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Linear and nonlinear response for radiative heat transfer in many-body systems
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A theory of temperature dynamics in many-body systems driven by time-dependent external sources is intro-
duced. The formalism is based on the combination of perturbation theory and the fluctuational-electrodynamics
approach in many-body systems. By using response theory, an explicit formula for temperature and phase shifts
is derived and expressed in terms of the amplitude and phase of external power sources. Although the proposed
method is highly efficient because it can skip the transient response, it is valid when external powers are weak.
As an illustration of this theoretical framework, we have shown the dynamics of temperatures in one, two,
and three degrees of freedom systems driven by sine wave input powers. Finally, we highlight some emergent
phenomena arising from purely dynamical many-body effects, including amplification, attenuation, delaying,
or accelerating temperature responses. This work could find important applications in the domain of dynamical
thermal management at the nanoscale.
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I. INTRODUCTION

Near-field radiative heat transfer at the nanoscale has been
an interesting topic of many studies in the past decade. When
the separation distance between two objects is much smaller
than the thermal wavelength λT = h̄c/kBT , heat transfer vio-
lates by the black-body limit predicted by Stefan-Boltzmann’s
law. This phenomenon emerging as a consequence of the
contribution of evanescent waves, known as the photon
tunneling effect, and recognized starting with the pioneer-
ing works of Cravalho et al. [1] and Boehm et al. [2] and
formulated by Polder and Van Hove [3], is based on Ry-
tov’s theory of fluctuational electrodynamics [4]. Although
the influence of an object’s characteristics on radiative heat
transfer is of great importance and has been extensively
studied [5–10], much theoretical work has been done to
improve our understanding of near-field and far-field ra-
diative heat transfer in many-body systems [11–19] and
realizing and developing mechanisms to achieve magnitude
and directional tunability of heat transfer between objects
held at different temperatures [20–28]. Using this formal-
ism, several studies have been conducted to investigate the
thermal relaxation dynamics [29–31] and steady-state temper-
ature profile [32,33] in few-body systems. The management
of heat transfer generally includes active and passive ap-
proaches. The active heat transfer enhancement includes
external parameters [34–37], while the material compositions
and geometric properties belong to passive heat transfer con-
trol [38,39]. The active control of heat transfer by means
of external parameters motivated a tremendous effort fo-
cused on manipulating radiative heat transfer by means of
external thermal power, electric field [40–42], and magnetic
field [43–46]. Most of the recent activities in this field has
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dealt with averaged or zero-frequency external parameters,
including photonic thermal transistor [47], thermal refrigera-
tion [48,49], thermal memories [31,50], thermal logic gates
[51,52], magneto thermo plasmonics [53,54], and photon
thermal Hall effect [55].

Despite these research efforts, there have been a few stud-
ies on how the time-dependent parameters affect the thermal
properties. Examples include radiative heat shuttling [56] and
heat pumping [57]. In practice it is very important to know
how a system responds when it is driven by external sources
at various frequencies. The linear response of a system, orig-
inally at equilibrium, to a time-dependent external source is
proportional to the source, with proportionality coefficient
obtained via response function [58].

In this paper, we use the response theory to describe the
dynamics of temperatures in N-body systems with arbitrary
geometries. We focus on the steady-state temporal evolution
of temperatures when a system is driven by external time-
dependent power sources. With this aim, we use perturbation
theory to derive a closed-form analytical relation between the
input powers and the object’s temperatures. After introducing
the linear-response matrix, we use the second-order correc-
tion terms in temperatures to drive the second-order response
matrix. We then consider numerical applications on a system
of nanoparticles for one to three degrees of freedom cases
and show how the temperature of nanoparticles responds to
external sine powers. We find excellent agreement between
the numerical simulations based on the response theory and
the numerically evaluated exact response expression. Further-
more, time integration methods (e.g., Runge-Kutta or Euler)
have low efficiency when solving for the asymptotic behavior
of nonautonomous systems since the transient time must first
pass. The proposed method is efficient because it can skip
the transient time and directly give the dynamics of temper-
atures in the presence of time-dependent input powers. We
have also highlighted new features of many-body effects that
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appear in dynamic systems and can be used in active thermal
management. The proposed formalism also makes it possible
to study the thermal relaxation dynamics of objects as well
as the calculation of temperature profile in the presence of
constant input powers.

The paper is structured as follows. In Sec. II, we present
our physical system and introduce the formalism. Then, in
Secs. II A and II B, we formally derive the expressions of
the linear response and the nonlinear response, respectively.
In Sec. III, we give results of the model in a few-particle
system and present our numerical applications to a one to
three degrees of freedom system in Secs. III A to III C. The
influence of many-body interactions on the thermal response
is investigated in Sec. III D. We finally give some conclusive
remarks in Sec. IV.

II. THEORY AND MODEL

We start by a system consisting of an N object exchanging
energy via radiation. In the absence of any external source,
the total power impinging on each object is shown by �i, and
temperature dynamics are given by

ξi
dTi

dt
= �i, (i = 1, 2, · · · , N ), (1)

where ξi is the object heat capacity and �i = �v
i + �c

i is
the total internal power dissipated in object i, with �v

i being
the total power impinging on object i from all objects with
varying temperatures, and �c

i corresponds to the contribu-
tion of powers received from thermal bath and/or objects
held at fixed temperatures. In the absence of any external
power, one is usually interested in finding the fixed points
T∗ = [T ∗

1 , T ∗
2 , · · · , T ∗

N ] of the dynamical system as those
�(T∗) = �v (T∗) + �c = 0, where � = [�1,�2, · · · ,�N ].
In the presence of time-dependent external powers F e

i (t ) (i.e.,
driving term), the dynamics of temperatures obey the follow-
ing relation,

ξi
dTi

dt
= �i + F e

i (t ). (2)

No general solution to Eq. (2) for given applied external
powers F e

i (t ) is known. However, if applied powers are suf-
ficiently weak compared with internal powers, this equation
can be solved by means of perturbation theory. For the sake
of simplicity, we assume that the heat capacity of objects, ξi,
are independent of temperature. The Taylor series expansion
of the varying internal power �v

i in the neighborhood of T∗ is

�v
i (T) � −�c

i

+
∑

j

∂�v
i

∂Tj
(Tj − T ∗

j )

+
∑

j

1

2

∂2�v
i

∂T 2
j

(Tj − T ∗
j )2. (3)

Here we have used �v (T∗) = −�c. Since the total inter-
nal power is an additive function of dynamical variables
T1, T2, · · · , TN , the off-diagonal elements of the Hessian
matrix are zero and second derivative with respect to one vari-
able, which appears in Eq. (3). The truncation of higher-order

terms relies on the assumption that input powers should be
sufficiently weak compared with internal powers. Therefore,
by defining the new variable Ti = (Ti − T ∗

i ) as the tempera-
ture disturbances in the neighborhood of thermal equilibrium,
Eq. (2) can be written as

ξiṪi =
∑

j

�′v
i jT j +

∑
j

1

2
�′′v

i jT
2
j + F e

i (t ), (4)

where we have introduced �′v
i j = (∂�v

i /∂Tj )|T=0 and �′′v
i j =

(∂2�v
i /∂T 2

j )|T=0. It is clear that T = 0 is a solution of this
equation if F = 0. For describing the dynamic characteristics
of the system, we are using response theory by determining
the response of the system to a sine wave input power. If inputs
are constant amplitude harmonic wave of fixed frequency,

F e
i (t ) = F0ie

i�t , (5)

we are looking for the steady-state temperature dynamics
Ti(t ) up to a second order of F0i. To this end, we replace F0i

in Eq. (5) by λF0i, where λ is the perturbation strength and
will be set equal to one at the end of calculations. Equation
(4) then becomes

ξiṪi =
∑

j

�′v
i jT j +

∑
j

1

2
�′′v

i jT
2
j + λF0ie

i�t . (6)

We now seek a solution to this equation in the form of a power
series expansion in the strength λ of the perturbation, that is,
a solution of the form

Ti = T(0)
i + λT(1)

i + λ2T(2)
i + · · · . (7)

We restrict our calculation for the answers to the second order
in λ. In order for Eq. (7) to be a solution to Eq. (6) for any
value of the perturbation parameter λ, it is required that dose
terms in Eq. (6) proportional to λ0, λ1, and λ2 each satisfy the
equation separately. We observe that the terms proportional to
λ0, λ1, and λ2 lead, respectively, to the equations

Ṫ
(0)
i = ξ−1

i

[∑
j

�′v
i jT

(0)
j +

∑
j

1

2
�′′v

i jT
(0)
j

2

]
, (8a)

Ṫ
(1)
i = ξ−1

i

∑
j

�′v
i jT

(1)
j

+ ξ−1
i

∑
j

�′′v
i jT

(0)
j T(1)

j + ξ−1
i F0ie

i�t (8b)

Ṫ
(2)
i = ξ−1

i

∑
j

�′v
i jT

(2)
j

+ ξ−1
i

∑
j

1

2
�′′v

i jT
(1)
j

2 + ξ−1
i

∑
j

�′′v
i jT

(0)
j T(2)

j (8c)

It is clear from Eq. (8a) that the lowest-order contribution
T(0) is governed by the fixed points of Eq. (4) in the ab-

sence of external powers, setting Ṫ
(0) = 0 the trivial solution

is T(0) = 0.
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A. Linear response

To evaluate the first-order correction term T(1)(t ), we set
T(0) = 0 in Eq. (8b) and seek a solution of the form

T(1)
i (t ) = T̂

(1)
i (�)ei�t . (9)

Substituting Eq. (9) into Eq. (8b) leads to

T̂
(1)

(�) = Ĥ(1)(�)F0, (10)

where

T̂
(1)

(�) =

⎡
⎢⎢⎢⎢⎣

T̂
(1)
1 (�)

T̂
(1)
2 (�)

...

T̂
(1)
N (�)

⎤
⎥⎥⎥⎥⎦, F0 =

⎡
⎢⎢⎣
F01

F02
...

F0N

⎤
⎥⎥⎦, (11)

with scaled external power amplitude F0 j = ξ−1
j F0 j .

Moreover, the linear-response matrix is defined as

Ĥ(1)(�) =

⎡
⎢⎢⎣

i� − φ′v
11 −φ′v

12 · · · −φ′v
1N

−φ′v
21 i� − φ′v

22 · · · −φ′v
2N

...
...

. . .
...

−φ′v
N1 −φ′v

N2 · · · i� − φ′v
NN

⎤
⎥⎥⎦

−1

,

(12)
where φ′v

i j = ξ−1
i �′v

i j . The complex frequency response

matrix Ĥ(1)(�) contains information on all steady-state re-
sponses to harmonic excitation at different frequencies and
amplitudes. The component H (1)

i j represents the contribution
of the external power applied to object j on the temperature
dynamics of object i. Using complex exponential notation, we
can now write the corresponding harmonic linear response of
object i for harmonic input powers as

T(1)
i (t ) =

∑
j

[
H (1)

i j (�)F0 je
i�t

]
. (13)

Finally, for sin wave input powers F e
j (t ) = F0 j sin(�t ),

we have

T(1)
i (t ) = Im

∑
j

[
H (1)

i j (�)F0 je
i�t

]
. (14)

Using the complex notation H (1)
i j = H ′(1)

i j − iH ′′(1)
i j , it is

straightforward to show that

T(1)
i (t ) =

∑
j

τ
(1)
j sin(�t − ϕ

(1)
i j ), (15)

where τ
(1)
j = |H (1)

i j |F0 j and ϕ
(1)
i j = tan−1(H ′′(1)

i j /H ′(1)
i j ). In

writing Eqs. (13) and (14) in the forms shown, we have
also assumed that the temperature at time t depends on the
instantaneous value of the input powers’ strength as well as
their frequency. Generally, the magnitude of the response
function |H (1)

i j | gives the ratio of the amplitudes of input

power and temperature response. Moreover, ϕ
(1)
i j is the phase

shift in the temperature response T(1)
i (t ) with respect to the

external thermal power impinging on the jth object. It should
be noticed that the power amplitudes F0i in Eq. (5) and so F0 j

need not necessarily be real; as an example, for phase-shifted
input powers of the form F e

j (t ) = F0 j sin(�t + δ j ), we have

T(1)
i (t ) = ∑

j τ
(1)
j sin(�t + δ j − ϕ

(1)
i j ). We can deduce at once

some of the properties of T(1)
i (t ). As an example, one can

show that the time average of the first-order correction to
temperatures for harmonic input powers reduces to 〈T(1)

i 〉 = 0
or 〈Ti〉 = T ∗

i . It is also helpful to note that in the special
case of constant external powers, we may set � = 0 in Eq.
(13), and the corresponding first-order correction term to the
steady-state temperatures is given by T(1)

i = ∑
j H (1)

i j (0)F0 j ,

and consequently Ti = T ∗
i + ∑

j H (1)
i j (0)F0 j . The result is

also consistent with Eq. (1), since in the absence of any
external powers (i.e., F0 j = 0) we have Ti = T ∗

i . It should
be emphasized that Eq. (13) is general, since for aperiodic
external powers F e

j (t ) with scaled Fourier transformation

F̂ j (�) = 1

2π

∫ ∞

−∞
ξ−1

j F e
j (t )e−i�t dt, (16)

the corresponding linear-response function would be given by

T(1)
i (t ) =

∑
j

∫ ∞

−∞
H (1)

i j (�)F̂ j (�)ei�t d�, (17)

with inverse Fourier transformation

T(1)
i (t ) =

∫ ∞

−∞
T̂

(1)
i (�)ei�t d�. (18)

By comparing Eq. (17) and Eq. (18) we obtain a
transformation formula in the frequency domain as

T̂
(1)
i (�) =

∑
j

H (1)
i j (�)F̂ j (�), (19)

which is an important relation between the Fourier trans-
formation of the first-order correction of temperatures and
external powers and the first-order response matrix. It should
be emphasized that the response function Ĥ(1) is symmetric
(i.e., H (1)

i j = H (1)
ji ) for reciprocal structures and its real and

imaginary parts are connected via the Kramers-Kronig
relation. Moreover, since Ĥ(1)(−�) = Ĥ(1)∗(�), it implies
that H ′(1)(�) is an even function of � and H ′′(1)(�) is an odd
function of �. It is also interesting to notice that in the absence
of external thermal powers, Eq. (8b) reduces to a linear

relation Ṫ
(1) = [Ĥ(1)(0)]−1T(1) with a solution that can be

visualized as phase trajectories moving toward the fixed point
T(1)(t → ∞) = (T − T∗) = 0. The theory of linear algebra
allows us to write down the general solution as T(1)(t ) =∑

i Ci exp(λit )Vi, where λi and Vi are the eigenvalues and
eigenvectors of the Jacobian matrix [Ĥ(1)(0)]−1, respectively.
Moreover, coefficients Ci’s are given by the initial condition
for temperatures according to T(1)(0) = ∑

i CiVi.

B. Nonlinear response

In order to calculate the nonlinear response to the external
input powers, we seek a solution of the form

T(2)
i (t ) = T̂

(2)
i (�)e2i�t . (20)

To this end, the expression for T(1)
i in Eq. (10) is squared and

substituted into Eq. (8c) which is solved to obtain the second-

order correction terms T̂
(2)
i (�). Recalling that T(0)

i = 0,
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we obtain

T̂
(2)
i (�) =

∑
j

H (2)
i j (�)F0 j, (21)

with

H (2)
i j (�) =

∑
klm

φ′′v
kl

2
H (1)

ik (2�)H (1)
lm (�)H (1)

l j (�)F0m, (22)

where φ′′v
kl = ξ−1

k �′′v
kl . From Eq. (20) and Eq. (21), we can

now write the corresponding harmonic nonlinear response of
object i for harmonic input powers as

T(2)
i (t ) =

∑
j

[
H (2)

i j (�)F0 je
2i�t

]
, (23)

which can also be expressed in terms of first-order tempera-
ture correction terms as

T(2)
i (t ) =

∑
jk

[
φ′′v

jk

2
H (1)

i j (2�)T(1)
k

2
(t )e−2i�t

]
. (24)

Finally, for the phase-shifted constant amplitude sine wave
input powers we have

T(2)
i (t ) = Im

∑
jk

[
φ′′v

jk

2
H (1)

i j (2�)T(1)
k

2
(t )e−2i(�t+δk )

]
. (25)

From Eq. (22), it is clear that the dependency of second-order
frequency response function on � is nonlinear as in Ĥ(1)(�).
Is is also very important to notice that Ĥ(2)(�) depends not
only on the frequency, as in the linear case, but also on the
amplitude and phase of the input powers. This implies that we
may observe a nonproportional change in the magnitude and
phase of the second-order correction term with respect to a
change of external power amplitudes and phases. The direct
consequence of this nonlinearity is that the time average of
the first-order correction term always vanishes as discussed
earlier; however, in general, 〈Ti〉 	= T ∗

i even for harmonic
input powers. On the other hand, by taking into account the
contribution of the second-order correction term we have
〈Ti〉 = T ∗

i + 〈T (2)
i 〉. We can estimate the validity of a linear

regime by noting that the linear and nonlinear contributions to
the temperature dynamics given by Eq. (4) would be expected
to become comparable when the thermal conductance �′

i j |T ∗
i

is approximately equal to �′′
i j |T ∗

i
. Hence, it is expected for the

linear response to be more accurate at larger thermal equi-
librium temperature T ∗

i . We can also make use of Eqs. (13)
and (23) for response functions to estimate the contribution
of these terms with respect to the frequency and strength
of the input powers. We observe a power law decrease of
the form |H (1)| � �−1 and |H (2)| � �−3 at large frequencies
(i.e., � � �′/ξ ) for linear- and nonlinear-response functions,
respectively. This suggests that the nonlinear term can be
ignored at higher frequency input powers. On the other side,
one can show from Eq. (22) that the condition for negligible
nonlinear term reduces to F0 
 �′2

�′′ξ , which indicates that
the linear-response theory is more accurate for a system of
particles with smaller heat capacity. It should be added that
relations (15) and (25) allow also the study of the temporal
behavior of temperatures for sum and difference frequency
generation. Without going into detail with such an analysis

here (this will be done in a future work), we restrict ourselves
to input powers at the same frequencies.

III. RESULTS AND DISCUSSION

Let us now apply this theoretical framework to describe
the temperature dynamics in a many-body systems. To
this end, we consider a system composed of spherical
nanoparticles exchange energy via radiation and placed
in thermal baths at fixed temperature Tb. The total
photonic power received by the ith particle is given by
�i = ∫ ∞

0
dω
2π
Tib(ω, Tb) + ∑N

j=1

∫ ∞
0

dω
2π
Ti j(ω, Tj ), where

(ω, T ) = h̄ω/[exp (h̄ω/kBT ) − 1] is the mean energy of
Planck oscillator at temperature T . Furthermore, Ti j (ω)
denotes the energy transmission coefficient between the ith
and jth particles and Tib(ω) stands for the energy transmission
coefficient received from the surrounding thermal bath. These
transmission coefficients are [8,13,29]

Ti j (ω) = 2 Im T r[Ai j Im χ jC
†
i j], (26)

and

Tib(ω) = 2 Im T r[Bi j Im Gj j′D
†
i j′ ], (27)

where χ is the susceptibility function, and Ai j , Bi j , Ci j ,
Di j′ , and Gj j′ are given in terms of Green’s functions and
particle polarizabilities in a many-body system. For concrete-
ness, we will consider hexagonal boron nitride nanoparticles,
for which the dielectric permittivity is well described by
a Drude-Lorentz model ε(ω) = ε∞(ω2

L − ω2 − iγω)/ω2
T −

ω2 − iγω), where ε∞ = 4.9, ωL = 3.03 × 1014 rad/s, ωT =
2.57 × 1014, and γ = 3.2 × 1012 rad/s. In the following, we
apply the developed formalism to analyze the steady state
in one-, two-, and three-dimensional dynamical systems. The
calculated temperature dynamics based on the response theory
are verified by comparison with the results calculated directly
from the exact fluctuation electrodynamics theory. It should
be emphasized here that in the following numerical examples
we always consider the steady-state regime.

FIG. 1. Geometry of the one-dimensional dynamical system.
(a) One-body system: A nanoparticle with radius R = 100 nm is
placed in a thermal bath at temperature Tb = 300 K and subjected
to an external sine wave power input F e(t ). (b) Three-body system:
The system consists of three equidistant particles 1, 2, and 3 with
d = 600 nm and R = 100 nm. The system is placed in an external
thermal bath at temperature Tb = 300 K and particle 1 is subjected
to an external sine wave power input F e(t ). Furthermore, particles 2
and 3 are assumed to be perfectly coupled with two thermostats at
temperature T2 = 300 K and T3 = 350 K, respectively.
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FIG. 2. (a) Magnitude and (b) phase for first-order and second-
order response functions of a single degree of a one-body system.
(c) Temperature dynamics of a single nanoparticle in one-body sys-
tem depicted in Fig. 1(a) are subjected to an external power F e(t ) =
F1 sin(�t ) with F1 = 6 × 10−13 W and � = 6π rad/s. The calculated
result from the response theory up to the first (second) order are
shown in dashed red (solid-blue) lines. The result calculated from
fluctuational electrodynamics with the use of Runge–Kutta 4 method
is shown as “exact.”

A. One degree of freedom system

Let us consider the situation depicted in Fig. 1(a), where
a spherical nanoparticle with radius R = 100 nm is placed in
an external thermal bath with fixed temperature Tb = 300 K.
In the absence of an external power, the nanoparticle ther-
malizes to the bath temperature, i.e., T ∗ = 300 K. Now, the
particle is subjected to an external thermal source F e(t ) =
F1 sin(�t + δ). The log-log shape of |H | versus frequency is
plotted in Fig. 2(a). The diagram is practically the same as
a low-pass filter with three sections. We observe a constant
asymptotic behavior at low frequency, an inflexion point �c ∼
�′/ξ , and finally a power law decrease at high frequencies.
The dependence of ϕ on frequency � is shown in Fig. 2(b).
We observe in Figs. 2(a) and 2(b) that at low frequencies
|H (1)

11 | � �−1
c and ϕ

(1)
11 ∼ 0, which implies that we get the

maximum response with the same phase as the input power.
At the same time, the magnitude of the second-order response
function is very small compared with the first-order term
(|H (2)

11 | � 0.5F1φ
′′
11/φ

′2
11) and has a negative contribution in

temperature since ϕ
(2)
11 < 0. However, for high-frequency in-

put powers we have |H (1)
11 (�)| ∝ �−1, |H (2)

11 (�)| ∝ �−3, and
ϕ11 → π/2. On the other hand, if we subject the particle to a
high-frequency oscillatory input power, there will be almost
no time for the particle to respond before the powers have
switched direction, and so the frequency response will con-
verge to zero as � becomes very large. For the special case of

FIG. 3. (a) Magnitude and (b) phase for the first- and second-
order response functions of a single degree of freedom in a three-
body system depicted in Fig. 1(b). (c) Temperature dynamics of a
single nanoparticle in a three-body system. Particle 1 is subjected
to an external power F e(t ) = F1 sin(�t ) with F1 = 6 × 10−13 W and
� = 6π rad/s, while particles 2 and 3 are connected to reservoirs
at fixed temperatures T2 = 300 K and T3 = 350 K, respectively. The
calculated results from the response theory up to first (second) order
are shown in dashed red (solid-blue) lines. The result calculated from
fluctuational electrodynamics with the use of Runge–Kutta 4 method
is shown as “exact.”

F1 = 6 × 10−13 W, � = 6π rad/s, and δ = 0, the temperature
dynamic solved based on the developed response theory is
shown in Fig. 2(c). Results show that the temperature dynam-
ics calculated from the first-order response theory agrees very
well with the exact result with a maximum relative error of
0.6%, which improved by the second-order term and gives
the maximum relative error of 0.03%. We will again use the
proposed theory as the basis for our discussion, but we will
now include many-body effects by adding two nanoparticles
to the first configuration. As shown in Fig. 1(b), the system
consists of three equidistant nanoparticles with d = 600 nm
and radius R = 100 nm, in which objects 2 and 3 are at
fixed temperatures T2 = 300 K and T3 = 350 K, respectively.
In the presence of an external thermal bath at temperature
Tb = 300 K, the fixed point of T1 in this configuration changes
to T ∗

1 = 313.764 K, and imposing external sine power wave
to particle 1 (as in one-body case) results in an oscillatory
behavior of T1(t ). The frequency dependence of the magnitude
and phases of the response functions are shown in Figs. 3(a)
and 3(b), respectively. It is clear that the magnitude of the re-
sponse functions is smaller than that of the one-body system,
ascribed to the modification in response functions due to the
presence of nanoparticles 2 and 3 (i.e., three-body effects). We
also observe that the response phase shifts, shown in Fig. 3(b),
have similar trends as in the one-body case. The temperature
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FIG. 4. (a) Magnitude and (b) phase of the components of the
first-order response matrix for two degrees of freedom in a three-
body system depicted in Fig. 1(b). Particles 1 and 2 are driven
by external sine power and particle 3 is at constant temperature
T3 = 350 K. Steady-state phase trajectory of the system for (c) F1 =
6 × 10−13 W, F2 = 0, and (d) F1 = 6 × 10−13 W, F2 = 6 × 10−13 W,
δ2 = π/2. The calculated result from the response theory up to
first (second) order are shown in dashed red (solid-blue) lines. The
result calculated from fluctuational electrodynamics with the use of
Runge–Kutta 4 method is shown as “exact.”

dynamic is solved based on the developed response theory
and the exact results are shown in Fig. 3(c). Once again, we
observe a good agreement between the temperature dynamics
calculated from the response theory and that of the exact
method in the presence of many-body effects.

B. Two degrees of freedom system

In order to investigate the response theory for a two-
dimensional dynamical system, we have used the same
configuration as in Fig. 1(b). However, the temperature of
the second object is not fixed any more and allowed to vary
with time. The frequency response of the system would be a
2 × 2 matrix, where in addition to the intrinsic symmetry of
the first-order response matrix (i.e., H (1)

12 = H (1)
21 ), the diagonal

elements are also equal to one another (i.e., H (1)
11 = H (1)

22 )
due to the configuration symmetry. The dependence of the
corresponding amplitudes and phases on the frequency are
shown in Figs. 4(a) and 4(b), respectively. We observe in
Fig. 4(a) that the amplitude of the off-diagonal elements is
smaller than the diagonal elements and for high-frequency in-
put powers we have |H (1)

12 (�)| ∝ �−2. On the other side, while
the power applied to each particle has an immediate effect on
the temperature of the other particle (i.e., ϕ

(1)
12 = ϕ

(1)
21 → 0)

for small frequency input powers, there would be a phase
lag of π for high-frequency input powers. Depending on the

FIG. 5. Steady-state phase trajectory of temperatures in a three
degrees of freedom system projected onto (a) T1 − T2 plane, (b) T2 −
T3 plane, and (c) T1 − T3 plane. The system consists of three equidis-
tant particles initially at thermal equilibrium at ambient temperature
Tb = 300 K and driven by external sine power waves with F1 =
4 × 10−13 W, F2 = 6 × 10−13 W, F3 = 3 × 10−13 W, δ2 = −π/2 and
δ3 = π/3. The calculated result from the response theory up to
first (second) order are shown in dashed red (solid-blue) lines. The
result calculated from fluctuational electrodynamics with the use of
Runge–Kutta 4 method is shown as “exact.”

amplitude and phase of the input powers, the phase trajectory
approaches an isolated periodic orbit (a limit cycle) after the
decay of initial transients. In order to examine the theory, two
cases are investigated in such a second degree of freedom
system. Figure 4(c) shows the results for input sine powers
with F1 = 6 × 10−13 W, � = 6π rad/s, and F2 = 0. On the
other side, both objects are driven by sine wave power with
F1 = 6 × 10−13 W, F2 = 6 × 10−13 W, � = 6π rad/s, and
δ2 = π/2; see Fig. 4(d). For the former, we observe that the
output of the linear-response theory is very close to the exact
result, and second-order response function has completely
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FIG. 6. Dynamical many-body effects: (a) Linear response of
particle 2 to the input power applied to particle 1 in a three-body
system normalized to the two-body case (|H (1)

21 |3-body/|H (1)
21 |2-body) and

(b) phase lag difference �ϕ = ϕ
(1)
21 |3-body − ϕ

(1)
21 |2-body as a function of

the input power frequency for various separation distances d .

improved it. For the latter, constructive overlap of applied
powers increased the nonlinearity and linear response is not
accurate. However, we observe a good agreement between the
second-order-corrected temperatures with does calculated by
the exact method.

C. Three degrees of freedom system

Finally, we consider a three degrees of freedom problem in
a three-body system. We have used the same configuration
as in Fig. 1(b), where three equidistant nanoparticles with
separation distance d = 600 nm and radius R = 600 nm are
initially at thermal equilibrium at ambient temperature Tb =
300 K. We assume that temperatures T1, T2, and T3 are free to
change and particles are driven by external sine powers with
F1 = 4 × 10−13 W, F2 = 6 × 10−13 W, F3 = 3 × 10−13 W,
δ2 = −π/2, and δ3 = π/3. As expected on physical grounds,
regardless of the initial conditions, the phase trajectory of
the system approaches a limit cycle in the three-dimensional

phase space T1 − T2 − T3. The projections of the steady-state
limit cycle onto two-dimensional planes T1 − T2, T2 − T3, and
T1 − T3 for both the exact and the response methods are shown
in Fig. 5. Once again we observe that the linear-response
method gives a qualitatively correct picture of phase trajectory
at the steady-state regime. As maintained earlier, the product
of input power amplitudes like F 2

1 , F 2
2 , F 2

3 , F1F2, F2F3, and
F3F1 does in fact lead to a contribution to nonlinear temper-
ature dynamics. Since amplitude of the two input powers F1

and F2 are larger than F3, we observe a larger deviation of
results between the linear-response method and that of the
exact method in Fig. 5(a). On the other side, the nonlinearity
decreased in Fig. 5(b) for the dynamics of temperatures in the
T2 − T3 subspace. Furthermore, since F1, F3 < F2, we observe
that the linear-response method seems to well predict the
dynamics of temperatures in the T1 − T3 subspace as shown
in Fig. 5(c).

D. Many-body effects

In order to explicitly reveal the many-body effects, we
consider a system composed of three aligned nanoparticles
with radius R = 100 nm and labeled with indexes 1, 2, and
3 as shown in Fig. 6. The third particle is located between
the two other particles with equal distances d . We assume
that temperatures T1, T2, and T3 are free to change and the
entire system is initially at thermal equilibrium at ambient
temperature Tb = 300 K. It is clear from Eq. (13) that if
we apply an external harmonic power F e

1 (t ) = F1 sin(�t ) to
particle 1, it affects the temperature of particle 2, which
is T2(t ) ∼ Tb + |H (1)

21 (�)|F1 sin(�t + ϕ
(1)
21 ). Regardless of the

value of the external power amplitude F1, the contribution
of this effect is proportional to the element H21(�) of the
response matrix, which depends on the existence and position
of the third particle. To get an idea of this effect, the linear
response of the temperature of particle 2 to an external power
F e

1 (t ) is calculated in a three-body system and normalized to
the value in the absence of the third particles. Calculations
are performed for several separation distances and results are
shown in Fig. 6(a). As can be seen in this figure, the thermal
response mediated by the presence of the third particle can
be larger than the value we could have in a two-body system.
Notice that the enhancement in the response function depends
not only on the frequency of the input power but also on the
properties defining the geometry such as separation distance
in this case. For slowly varying external power sources, the
normalized response function depends only on the geometric
parameter d and can be engineered similar to the previously
observed many-body effects in static limit [11]. On the other
side, we observe that the many-body effects could be more
pronounced in the dynamic cases where � 	= 0. In particular,
it can be seen from this figure that for a fixed geometri-
cal parameter d , the normalized response function depends
on the frequency of the input power. While this dynamical
many-body effect is a decreasing function of frequency for
large separation distances, it can be enhanced at intermediate
frequencies for near-field interacting particles. We observe
that this enhancement can be very large compared with what
can be achieved in the static limit. This would appear to
indicate that the maximum variation of T2(t ) in two-body
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systems may be amplified or attenuated by adding another
nanoparticle in between and can be engineered by geometrical
arrangement. To see if the presence of the third particle can
delay or accelerate the temporal response of particle 2, the
frequency-dependent phase lag difference caused by the pres-
ence of the third particle, i.e., �ϕ = ϕ

(1)
21 |3-body − ϕ

(1)
21 |2-body,

is presented in Fig. 6(b) for various separation distances. We
observe that the response is immediate in the static limit, i.e.,
�ϕ = ϕ

(1)
21 |3-body = ϕ

(1)
21 |2-body = 0. However, the response of

particle 2 could be delayed or accelerated at higher frequency
input powers due to the presence of a third particle. It is clear
that for sufficiently small separation distances, the phase lag
difference �ϕ is negative, which means that the presence of
particle 3 accelerated the response of T2(t ) compared with
the two-body case. On the other side, when the separation
distances are large, we may have �ϕ > 0, which implies that
the temporal evolution of T2(t ) is delayed compared with the
two-body case.

IV. CONCLUSION

In this work we have introduced a theoretical framework
to investigate the dynamics of radiative heat transfer in many-
body systems. The complex response matrices were quantified

and successfully applied to estimate the temperature dynam-
ics in particle systems. The study of the response function
in a three-body system suggests that the dynamic response
of many-body systems to an external input power may be
amplified, attenuated, delayed, or accelerated due to geo-
metric arrangement. Moreover, our calculation shows that
the use of time-dependent external energy sources can be
actively exploited to produce a desired time-dependent tem-
perature response in a collection of nanoparticles which can
be engineered by their geometrical distribution. In addition,
eigenvalues and eigenvectors of the response matrix can pro-
vide insights into the direction of fast and slow heat transfer
at the nanoscale. It should be emphasized that if the input
powers are very large, higher-order response terms become
important and the dynamic of temperatures cannot adequately
be described just by its linear-response function. However, the
calculated linear response to harmonic input powers allows
the study of temperature dynamics in the presence of weak
aperiodic input powers.
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