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Domain-wall roughness in GdFeCo thin films: Crossover length scales and roughness exponents
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Domain wall dynamics and spatial fluctuations are closely related to each other and to universal features
of disordered systems. Experimentally measured roughness exponents characterizing spatial fluctuations have
been reported for magnetic thin films, with values generally different from those predicted by the equilibrium,
depinning, and thermal reference states. Here we study the roughness of domain walls in GdFeCo thin films
over a large range of magnetic field and temperature. Our analysis is performed in the framework of a model
considering length-scale crossovers between the reference states, which is shown to bridge the differences
between experimental results and theoretical predictions. We also quantify the size of the depinning avalanches
below the depinning field at finite temperatures.
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I. INTRODUCTION

The possibility of creating and controlling domain walls
in thin magnetic materials is of crucial importance for techno-
logical applications [1–6]. In that sense, it is key to understand
their behavior under external drives at finite temperature and
in presence of the intrinsic disorder of the material they in-
habit. Particularly, domain wall motion and geometry have
been shown to be closely related to each other and to universal
features of disordered systems [7].

In general terms, domain wall dynamics in thin magnetic
materials results from the interplay between elasticity, exter-
nal drive (e.g., a magnetic field), thermal fluctuations, and
structural disorder. The latter is particularly important and
causes a strongly nonlinear dependence of the wall velocity
with the field [8,9]. In the zero-temperature case, there is a
critical value of the external field Hd, the depinning field,
which separates two very different behaviors: while for fields
smaller than Hd the wall does not move, finite velocity is
obtained by exceeding it. This phenomenon, known as the
depinning transition [9,10], is characterized by divergent cor-
relation lengths, critical exponents, and universality classes
[11].

In the case of finite temperature—inherent to experimental
situations—the velocity v of the domain wall is nonzero even

*These authors contributed equally to this work.
†Corresponding author: pamela.guruciaga@cab.cnea.gov.ar; Cur-

rently at European Molecular Biology Laboratory (EMBL), 69117
Heidelberg, Germany.

below Hd thanks to thermal activation helping to overcome
the disorder energy barriers. Indeed, the creep regime at fields
H � Hd presents an exponential velocity-field dependence
v ∼ exp(−H−μ), where the universal creep exponent μ =
(2ζeq + d − 2)/(2 − ζeq ) is defined in terms of the dimension
d of the interface and the equilibrium roughness exponent ζeq.
In this scenario, the underlying abrupt depinning transition is
rounded [12,13], but an aftertaste of it can still be found in the
vicinity of Hd in the form of universal power-law behavior of
the velocity [14]. Finally, for H � Hd the system reaches a
dissipative regime where the mean velocity most often grows
linearly with the field.

Associated to the dynamical phenomenology described
above, there is a geometric feature of domain walls that is
of great interest in their characterization: the roughness. This
property measures the dependence of the transverse fluctu-
ations of the wall with the longitudinal distance r. These
fluctuations can be quantified, for example, by means of
the roughness function B(r) (to be formally introduced in
Sec. III), which in a simplified scheme has a power-law
dependence B(r) ∼ r2ζ with ζ the roughness exponent. The
possible values for ζ are defined by three reference station-
ary states [15,16]: (i) the equilibrium state (H = 0), where
the wall accommodates in the disordered landscape, (ii) the
depinning state (H = Hd at T = 0), where the velocity is
zero but an infinitesimal increase of the field produces a do-
main wall displacement, and (iii) the thermal state (H � Hd),
where the velocity is large. In the case of a one-dimensional
domain wall with short-range elasticity and random-bond
disorder, the corresponding roughness exponents are ζeq =
2/3 (hence the creep exponent μ = 1/4), ζdep = 1.25 and
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FIG. 1. Roughness crossover diagram. Lengths �opt and �av

separate regions with roughness exponents characterized by the equi-
librium and depinning states, and by the depinning and thermal
states, respectively.

ζth = 1/2, respectively. This is the case of the so-called
quenched Edwards-Wilkinson universality class.

Quite noteworthy, the domain-wall geometry at any value
of the driving field H can still be described by these three
exponents by considering two crossover lengths, �opt and �av

[11,16]. As shown in Fig. 1, these crossover lengths separate
regions where transverse fluctuations are characterized by dif-
ferent roughness exponents. The length scale �opt is defined
as the size of the events associated with the optimal energy
barrier defining the creep law [17] at finite temperature and
for 0 < H < Hd. Their typical size is given by

�opt = Lc

( H

Hd

)−νeq

, (1)

with Lc the Larkin length and νeq = 1/(2 − ζeq ) = 3/4. While
the wall looks like an equilibrated interface (with a roughness
given by an exponent ζeq) below �opt, it appears to be in the
depinning state (with a roughness given by an exponent ζdep)
above it. Analogously, �av is the size of the segments whose
correlated motion results in the advancement of the domain
wall for H > Hd at T = 0, known as depinning avalanches
[17]. Domain-wall transverse fluctuations below and above
�av are characterized by the depinning roughness exponent
ζdep and by the thermal roughness exponent ζth, respectively.
At T = 0, the crossover length �av diverges at Hd as

�av(T = 0) = ξ0

(H − Hd

Hd

)−νdep

, (2)

with ξ0 a characteristic length scale and νdep = 1/(2 − ζdep) =
4/3. At finite temperature (T > 0), however, the behavior of
�av is yet to be discovered. In particular, the possibility of it
being finite for fields below Hd, as suggested by Refs. [11,16]
and schematized in Fig. 1, would imply the observation of two
crossovers in the region 0 < H < Hd: from ζeq to ζdep at �opt,
and from ζdep to ζth at �av.

A report of a roughness exponent for domain walls in
two-dimensional magnetic systems was presented in Ref. [7],
where Lemerle et al. associated the experimentally found
value 0.69 ± 0.07 with the equilibrium roughness exponent
ζeq. Given the length scales accessed by the experiment, how-
ever, this interpretation collides with more recent predictions

[16]. Since then, there have been numerous experimen-
tal reports of exponents [18–25], which we summarize in
Appendix A. The results vary between 0.6 and 0.98 for field-
induced motion of one-dimensional domain walls in different
materials. In GdFeCo, specifically, ζ was found to be approx-
imately 0.74 [25].

In this paper, we study the roughness of domain walls
in GdFeCo thin films by varying both the applied field and
the sample temperature. As in previous works, we obtain
roughness exponents that do not coincide with those of the ref-
erence states described before. To rationalize this, we present
a theoretical framework that contemplates the possibility of
crossovers between states at lengths �opt and �av. In this con-
text, we perform a numerical analysis of the experimental
data that allows us to explain the obtained values in terms
of a finite �av below the depinning field at finite temperature
and to quantify it. The proposed framework could also shed
light on the variety and broadness of experimental roughness
exponents found in literature.

II. SAMPLE DETAILS AND EXPERIMENTAL METHODS

We studied domain-wall roughness in a GdFeCo sample
composed of a Ta(5 nm)/Gd32Fe61.2Co6.8(10 nm)/Pt(5 nm)
trilayer deposited on a thermally oxidized silicon
Si/SiO2(100 nm) substrate by RF sputtering (parenthesis
indicate the thickness of each layer). In this sample, the
magnetic moments of the rare earth and transition metal
are coupled antiferromagnetically, giving rise to a generally
nonzero magnetization in the out-of-plane direction due to a
dominant perpendicular anisotropy Keff . At the magnetization
compensation temperature TM, however, the two magnetic
moments cancel each other out and the total magnetization of
the sample vanishes. Also, given the different gyromagnetic
ratios of the two species, there is a temperature TA �= TM

for which the net angular momentum is equal to zero. This
angular momentum compensation temperature is extremely
relevant for technological applications, since domain-wall
mobility in GdFeCo thin films is enhanced in its vicinity
[26]. In our sample, a previous work [25] has estimated
TM ≈ 190 K and TA ≈ 265 K. Also, SQUID magnetometer
and anomalous Hall effect measurements allowed us to
measure the saturation magnetization MS and anisotropy Keff

of the sample at different temperatures (see Table I). Since
Keff values could only be directly determined outside the
range 120 K < T < 280 K, Keff for 155 K and 231 K were
estimated from anomalous Hall effect measurements in the
range 100 K < T < 300 K.

Magnetic domain walls were imaged in this system by
means of a polar magneto-optical Kerr effect (PMOKE) mi-
croscope with an optical resolution of approximately 1 μm
and a pixel size δ = 0.17 μm, equipped with a cryostat and a
temperature controller that gave us access to a wide tempera-
ture range (from room temperature to 20 K). Table I shows the
temperatures used; data for room temperature (T = 295 K)
were obtained from Ref. [25], where δ = 0.12 μm. Following
the standard PMOKE experimental protocol [7,14,25,27], we
measured the velocity of the domain walls for different values
of the field at each temperature and, studying its creep and
depinning regimes, we determined the depinning field Hd and
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TABLE I. Temperature-dependent parameters of the sample: Saturation magnetization MS, perpendicular anisotropy Keff , depinning field
Hd, depinning temperature Td, and Larkin length Lc. Td for the 20 K case is an extrapolation from 100 K (not shown). Keff for 155 K and 231 K
were estimated from measurements in the range 100 K < T < 300 K.

T [K] MS [kA/m] Keff [kJ/m3] μ0Hd [mT] Td [K] Lc [nm]

20 112(1) 22(6) 14.8(2) 30000(5000) 170(30)
155 25(5) 15(5) 49.9(9) 25800(600) 170(30)
231 15(2) 15(5) 44(6) 19800(700) 240(50)
275 27(1) 15(2) 19(3) 14700(500) 260(40)
295 32(2) 17(2) 15(3) 13200(500) 280(50)

temperature Td (Table I). Since it was not possible to quantify
the creep law at 20 K, in this case Td was estimated from an
extrapolation of 100 K data.

We analyzed the roughness of domain walls imaged af-
ter the application of the magnetic field. Given the need of
good statistics [25], the experiment was repeated N times
for each set of parameters H and T , with 17 < N < 63.
Each domain wall had a total length L = Mδ, where M is
the greatest number of pixels in the longitudinal direction
of the wall such that no overhangs were observed. In this
paper, the wall length was in the range 29 μm < L < 258 μm.
As an example, Fig. 2(a) shows one of the N = 63 domain
walls obtained for T = 275 K and μ0H = 5.71 mT (H/Hd =
0.3); it has M = 736 pixels, corresponding to a length L ≈
126 μm.

III. EXPERIMENTAL CHARACTERIZATION OF THE
DOMAIN-WALL ROUGHNESS

Given a domain wall, we can define perpendicularly
to the mean propagation direction a longitudinal direction

FIG. 2. (a) PMOKE image of a domain wall (red line) obtained
at a temperature T = 275 K after applying a magnetic field with
amplitude μ0H = 5.71 mT (H/Hd = 0.3). (b) The corresponding
B(r) (black dots) is fitted with Eq. (4) (red line) in the low-r region
to find the best parameters ζ and B0. Light gray curves show the
B(r) functions for the rest of the ensemble of N = 63 domain walls
imaged under the same experimental conditions, which can be fitted
analogously. All these individual values are then averaged to obtain
〈ζ 〉 and 〈B0〉 for this temperature and field.

formed by a discrete, evenly spaced set of points x j = jδ with
j = 1, . . . , M. At each point x j , the position of the domain
wall of length L = Mδ is u(x j ). The roughness of such an
interface can be studied via its roughness function, calculated
as the displacement-displacement correlation function at a
distance r:

B(r) = 1

M − k

M−k∑
j=1

[u(x j + r) − u(x j )]
2, (3)

where k = r/δ < M is an integer value. As an example,
Fig. 2(b) shows the B(r) function corresponding to the
domain wall of Fig. 2(a), along with the full ensemble of
B(r) functions under the same experimental conditions,
highlighting how the roughness function fluctuates.

In the case of self-affine domain walls, the roughness func-
tion is expected to grow as B(r) ∼ r2ζ for small r, with ζ the
roughness exponent. Then, the low-r region of the roughness
function can be fitted using the function

B(r) = B0

( r

�0

)2ζ

, (4)

where a scale �0 = 1 μm is introduced so the amplitude B0

has the same units as B(r). We follow the fitting protocol and
statistical analysis described in Ref. [25] for each data set (that
is, for all the walls measured at a given field and temperature).
This protocol determines automatically—but in a controlled
way—the best fitting range [r0, r1] for each B(r). Note that
the fitting range serves to eliminate finite-size effects in the
determination of the fitting parameters. Typical values for the
bounds of the fitting range are r0 ≈ 1 μm (considering the
optical resolution of the microscope) and r1 ≈ 10 μm. As an
example, Fig. 2(b) shows the best fit of Eq. (4) in the low-r
region of the B(r) corresponding to the wall portrayed in
Fig. 2(a). These parameters are then averaged with the result
of fitting the rest of the N walls for the same H and T , yield-
ing the mean roughness parameters 〈ζ 〉 and 〈B0〉 presented in
Figs. 3(a) and 3(b), respectively.

It is noteworthy, and common with numerous previous
experimental reports [18,19,22–25], that the values found for
〈ζ 〉 [Fig. 3(a)] do not coincide with any of the expected
values, ζeq, ζth, or 1. The latter is considered as a signature
of ζdep = 1.25, since super-rough behavior with ζ > 1 cannot
be observed using the roughness function [28]; in that case,
B(r) ∼ r2. Finally, the roughness amplitude 〈B0〉 appears to
grow on decreasing field for all temperatures [Fig. 3(b)]. This
behavior is consistent with that found in Ref. [29] and with the
roughening of the wall profile that can be seen with the naked
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FIG. 3. Experimentally obtained mean roughness parameters as
functions of the field for different temperatures. (a) Mean roughness
exponent, which does not coincide with any of the expected values
ζeq, ζth or 1 (dotted lines). (b) Mean roughness amplitude, which
decreases as field increases in the studied range.

eye [25] as the disorder energy barriers become more and
more relevant. With the intention of elucidating these points,
in the following section we propose a theoretical framework
that takes into account the possibility of crossovers between
the different roughness reference states, as discussed in Sec. I.

IV. CROSSOVERS BETWEEN REFERENCE STATES

In this section, we introduce a proposal to study domain-
wall roughness by means of a structure factor function that
takes into account the three possibly observable reference
states. Even though the structure factor is widely used to char-
acterize numerically generated interfaces, it yields very noisy
results when applied to experimental data, making it difficult
to quantify and distinguish roughness exponents. Hence, the
roughness function B(r) is generally used to analyze exper-
imental results. Here, we relate the two methods for finite,
discrete walls as those measured in an experiment, and use the
results presented in Sec. III to characterize relevant parameters
of the problem. Before we start, however, it will be useful
to stress that the experimental values reported in Fig. 3 do
not correspond to any particular real domain wall. Instead,
they are the result of fitting and averaging the results of many
walls, each with their own length L and associated number
of pixels M. The analysis we are about to present is based
on considering the existence of a hypothetical wall whose
roughness properties account for the mean behavior of the
whole ensemble of domain walls at a given T and H , and thus
its B(r) is characterized directly by the corresponding 〈ζ 〉 and
〈B0〉 values. In this sense, we are not modeling the B(r) of
each single domain wall, but the B(r) with the same proper-
ties of the whole ensemble [see Fig. 2(b)]. This hypothetical
wall has a length rmax = Nrmin, where N is the corresponding
number of pixels and their size rmin is taken to be equal to
the pixel size δ. To adequately represent the experimental

situation, and given the typical size of the actual walls, we
use rmax ≈ 100 μm and N = 585.

A. Structure factor with two crossovers

The structure factor is defined in Fourier space
by computing the transform of the wall, cn =∑N

j=1 u(x j ) exp(−iqnx j )/N with qn = 2πn/rmax for
n = 1, . . . , N . Then, the structure factor is defined as
S(qn) = c∗

ncn. In Appendix B, we show that for the case
of r � rmax and odd number of pixels, the roughness function
defined in Eq. (3) can be related to the structure factor as

B(r) = 4
(N−1)/2∑

n=1

S(qn)[1 − cos (qnr)]. (5)

Although qn is clearly a discrete quantity, from now on we
shall drop the subindex and for the sake of simplicity refer to
it as q.

Now that we know how to relate the two functions of
interest, B(r) and S(q), we shall begin to make assumptions
on the shape of the latter. As anticipated at the end of Sec. III,
we propose a function that contains the three reference states:
equilibrium, depinning, and thermal. Such a structure factor
can be written as

S(q) = 1
1

Seq(q) + Sdep(q)
+ 1

Sth(q)

, (6)

with

Seq(q) = S0

(
q

qopt

)−(1+2ζeq )

, (7)

Sdep(q) = S0

(
q

qopt

)−(1+2ζdep )

, (8)

Sth(q) = S0

(
qav

qopt

)−(1+2ζdep )( q

qav

)−(1+2ζth )

. (9)

While S0 is an amplitude, parameters qav ≡ 2π/�av and qopt ≡
2π/�opt indicate the position �av of the crossover between
the thermal and depinning states, and �opt between the de-
pinning and equilibrium states. Note that each contribution
[Eqs. (7)–(9)] has the usual ∼q−(1+2ζ ) dependence [15] with
a different exponent ζ corresponding to ζeq = 2/3, ζdep =
1.25, and ζth = 1/2. As an example, we plot in Fig. 4(a)
the structure factor computed using Eq. (6) with parame-
ters qav = 0.28 μm−1, qopt = 9.88 μm−1, and S0 = 1.13 ×
10−6 μm2, and short- and long-range cutoffs rmin = δ and
rmax = 100 μm. As can be seen, S(q) has the desired limits:

S(q) =
⎧⎨
⎩

Seq(q) for qopt � q
Sdep(q) for qav � q � qopt

Sth(q) for q � qav.

(10)

The structure factor in Eq. (6) contains the information
about the crossovers between reference states and can be used,
through Eq. (5), to compute the model roughness function
presented in Fig. 4(b). Using the same protocol described in
Sec. III for the experimentally obtained B(r) functions, the
low-r region can be fitted with a power law with an effective
roughness exponent ζ ≈ 0.81, that is, different from the three
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FIG. 4. Proposed model for (a) the structure factor defined in
Eq. (6) and (b) the roughness function deduced from Eq. (5) using the
data in (a). The parameters used to plot S(q) are qav = 0.28 μm−1,
qopt = 9.88 μm−1, and S0 = 1.13 × 10−6 μm2, and rmin = δ and
rmax = 100 μm. The structure factor shows two crossovers at qav ≡
2π/�av and qopt ≡ 2π/�opt between the three regimes of interest
(thermal, depinning, and equilibrium). The corresponding roughness
function (black dots) can be fitted in the low-r range with a power
law (blue line) characterized by an exponent which does not coincide
with any of the used theoretical roughness exponents (ζth, ζeq, and 1).
We also present the B(r) obtained with a different long-range cutoff
rmax = 1000 μm (gray dots), showing that the power-law fitting does
not contain finite size effects. The parameters of the functions shown
in both panels were chosen to reproduce the same roughness param-
eters obtained using T = 275 K, μ0H = 5.71 mT (H/Hd = 0.3), as
shown in the key.

expected values ζth, ζeq, and 1. Notably, this happens even
though the theoretical exponents are explicitly included in the
S(q) that generated this B(r). This is still true in the case
when only one crossover is considered, i.e., when qav → 0
or qopt → ∞ [29], corresponding to having just a crossover
between Seq and Sdep at qopt, or between Sdep and Sth at qav,
respectively.

A final note on the B(r) has to do with its finite-size ef-
fects. As well as in the experimental case [Fig. 2(b)], where a
maximum is reached at L/2, the roughness function produced
by Eq. (5) [Fig. 4(b)] presents a maximum at rmax/2. This
fact is due solely to the finitude of the domain wall, and it
is independent on the shape of the underlying structure factor.
We include in Fig. 4(b) the B(r) function obtained using a rmax

value one order of magnitude larger, showing that finite size
effects are beyond the fitting range of the power-law behavior.
It can be observed in Fig. 4(b) that there are no finite size
effects around r1 ≈ 10 μm. Therefore, the power-law regime
in Fig. 4(b) contains information about the two crossovers
defined by Eq. (6) but is not affected by finite-size effects.

B. Determination of the structure factor parameters

In this section, we describe how to find the parameters
of the structure factor presented in Sec. IV A. We begin by

FIG. 5. Structure factor parameters for all temperatures and
fields. (a) The characteristic length of the depinning avalanches
�av = 2π/qav (empty symbols) compared to that of the creep events
�opt = 2π/qopt (full symbols). The typical fitting region [r0, r1] is
highlighted in gray. The horizontal dotted lines indicate the short-
range cutoff rmin and finite size rmax used to compute the model
structure factor and B(r), see Fig. 4. (b) The structure factor am-
plitude, on its turn, grows with decreasing field for all temperatures.
In most cases, error bars are smaller that the points.

noticing that for a given field and temperature there is only a
set of two experimental results (〈ζ 〉 and 〈B0〉 from Fig. 3) and
three unknown quantities in the model S(q) (qopt, qav, and S0).
The first step is, then, to independently set the value of qopt by
using arguments related to the disorder of the sample. Indeed,
qopt for a field H is defined as inversely proportional to the
characteristic length of the creep events �opt, which is given
by Eq. (1). The Larkin length Lc is a measure of the character-
istic length of the pinning disorder and can be estimated [30]
as

Lc =
(

σkBTd

4M2
StH2

d

)1/3

, (11)

with σ the energy per unit area of the wall, kB the Boltzmann
constant, and t the thickness of the sample. Table I shows the
values of Lc in our system at different temperatures, calculated
using the domain-wall energy σ = 4	Keff [31] with a typical
domain-wall width parameter 	 ≈ 15 nm [32–34]. Consistent
with that predicted in Ref. [30], it seems to slowly grow with
T . We then use these values and Eq. (1) to calculate �opt at
each field of interest for each temperature. As can be seen
in Fig. 5(a), �opt is typically smaller than the lower bound of
the fitting range, but since �opt is of the order of or larger
than rmin, effects associated with the equilibrium roughness
regime are expected to be present in the length scales of our
experiment.

Having reduced the number of unknown quantities to two,
we shall try to answer the question: Which are the best pa-
rameters qav and S0 that characterize experimental data for
a given T and H as described by the mean values shown in
Fig. 3? Note that the effective exponent and amplitude of the
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roughness function exhibited in Fig. 4(b) depend on the pa-
rameters of the structure factor of Fig. 4(a). In particular,
having set the value of qopt, ζ depends only on qav. Thus,
we begin by looking for the value of qav that generates a
roughness function with an exponent ζ = 〈ζ 〉 for a given
temperature and field. As discussed in Appendix C, this deter-
mination is fairly straightforward, with the exponent varying
smoothly with the crossover length on a univalued curve. Nat-
urally, the next step is to use the obtained value of qav to find
the value of S0 such that B0 = 〈B0〉. See Appendix C for more
details.

In summary, to show that the model accurately describes
the experimental results reported in Fig. 3, we assume that
the structure factor can be modeled using the values of ζ

corresponding to the theoretically predicted reference states
(ζeq = 2/3, ζdep = 1.25, and ζth = 1/2). To define S(q), we
take N = 585 points with a short-length cutoff rmin = δ and
a large-length cutoff rmax ≈ 100 μm. Also, qopt = 2π/�opt is
fixed using Eqs. (1) and (11), leaving qav and S0 as the only
free parameters. We compute the roughness function using
Eq. (5) and search for the best values of qav and S0 so as
to reproduce the average roughness parameters presented in
Fig. 3.

C. DISCUSSION

Following the previously described protocol, we find the
best set of parameters qav and S0 for each temperature and
field. Figure 5(a) shows the characteristic length of the depin-
ning avalanches �av together with that of the creep events �opt

calculated with Eq. (1). This analysis allows us to account for
the experimentally measured values of 〈ζ 〉 [Fig. 3(a)] in terms
of effective exponents that mix the contributions of the three
reference states weighed by the position of the crossovers.
Moreover, although �av and �opt are well separated, their val-
ues are relatively close such that it is not possible to observe a
well-defined roughness regime with ζ = 1 for �opt < r < �av.
In fact, the crossovers in Eq. (6) are such that, when us-
ing Eq. (5) to obtain the roughness function, the exponents
measured in the fitting region [r0, r1] are affected by them
even though one or both length scales are strictly outside that
range. Note also that, since r1 ≈ 10 μm and rmax/2 = 50 μm,
finite-size effects are not affecting the obtained value for
�av.

Figure 5(b) shows that the obtained amplitude of the
structure factor S0 grows with decreasing field for all tem-
peratures. Even more, all data appear to depend on H/Hd

in the same way. However, new experimental data is needed
to further study the field dependence of the structure factor
amplitude.

The proposed framework could be used to rationalize the
variety of exponents reported in the literature for diverse sam-
ples (see Appendix A) in terms of their characteristic length
scales. Results are consistent with a flattening of the �av curves
for increasing T , as if they walked more and more away
from the H = Hd divergence at T = 0. The T = 231 K case
is rather special since both 〈ζ 〉 [Fig. 3(a)] and �av [Fig. 5(a)]
are approximately constant in the magnetic field range of the
experiment. This temperature is the only one studied that lays
between the compensation temperatures TM and TA presented

in Sec. II. Establishing this possible relation, however, is out
of the scope of this paper. The most remarkable result pre-
sented in Fig. 5(a) has to do with the mere existence of �av

below the depinning field at finite temperatures. This fact,
based on experiments and shown here, represents a strong
support for the numerical intuition of Ref. [16]. Furthermore,
�av is not just finite but also has the expected general behavior.

V. CONCLUSIONS

We performed experiments in GdFeCo thin films to study
the roughness of domain walls in terms of the applied field
and sample temperature. In all cases, and consistently with
previous reports in the literature, we found that the values
obtained for the roughness exponent do not coincide with
those of the theoretically predicted reference states (equilib-
rium, depinning and thermal). To rationalize this fact, we
proposed a theoretical framework that relies on a structure
factor function defined in terms of the three reference states
and two crossovers between them. We then showed how to
relate this structure factor with the roughness function and
how to determine its unknown parameters in terms of the
experimentally measured roughness exponent and amplitude.
Quite remarkably, we found that the crossover length scale
between the depinning and thermal states, the size �av of the
depinning avalanches, is finite below the depinning field at
finite temperature.

Finally, our proposed framework may be useful to rethink
domain-wall roughness in a more general sense. Indeed, we
have shown that depending on the sample and the observed
length scales, not just one but two or even three reference
states may appear all mixed up in the experimentally deter-
mined roughness function. Hence, the traditional method of
fitting a ∼r2ζ law to the low-r region of the roughness func-
tion would not yield the true roughness exponent of the wall,
but an effective one integrating all the underlying information
in just one quantity.

ACKNOWLEDGMENTS

We acknowledge interesting discussions with M. Granada.
We would like to thank J. Gorchon, C. H. A. Lambert, S.
Salahuddin and J. Bokor for kindly facilitating the high-
quality samples used in this work. We acknowledge support
by the French-Argentinean Project ECOS Sud No. A19N01.
This work was also supported by Agencia Nacional de Promo-
ción Científica y Tecnológica (Grants No. PICT 2016-0069,
No. PICT 2017-0906, and No. PICT 2019-02873) and Univer-
sidad Nacional de Cuyo (Grants No. 06/C561 and No. M083).

APPENDIX A: EXPERIMENTALLY MEASURED
ROUGHNESS EXPONENTS

Table II presents a compilation of experimentally obtained
roughness exponent in magnetic thin films reported in the
literature.
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TABLE II. Experimental roughness exponents reported in the
literature.

ζ Ref. Obs.

Pt/Co/Pt 0.69 ± 0.07 [7]
0.60 ± 0.05 [18]

0.71 [19]
0.83 [19]

0.68 ± 0.04 [21]
0.73 ± 0.04 [22]
0.79 ± 0.04 [22] ac field

(Ga,Mn)(As,P) 0.62 ± 0.02 [23]
0.61 ± 0.04 [24]

Pt/CoFe/Pt 0.66 ± 0.02 [20]

CoFe/Pt 0.98 ± 0.03 [20] multilayer

Pt/CoNi/Al 0.64 ± 0.05 [22]

GdFeCo 0.759 ± 0.008 [25]
0.747 ± 0.009 [25]
0.716 ± 0.007 [25] in-plane field

APPENDIX B: DISCRETE FORMULATION FOR B(r) IN
TERMS OF S(q)

Given an evenly spaced set of points in the real space
x j = jrmin, j = 1, . . . , N , the position u(x j ) ≡ u j of a wall
of length rmax = Nrmin can be written in terms of its discrete
Fourier transform:

u j =
N∑

n=1

cn exp (iqnx j ), (B1)

with qn = 2πn/rmax ∈ [2π/rmax, 2π/rmin]. Conversely, the
Fourier coefficients cn ≡ c(qn) are

cn = 1

N

N∑
j=1

u j exp (−iqnx j ). (B2)

In this context, the structure factor is simply

S(qn) = cnc∗
n = cnc−n = |c2

n|. (B3)

We now write the discrete version of the displacement-
displacement correlation function at a distance rk = krmin

with k < N as

B(rk ) = 1

N − k

N−k∑
j=1

(u j+k − u j )
2. (B4)

In the following, we shall assume that N � k (hence N − k ≈
N); this is trivially equivalent to saying that rmax � rk . Then,
replacing the domain-wall position by Eq. (B1), Eq. (B4)
becomes

B(rk ) = 1

N

N∑
j=1

{
N∑

n=1

cn exp [iqn(x j + rk )]

−
N∑

n=1

cn exp (iqnx j )

}2

. (B5)

This yields four terms:

B(rk ) = 1

N

N∑
j=1

{∑
n,m

cnc∗
m exp [i(qn − qm)(x j + rk )] +

∑
n,m

cnc∗
m exp [i(qn − qm)x j]

+
∑
n,m

cnc∗
m exp [i(qn − qm)x j] exp (iqnrk ) +

∑
n,m

cnc∗
m exp [i(qn − qm)x j] exp (−iqmrk )

}
, (B6)

with the notation
∑

n,m ≡ ∑N
n=1

∑N
m=1. The first term of Eq. (B6), for example, gives

1

N

N∑
j=1

∑
n,m

cnc∗
m exp [i(qn − qm)(x j + rk )] =

∑
n,m

cnc∗
mδnm exp [i(qn − qm)rk] =

∑
n

cnc∗
n, (B7)

where we have used the expression

δnm ≡ 1

N

N∑
j=1

exp

[
i
2π (n − m)

N
j

]

= 1

N

N∑
j=1

exp[i(qn − qm)x j] (B8)

for the Kronecker delta. The second term can be calculated
analogously and yields the same result. The third one, on its

turn, is

1

N

N∑
j=1

∑
n,m

cnc∗
m exp [i(qn − qm)x j] exp (iqnrk )

=
∑
n,m

cnc∗
mδnm exp (iqnrk )

=
∑

n

cnc∗
n exp (iqnrk ). (B9)

Analogously, the fourth term equates to
∑

n cnc∗
n exp(−iqnrk ).

Putting all terms together and remembering Eq. (B3), Eq. (B6)
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becomes

B(rk ) = 2
N∑

n=1

S(qn)[1 − cos (qnrk )]. (B10)

We made all the previous calculations using qn =
2πn/rmax with n = 1, . . . , N for simplicity in the notation.
However, another choice for the Fourier modes is the symmet-
ric basis. In the case of odd N , the symmetric basis is given
by n = −(N − 1)/2,−(N − 1)/2 + 1, . . . , (N − 1)/2. Since
S(qn) = S(q−n) [see Eq. (B3)], we write

B(rk ) = 2
(N−1)/2∑

n=−(N−1)/2

S(qn)[1 − cos (qnrk )]

= 4
(N−1)/2∑

n=1

S(qn)[1 − cos (qnrk )]. (B11)

In the last sum, qn ∈ [2π/rmax, π/rmin − π/rmax]. The case
of an even N is solved analogously with the symmetric basis
defined by n = −N/2,−N/2 + 1, . . . , N/2 − 1. Here,

B(rk ) = 2
N/2−1∑

n=−N/2

S(qn)[1 − cos (qnrk )]

= 4
N/2−1∑

n=1

S(qn)[1 − cos (qnrk )]

+ 2S(q−N/2)[1 − (−1)k]. (B12)

The last term, which depends on the parity of rk , turns out to
be negligible for big N and a wall profile fluctuating randomly
around 〈u j〉 = 0 since S(q−N/2) = | ∑N

j=1 u j (−1) j |2/N2 by
Eqs. (B2) and (B3).

APPENDIX C: DETAILS ON THE DETERMINATION OF
THE STRUCTURE FACTOR PARAMETERS

In Sec. IV B, we briefly described how to find the best
values for the parameters qav and S0 of the structure factor
by using the experimental results for 〈ζ 〉 and 〈B0〉. Here,
we present additional information regarding this protocol and
discuss the relation between the different parameters.

Once qopt, as defined by its inverse �opt in Eq. (1), is fixed,
the first step is to vary qav with a fixed, arbitrary value of S0.
Each thus defined structure factor generates a B(r) via Eq. (5),
which is fitted with Eq. (4) to find its corresponding roughness
exponent. The ζ versus qav curve shown in Fig. 6(a) allows
us to determine qav as the point where the horizontal line
representing 〈ζ 〉 is crossed. Apart from that, this curve results
in great interest because it graphically portrays the effect of
the crossover on the roughness exponent. Indeed, as discussed

FIG. 6. Relation between the roughness and structure factor pa-
rameters. Horizontal green lines show the values of the roughness
exponent and amplitude found experimentally, with shaded regions
representing their uncertainty ranges. (a) Given a fixed qopt (dashed
line), the roughness exponent varies smoothly from ζ ≈ 1 to ζ = ζth

as qav increases, although only qav < qopt have physical meaning.
Dot-dashed lines highlight the limits of the working range. The best
value for qav is that whose corresponding ζ coincides with 〈ζ 〉.
(b) The best value of S0 is determined analogously by comparing
the amplitude B0 of the generated B(r) with 〈B0〉. Both panels corre-
spond to the T = 275 K, μ0H = 5.71 mT (H/Hd = 0.3) case.

in Sec. IV A, qav separates the depinning state with ζ = ζdep

at q > qav from the thermal state with ζ = ζth at q < qav.
Varying qav implies, then, smoothly changing the value of
the exponent measured from the generated roughness function
between 1 (since ζdep > 1) and ζth. Note, however, that only
values of qav < qopt are physically acceptable in this context
and that the ζ = 1 limit is never actually met since the other
crossover, that at qopt, is also at play. Finally, Fig. 6(a) shows
that effects of the crossover can be observed even when qav

lies slightly outside of the range defined by qmin = 2π/rmax

and qmax = π/rmin − π/rmax.
The other parameter, S0, can be found analogously. Having

settled the value of qav, S0 is varied and the corresponding
set of B(r) are fitted to find their amplitude, B0. Figure 6(b)
shows that the relation between S0 and B0 in these conditions
is linear. The point where this curve meets the horizon-
tal line corresponding to 〈B0〉 determines the best value of
S0.
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