic signal which is not verified in the
numerical calculations where a residual contribution remains
present. Attempts to converge this residual E1 signal to zero,
i.e., to restore the crystal symmetry by averaging a sufficient
number of configurations, proved to be out of reach. An al-
ternative approach to solve this issue is to retrieve the high
symmetry component of the absorption cross section from cal-
culations performed for a set of distinct (ε̂, k) couples within
the same atomic configuration. A detailed and self-contained
presentation of the approach followed in this work is given in
Appendix B.

III. RESULTS AND DISCUSSION

A. XAS at the Ti K edge in rutile TiO2

1. Comparison between calculated and measured spectra

Figure 2 shows a comparison between measured and cal-
culated E2 in-plane mean Ti K edge XAS spectra in rutile
TiO2 for three different temperatures, using the theoretical
approach described in Sec. II C. The E2 in-plane mean pre-
edge region is presented in more details in Fig. 3, where the
E1 and E2 contributions to the calculated spectra are shown
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FIG. 2. Comparison between the experimental and the calculated
E2 in-plane mean XAS spectra at the Ti K edge in rutile TiO2,
for three different temperatures. The experimental spectra (full lines
with data points) were shifted vertically for clarity.

separately. Finally, a comparison between the theoretical and
the experimental in-plane dichroic signals in the same pre-
edge energy range is shown in Fig. 4. As mentioned above,
this dichroic signal was obtained as the difference between the
spectra recorded for an in-plane orientation of the polarization
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FIG. 3. Temperature dependence of the Ti K pre-edge region
in rutile TiO2. Calculated E1 and E2 contributions (solid lines), as
well as their sum, are compared to experiment (solid lines with
data points) for three different temperatures. Spectra were vertically
shifted for clarity.
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FIG. 4. Experimental and calculated in-plane dichroic signal of
the Ti K pre-edge region in rutile TiO2 for three different temper-
atures. The intensity of the dichroic signal is in the same units as
those used for the XAS spectra in Fig. 3. Zero lines (in black) have
been added for measured and calculated dichroism, which have been
vertically shifted for clarity. For comparison, the XAS spectra are
also displayed in dotted lines, but using a factor 1/10.

yielding the highest and lowest pre-edge first peak intensities,
respectively.

The pre-edge region is essentially built from three peaks,
labeled A1, A2, and A3 in the figures, arising at 4966, 4968.5,
and 4972 eV, respectively, while the main edge region is
dominated at higher energies by a clear shoulder labeled B
at 4978 eV, a faint feature labeled C at 4981.5 eV and a major
peak labeled D at about 4984 eV. All these observations are
consistent with the spectra already published in the literature
on this compound [39,56–63]. This spectrum shows a clear
evolution as temperature increases. In the pre-edge region, in-
tensities of peaks A1 and A2 are both increasing with temper-
ature while peak A3 remains virtually unchanged. In the main
edge region, peak D experiences the largest intensity varia-
tion, decreasing strongly with increasing temperatures. Peak
B follows the same trend with, however, a much smaller am-
plitude while C remains essentially unchanged. It should also
be noted that peak A2 shifts by about 0.5 eV towards lower
energies when increasing the temperature from 6 to 698 K.

The experimental in-plane dichroic signal (Fig. 4) arises
mostly in the energy range corresponding to the first two
peaks of the pre-edge region, changing sign from positive to
negative when moving from A1 to A2, and weakens slightly
as temperature increases from 6 to 698 K.

The Ti K edge spectra (Fig. 2) were calculated for three
different temperatures employed in the experiments. They all
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exhibit a similar shape as the experimental spectra. In the
pre-edge region, A2 and A3 peaks are rather well reproduced
regarding their relative intensity and energy position. Peak A1
is well reproduced as far as its relative intensity with respect to
the other pre-edge features is concerned, but occurs at slightly
higher energy than in the experiments. The main edge fea-
tures are also well reproduced regarding their relative energy
position and intensity, though feature C is slightly too intense
compared to the experiments and is affected by temperature.
Nevetheless, the temperature dependence of the spectra also
shows an overall good agreement with the experiments. In
particular, the intensity increase of peaks A1 and A2 and
decrease of peak D with increasing temperature is correctly
predicted. In the pre-edge region, the main difference between
theory and experiments lies, however, in the absence of the
temperature-induced energy shift of the A2 pre-edge peak in
the calculations.

The E2 in-plane dichroic signal is also overall well re-
produced although the calculated signal is slightly shifted
towards higher energies (see Fig. 4). As observed in the ex-
periments, the dichroism is mainly present at the A1 and A2
pre-edge peaks and arises exclusively from the E2 contribu-
tion. The temperature dependence of the signal (and thus of
the anisotropy in the rutile crystal) is also well reproduced, as
it decreases slightly with increasing temperatures, in agree-
ment with the experimental data. Overall, Figs. 2–4 show
how the present method proves to be essential to grasp the
effect of temperature on the spectral shape and represents a
real improvement over a standard calculation, where atoms
are set to their equilibrium position and where temperature
is accounted for, at most, through the thermal expansion of
lattice parameters.

2. Pre-edge region analysis

Pre-edge structures in XAS give insight into the local
atomic and electronic structures of the absorbing atom. More
specifically, in the case of transition metals, the K pre-edge
region provides a direct access to the manifold of empty d
states. As shown in Fig. 3, the pre-edge peaks are here the re-
sult of electric dipole, electric quadrupole, or of a combination
of both types of electronic transitions. More precisely, both E1
and E2 transitions contribute to A1 and A2 peaks while A3
arises solely from E1 transitions. In other words, both A1 and
A2 peaks originate from 1s → p and 1s → d transitions while
A3 arises purely from 1s → p transitions. This assignment is
valid for all the temperatures investigated.

Moreover, E1 transitions possess either a local or a non-
local character. Local transitions involve transitions to the
absorbing atom p states hybridized with the absorbing atom
d states, whereas nonlocal ones involve transitions to the ab-
sorbing atom p states mixed with the neighbor cations d states.
This is important here because the point group of the Ti site in
rutile TiO2 (D2h) is centrosymmetric. In this case, on-site p-d
mixing is symmetry-forbidden and only nonlocal E1 transi-
tions should be visible in the pre-edge region. However, taking
vibrations into account breaks the local symmetry and relaxes
the above-mentioned constraint, allowing local p-d hybridiza-
tion to take place. The presence of local E1 transitions in the
pre-edge region is thus enabled by vibrations.

4966 4968 4970 4972 4974

 Energy (eV)

0

0.5

A
bs

or
pt

io
n 

(a
rb

. u
ni

ts
)

configs.
average

equil.

Ti K edge at 300K

calc. E1

calc. E2 x 5

A1

A2 A3

FIG. 5. Theoretical Ti K pre-edge structures in rutile TiO2 at
300 K: comparison between spectra performed with atoms at equi-
librium positions (black dashed line) and obtained when taking
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This mechanism explains the presence of E1 contributions
to peak A1, which would otherwise be symmetry-forbidden.
Figure 5 compares the pre-edge region of the Ti K edge calcu-
lated at 300K when vibrations are taken into account (orange
lines) or neglected (dashed black lines). Figure 5 indicates that
the spectrum only shows an E1 contribution to the A1 peak if
vibrations are taken into account. Another sizable effect of
atomic vibrations on the E1 contribution is observed for the
A2 pre-edge structure and, to a much weaker extent, for the
A3 peak. On the contrary, temperature effects leave the E2
contribution almost unaffected save for a slight broadening of
the structures.

Inspection of the projected densities of states (PDOS) pre-
sented in Fig. 6 confirms these results. The top panel of
the figure shows a comparison between the spectrum cal-
culated with atoms at their equilibrium positions, together
with individual E1 and E2 contributions and the experimental
spectrum. Lower panels show, from top to bottom, PDOS
projected on the absorbing Ti p, neighboring Ti p, absorb-
ing Ti 3d and neighboring Ti 3d states. A decomposition
of the Ti 3d states is performed according to the symmetry
properties of the 3d orbitals, i.e., onto the irreducible repre-
sentations of the Ti site point group. In D2h symmetry, the d
manifold of the transition metal ion is split into nondegenerate
Ag, B2g, B3g states which will be referred to as “t2g-like”
orbitals in the reminder by reference to their properties in
octahedral symmetry and into Ag and B1g states for the “eg-
like” orbitals [64]. The local system of coordinates employed
in these calculations is shown in the inset of Fig. 6.

Figure 6 illustrates how, at equilibrium, the only possible
contribution to A1 arises from local E2 transitions. Indeed,
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was built with atoms at their equilibrium positions using the LDA-
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only the absorbing Ti t2g-like empty orbitals are located in
this energy range. This is in agreement with most of previous
studies [32,39,56–62]. Note that the attribution of this peak to
dipole transitions made by Wu et al. [63] and Brydson et al.
[65] was seemingly due to artifacts introduced by the muffin-
tin approximation [39]. Moreover, Fig. 6 shows the mixed
character of A2, which stems from both nonlocal E1 and local
E2 contributions at equilibrium. PDOS indeed confirm that
these components are consistent with the presence of, respec-
tively, absorbing Ti 4p states hybridized with neighboring Ti

t2g-like and absorbing Ti eg-like states in this energy range.
Finally, PDOS also show that the only electronic states at
the origin of A3 are the eg-like states of neighboring cations,
hybridized with absorbing Ti 4p states. This thus confirms
the purely nonlocal character of this peak. A summary of the
electronic transitions occurring at the Ti K pre-edge structures
is given in Table I.

The effect of temperature on the pre-edge structures can
therefore be understood as follows. As the thermal motion
of the nuclei barely affects E2 transitions (see bottom of
Fig. 5), the intensity variation of peak A1 is entirely due
to temperature-induced local E1 contributions (see top of
Fig. 5). The relatively weak amplitude of this contribution
compared to the dominant E2 signal in this energy range and
the predicted absence of on-site p-d hybridization explain
why it has often been overlooked in previous works on rutile
TiO2. A recent in-depth study [66] of the linear dichroism
of this edge, based on high-energy-resolution measurements,
confirms however the presence of a weak E1 contribution to
this peak, although the authors did not relate it explicitely to
lattice vibrations. The most important effects, observed on the
A2 peak, originate from the same vibration-induced local E1
transitions, but in this case towards the eg-like orbitals of the
absorber. It is interesting to note that this strong temperature
dependence for transitions to eg-related final states is not re-
stricted to rutile TiO2 but also observed in other compounds
such as SrTiO3 [67] or PbTiO3 [10].

As mentioned above, the slight redshift of peak A2 with
increasing temperature is not properly reproduced in the cal-
culations. A qualitative explanation of this result lies in the
approximate treatment of the core-hole provided by DFT.
Indeed, the PDOS shown in Fig. 6 illustrate the strong effect
of the locally more attractive potential of the absorber on its
unoccupied 3d orbitals, pulling these states down in energy by
a few eV. However, DFT has a tendency to overestimate the
screening of the 1s core hole by the valence electron density,
which appears as the main drawback of this method [32,68].
The resulting misplacement of the absorber 3d orbitals is
thus directly echoed in a temperature-induced local E1 con-
tribution located at about the same energy as the nonlocal
contribution, leading to an overall energy position of this
structure independent of the temperature. A more attractive
core-hole potential would lower the energy of these localized
3d states, which in turn would lower the energy of the local
E1 contribution and restore the redshift of peak A2 observed
experimentally as temperature increases.

TABLE I. Nature of the electronic transitions at the origin of the Ti K pre-edge structures in rutile TiO2. Transitions induced by nuclear
thermal fluctuations are indicated in bold.

Peak labels Probed states Electronic transitions

A1 absorbing Ti 3d (t2g-like) E2: 1s → 3d
absorbing Ti 3d (t2g-like) E1 local: 1s → 4p mixed with 3d of absorbing Ti

A2 absorbing Ti 3d (eg-like) E2: 1s → 3d
absorbing Ti 3d (eg-like) E1 local: 1s → 4p mixed with 3d of absorbing Ti
neighboring Ti 3d (t2g-like) E1 nonlocal: 1s → 4p mixed with 3d of neighboring Ti

A3 neighboring Ti 3d (eg-like) E1 nonlocal: 1s → 4p mixed with 3d of neighboring Ti
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We close this discussion of the Ti K edge in rutile TiO2

with a few remarks on the temperature dependence of the
E2 in-plane dichroic signal. As detailed in Appendix B, a
proper calculation of this signal when accounting for finite
temperature effects with the present method requires the ex-
plicit cancellation of additional terms arising in the cross
section as symmetry is lost through the random displacement
of atoms in the supercell. The present work indeed shows that
the crystal symmetry cannot be restored simply by averaging
over a reasonable number of configurations. Extraction of the
high-symmetry components of the cross section, correspond-
ing to the full symmetry of the crystal at equilibrium, proves
however very efficient and generally applicable. As shown
in Fig. 4, this leads to a complete cancellation of the E1
in-plane dichroic component and to a fast convergence of the
E2 signal with the number of configurations, comparable to
the convergence achieved for the in-plane mean spectra. The
accurate reproduction of the subtle temperature dependence of
this signal confirms the relevance of this approach which adds,
therefore, a new dimension to the methodology developed
here to account for thermal effects on core-level excitation
spectra.

B. XRS at the Al K edge in α-Al2O3

The top of Fig. 7 compares experimental and theoretical Al
K edge XRS spectra in α-Al2O3 for a module of the scattering

vector q = 10 Å−1. The two main spectral features visible
in the experimental data consist in a pre-edge peak labeled
A in the figure, arising at 1564 eV and a main edge peak
labeled B at 1567 eV. The theoretical spectra, obtained by a
standard calculation where all atoms are fixed to their equi-
librium positions (black solid line) and by taking vibrations
at room temperature into account (orange solid line), both
reproduce the overall shape of the experimental one. The ex-
plicit account of finite temperature effects in the calculations
clearly improves the agreement with experiment by reducing
the intensity of peak B, which is largely overestimated when
considering the equilibrium atomic structure only. The de-
scription of damped structures arising above 1568 eV is also
improved in the finite temperature calculations.

The calculated dynamic structure factor is the sum of two
transition-channel contributions that are shown in the middle
and bottom of Fig. 7. Peak A mainly results from 1s → 3s
monopole transitions while higher-energy structures are due
to 1s → p dipole transitions. For both monopole and dipole
contributions, the configuration spectra are displayed. While
the monopole dynamic structure factor is only slightly af-
fected by vibrations (shift towards lower energy of 0.1 eV and
intensity damping of about 14%), the dipole one concentrates
the main effects described above, with peak B largely reduced
and high-lying structures broadened. More strikingly, vibra-
tions give rise to a weak dipole contribution in the pre-edge
region. Similarly to the previous case of TiO2, temperature-
induced atomic displacements lead to an enhanced on-site, or
local hybridization, mixing here the absorber s and p unoccu-
pied states. The pre-edge peak A results therefore from both
electric monopole and dipole transitions.

In XRS, the K pre-edge region of light elements, such
as Al, is indeed particularly interesting as it concentrates
most of the multipolar transitions which can be observed for
such edges with this spectroscopy [35]. More specifically,
monopole contributions, resulting from 1s → 3s electronic
transitions, are strongly enhanced when large momenta are
transferred, giving rise in our case (see Fig. 7) to the largest
contribution to peak A. In Fig. 8, the PDOS calculated for the
structure at equilibrium confirm this picture. The bottom of
the conduction band is purely built from the absorber 3s states
hybridized with ligand p states. The absorber p states only
appear at about 3 eV higher in energy. Besides, the PDOS
shown for both excited (absorber) and non excited (neighbor)
Al clearly evidence the strong effect of the core-hole on both
s and p unoccupied states, at the origin of peaks A and B in
the equilibrium total spectrum, respectively.

IV. CONCLUSION

In this work, we employed an approach based on density-
functional theory to assess the effect of lattice quantum
dynamics on two different core-level spectroscopies allowing
for multipole electronic transitions: XAS at the Ti K edge in
rutile TiO2 where electric dipole and quadrupole transitions
dominate the pre-edge region and XRS at the Al K edge in
α-Al2O3 where monopole and dipole transitions are observed
for large scattering vectors. In both cases, accounting for
thermal effects clearly improves the agreement between ex-
periments and theory. Indeed, besides the overall broadening
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of the spectral features, a strong effect of the tempera-
ture is observed on the dipole allowed electronic transitions,
leading either to an enhancement of the spectral weight
of certain features already visible in the calculations per-
formed at equilibrium or to the appearance of new electronic
transitions.

These effects essentially originate from on-site hybridiza-
tion between the absorber p and s or d localized unoccupied
states arising when atomic nuclei are displaced from their
equilibrium positions and occur, therefore, in energy regions
dominated by these latter states. On the contrary, monopole
and quadrupole transitions to final Al 3s states in XRS and
Ti 3d states in XAS, respectively, prove to be fairly insensitive
to temperature, whose dominant effect is reduced to a slight
broadening of the structures. Although difficult to extrapolate
to other systems than the oxides under study, our results show
that the higher sensitivity to local atomic displacements of
the absorber unoccupied p states is related to their larger
spatial extension and higher energy position. The absorber
Al 3s or Ti 3d states experience a stronger localization in
the presence of a 1s core-hole leading to a large redshift

of these states visible on the PDOS, toward the bottom of
the conduction band. These states therefore tend to decou-
ple from the continuum of the conduction states, reducing
considerably their sensitivity to the details of the surrounding
environment.

Finally, we proposed a general method devised to properly
account for the orientation dependence of core-level spec-
troscopies in calculations performed at finite temperatures.
This method, based on a group-theoretical analysis, consists
in canceling all spurious contributions to the absorption or
scattering cross sections, which arise from the artificial loss
of the crystal symmetry in the atomic configurations generated
to account for lattice quantum dynamics. The good agreement
between theory and experiments obtained on the temperature
dependent dichroic signal of the Ti K pre-edge region in
rutile TiO2 demonstrates the relevance of this approach. As
this method enables to rigorously treat angular dependence
at finite temperature, it can be extended to the calculation of
any natural dichroism in systems studied in nonequilibrium
configurations.
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APPENDIX A

In the present study, theoretical spectra are obtained as
an average of cross sections calculated for out-of-equilibrium
atomic configurations of the crystalline material, by using the
framework described in Ref. [30]. Because in each of those
configurations, atoms are displaced from their equilibrium
positions, the symmetry properties of the crystal are lost,
leading to an angular dependence of the average cross section
different from that obtained with atoms at their equilibrium
positions. In this Appendix, we show that even under the ef-
fect of temperature-induced harmonic vibrations, the angular
dependence of XAS (or XRS) spectra has to be that imposed
by the symmetry point group of the crystal. In other words,
an atomic displacement in one direction is equiprobable to a
displacement in another direction obtained by the symmetry
operations of the crystallographic point group. To be con-
sistent with the Appendix of Ref. [30], the demonstration
below is done in a multielectronic scheme within the Born-
Oppenheimer approximation.

First of all, we recall the main theoretical ingredients of the
method of Nemausat et al. [30] used in this paper.

The crystal is seen as a system of N nuclei of mass MI and
charge qI (I = 1, . . . , N) and Ne electrons of mass m, with re-
spective position vectors (R1, . . . , RN ) and (r1, . . . , rNe ). The
system is described by wavefunctions 
(R̄, r̄) of energy E ,
where we have used collective coordinates R̄ = (R1, . . . , RN )
and r̄ = (r1, . . . , rNe ) to simplify the notation.
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According to Ref. [30], for each incoming-photon energy
h̄ω, the XAS cross section including vibrations at temperature
T can be written as

σ (h̄ω) = 4π2α0 h̄ω
1

Z

∑
m,n,i, j

e−Ei
m/kBT

× ∣∣〈
 j
n

∣∣O(r̄)
∣∣
 i

m

〉∣∣2
δ
(
E j

n − Ei
m − h̄ω

)
, (A1)

where α0 and kB are the fine structure constant and the Boltz-
mann constant, respectively, and where the partition function
reads

Z =
∑
m,i

e−Ei
m/kBT . (A2)

In Eq. (A1), O(r̄) is the XAS transition operator,

O(r̄) =
∑

j

eik·r j

(
h̄ε̂ · ∇ j − g

2
s j · (k × ε̂)

)
(A3)

that, after the multipole expansion, leads to the E1 and E2
operators given by Eq. (2) and Eq. (3) in a single-electron
scheme, respectively. In our method, wave functions 
 i

m(r̄, R̄)
are described within the Born-Oppenheimer approximation
and using the harmonic approximation.

In the Born-Oppenheimer approximation, we assume that
wave functions 
(r̄, R̄) can be factorized


 i
m(r̄, R̄) = χ i

m(R̄)ψm(r̄; R̄). (A4)

In Eq. (A4), electronic wave function ψm(r̄; R̄) is the solution
of Schrödinger equation with nuclei clamped at position R̄

He(r̄; R̄)ψm(r̄; R̄) = εm(R̄)ψm(r̄; R̄),

where the electronic Hamiltonian reads

He(r̄; R̄) = − h̄2

2m

Ne∑
i=1

	i + Ve(r̄) + VeN (r̄, R̄) + VN (R̄), (A5)

Ve being the Coulomb potential between electrons, VeN the
Coulomb potential between nuclei and electrons and VN the
Coulomb potential between nuclei.

In the harmonic approximation, the vibrational wave func-
tion χ i

m(R̄) (Eq. (A4)) is the solution of

Hm(R̄, R̄0)χ i
m(R̄) = (

Ei
m − εm(R̄0)

)
χ i

m(R̄), (A6)

where R̄0 are the equilibrium positions of the nuclei for quan-
tum state ψm and with

Hm(R̄, R̄0) = −
N∑

I=1

h̄2

2MI
	RI + 1

2

∑
I,J

(
RI − R0

I

)

· ∂2εm(R̄)

∂RI∂RJ

∣∣∣∣
R̄=R̄0

(
RJ − R0

J

)
. (A7)

If we assume that the experimental resolution is much larger
than the vibrational energies [23], we can neglect the final
state vibrations and we concentrate on the vibrational energies
of the ground state given by the eigenvalues of Hm. In other
words, Eq. (A6) is solved for m=0.

Within this formalism, the σ (h̄ω) cross section including
temperature and vibrations [Eq. (A1)] becomes an average

over configuration cross sections σR̄(h̄ω) [30]:

σav(h̄ω) = Z−1
∑

i

e−Ei
0/kBT

∫
dR̄

∣∣χ i
0(R̄)

∣∣2
σR̄(h̄ω), (A8)

with

σR̄(h̄ω) = 4π2α0 h̄ω
∑

f

|〈ψ f |O(r̄)|ψ0〉|2δ(ε f − ε0 − h̄ω).

(A9)

Now, we consider an arbitrary isometry D, which can al-
ways be written as Dr = Sr + t for any r, and where t is
a translation vector and S a rotation or a rotoinversion. By
changing variable R̄ to DR̄, we obtain

σav(h̄ω) = Z−1
∑

i

e−Ei
0/kBT

∫
dR̄

∣∣χ i
0(DR̄)

∣∣2
σDR̄(h̄ω),

(A10)

where we used dDR̄ = dR̄ because isometries conserve vol-
ume.

First, we investigate the σR̄(h̄ω) configuration cross sec-
tion when D is applied to R̄. Since isometries do not change
length and scalar product and since the VeN (r̄, R̄) and VN (R̄)
Coulomb terms of Eq. (A5) are functions of length of type
|ri − RI | and |RI − RJ |, respectively, we can easily show that

He(r̄; DR̄) = He(D−1r̄; R̄). (A11)

The ψm electronic wave functions satisfy both

He(r̄; DR̄)ψm(r̄; DR̄) = εm(DR̄)ψm(r̄; DR̄)

and

He(D−1r̄; R̄)ψm(D−1r̄; R̄) = εm(R̄)ψm(D−1r̄; R̄).

Since the two Hamiltonians are identical [Eq. (A11)], it is
always possible to order the eigenvalues (if they are non
degenerate) [69] so that

εm(DR̄) = εm(R̄) (A12)

and ψm(r̄; DR̄) and ψm(D−1r̄; R̄) are equal up to a phase.
Then, using these symmetry properties of the electronic states
and eigenvalues, we are able to calculate σDR̄(h̄ω) starting
from Eq. (A9). We have

|〈ψ f (r̄; DR̄)|O(r̄)|ψ0(r̄; DR̄)〉|2δ(ε f (DR̄) − ε0(DR̄) − h̄ω)

= ∣∣〈ψ f (D−1r̄; R̄)|O(r̄)|ψ0(D−1r̄; R̄)〉∣∣2

× δ(ε f (R̄) − ε0(R̄) − h̄ω)

= |〈ψ f (r̄; R̄)|O(Dr̄)|ψ0(r̄; R̄)〉|2

× δ(ε f (R̄) − ε0(R̄) − h̄ω). (A13)

To calculate O(Dr̄) in Eq. (A13), we use Eq. (A3) for the
XAS transition operator. In Eq. (A3), gradient ∇ is translation
invariant and t applied on term eik·r only brings a phase eik·t ,
which disappears in the modulus in Eq. (A13).

Then, using the identity

q · (S r̄) = (S−1q) · r̄, (A14)
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with q = ε̂ and q = k, we obtain the following symmetry
property of the configuration cross section [70]:

σDR̄(h̄ω, ε̂, k) = σR̄(h̄ω,S−1ε̂,S−1k). (A15)

Second, we examine the effect of applying D onto R̄ in the
H0(R̄, R̄0) harmonic nuclear Hamiltonian, defined by Eq. (A7)
for m = 0. The invariance of r · ∇ under invertible linear
transformations, the translation invariance of RI − R0

I and ∇,
and Eq. (A12) imply

H0(DR̄, DR̄0) = H0(R̄, R̄0),

for any isometry D. If, moreover, D is a symmetry element of
the space group of the crystal, then DR̄0 = R̄0 and

H0(DR̄, R̄0) = H0(R̄, R̄0). (A16)

As a consequence, χ i
0(R̄) and χ i

0(DR̄) are eigenstates of the
same Hamiltonian and, if they are nondegenerate, χ i

0(DR̄) and
χ i(R̄) are equal up to a phase [71]:∣∣χ i

0(DR̄)
∣∣2 = ∣∣χ i

0(R̄)
∣∣2

. (A17)

Besides, χ i
0(DR̄) and χ i

0(R̄) have the same energy Ei
0 and,

thus, the same Boltzmann weight in Eq. (A1).
Finally, we can investigate the average XAS cross section

given by Eq. (A8) when the space group symmetry operation
D is applied onto R̄. Using symmetry properties (A17) and
(A15), we see that∫

dR̄
∣∣χ i

0(DR̄)
∣∣2

σDR̄(h̄ω, ε̂, k)

=
∫

dR̄
∣∣χ i

0(R̄)
∣∣2

σR̄(h̄ω,S−1ε̂,S−1k), (A18)

where S is the symmetry operation of the point group of
the crystal corresponding to D. Introducing Eq. (A18) in
Eq. (A10), we obtain

σav(h̄ω, ε̂, k) = σav(h̄ω,S−1ε̂,S−1k), (A19)

where S is any operation of the point group of the crystal. This
shows that the average XAS cross section, which takes quan-
tum thermal effects of the nuclei into account, has the same
angular dependence (i.e., symmetry properties) as the cross
section calculated with nuclei at their equilibrium positions.

The proof of Eq. (A19) was given here in the harmonic ap-
proximation. It can be extended to include nonharmonic terms
but it cannot be generalized to any temperature because crystal
symmetry can be modified when phase transitions occur.

APPENDIX B

In the present work, nuclear thermal fluctuations are ex-
plicitly accounted for in the theoretical spectra by averaging
cross sections calculated for out-of-equilibrium atomic con-
figurations in which the crystal symmetry is lost. However, as
proved in Appendix A and in the absence of phase transition,
this average XAS cross section should display the same an-
gular dependence as the cross section calculated with nuclei
at the equilibrium positions, i.e., calculated for the full crystal
symmetry.

In this Appendix, we present a practical method designed
to retrieve the proper angular dependence of the absorption

TABLE II. Eight different (ε̂, k) couples employed in the present
calculations to extract the D4h in-plane mean and dichroic compo-
nents of the Ti K edge in rutile TiO2 when accounting for thermal
fluctuations. The angle ψ specifies the direction of the wave vector k
in the plane perpendicular to ε̂.

Index i ε̂ k

0 [01̄0] (sin ψ, 0, − cos ψ )

1 [11̄0] ( −1√
2

sin ψ, 1√
2

sin ψ, − cos ψ )

2 [100] (0, sin ψ, − cos ψ )

3 [1̄1̄0] ( 1√
2

sin ψ, −1√
2

sin ψ, − cos ψ )

4 [010] (− sin ψ, 0, − cos ψ )

5 [1̄10] ( −1√
2

sin ψ, −1√
2

sin ψ, − cos ψ )

6 [1̄00] (0,− sin ψ, − cos ψ )

7 [110] ( −1√
2

sin ψ, 1√
2

sin ψ, − cos ψ )

cross section from a set of calculations carried out with
distinct (ε̂, k) couples within a generic out-of-equilibrium
configuration. In the remainder, we will adopt the efficient
formalism developed by Ch. Brouder in Ref. [37] based on
spherical tensor operators. Let us consider first the E1 contri-
bution to the orientation-independent absorption cross section
for a crystal with D4h point group and for a polarization
normal to the fourfold rotation axis (i.e., ε̂ ⊥ [001] direction).
It reads (Eq. (4.4) of Ref. [37] with θ = π/2)

σ E1
D4h,⊥ = σ D(0, 0) + 1/

√
2 σ D(2, 0), (B1)

whereas for a crystal with no symmetry, corresponding here
to one of the configurations generated through a random dis-
placement of the nuclear positions, it becomes (Eq. (4.7) of
Ref. [37] with θ = π/2)

σ E1
⊥ (ϕ) = σ D(0, 0) + 1/

√
2 σ D(2, 0) −

√
3[cos 2ϕ σ Dr(2, 2)

+ sin 2ϕ σ Di(2, 2)], (B2)

where ϕ is the azimuthal angle appearing in the spherical co-
ordinates of ε̂. The residual E1 dichroic signal arises therefore
directly from the term in brackets in the right side of Eq. (B2).
A linear combination of two absorption cross sections only,
calculated with suitable orientations of the polarization, can
easily be built to cancel this term, restoring the in-plane
isotropy of the electric dipole transitions

σ E1
D4h,⊥ = 1

2 [σ E1
⊥ (ε̂i ) + σ E1

⊥ (ε̂i+2)]. (B3)

The different (ε̂i, ki) couples employed in the present
calculations are summarized in Table II. In the simple case
of Eq. (B3), all possibilities obtained, for instance, with i =
0, 1, . . . , 5 are equivalent.

Equations are slightly more cumbersome for E2 transitions
but follow exactly the same lines. The absorption cross section
for a crystal with D4h point group reads (Eq. (5.7) of Ref. [37]
with θ = π/2)

σ E2
D4h,⊥(ϕ,ψ ) = σ Q(0, 0) +

√
5/14(3 sin2 ψ − 1)σ Q(2, 0)

+ 1/
√

14(5 sin2 ψ − 4)σ Q(4, 0)

−
√

5 sin2 ψ cos 4ϕ σ Qr(4, 4), (B4)
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and leads to the nonzero E2 in-plane dichroic signal

σ dic
D4h

= 2
√

5 sin2 ψ σ Qr(4, 4), (B5)

observed experimentally on the pre-edge structures and ob-
tained as the difference between Eq. (B4) calculated with ϕ

equal to π/4 and 0. In Eq. (B5), ψ specifies the direction of
the wavevector k in the plane perpendicular to ε̂. For a crystal
with no symmetry, the E2 contribution to the absorption cross
section is given by (Eq. (A.38) of Ref. [37] with θ = π/2)

σ E2
⊥ (ϕ,ψ ) = σ Q(0, 0) +

√
5/14 (3 sin2 ψ − 1)σ Q(2, 0) + 1/

√
14 (5 sin2 ψ − 4)σ Q(4, 0)

+ 2
√

15/7 sin ψ cos ψ[sin ϕ σ Qr(2, 1) − cos ϕ σ Qi(2, 1)] −
√

15/7 cos2 ψ[cos 2ϕ σ Qr(2, 2) + sin 2ϕ σ Qi(2, 2)]

+
√

10/7 sin ψ cos ψ[sin ϕ σ Qr(4, 1) − cos ϕ σ Qi(4, 1)] + 2
√

5/7 cos2 ψ[cos 2ϕ σ Qr(4, 2) + sin 2ϕ σ Qi(4, 2)]

−
√

10 sin ψ cos ψ[sin 3ϕ σ Qr(4, 3) − cos 3ϕ σ Qi(4, 3)] −
√

5 sin2 ψ[cos 4ϕ σ Qr(4, 4) + sin 4ϕ σ Qi(4, 4)].

(B6)

Additional terms arising from the loss of symmetry between Eq. (B4) and Eq. (B6) can be canceled through a linear combination
of cross sections calculated for four distinct (ε̂, k) couples

σ E2
⊥,D4h

(ε̂i, k̂i ) = 1
4 [σ E2

⊥ (ε̂i, k̂i ) + σ E2
⊥ (ε̂i+2, k̂i+2) + σ E2

⊥ (ε̂i+4, k̂i+4) + σ E2
⊥ (ε̂i+6, k̂i+6)]. (B7)

The E2 in-plane dichroic signal [Eq. (B5)] is then simply evaluated as the difference between Eq. (B7) calculated for index i = 0
and i = 1, as given in Table II.
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