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Detailed analysis reveals that an incorporation of stabilized defect complexes within metallic thin films, though
a highly disordering and nonequilibrium process, gives rise to superconductivity, Fermi-liquid (FL) transport,
and a universal correlation among them. This remarkable manifestation of correlated macroscopic quantum
effects is attributed to a phonon-mediated electron-electron, e-e, scattering channel which encompasses both
Koshino-Taylor and Bergmann’s pseudo-Umklapp processes. This channel—denoted below as pseudo-Umklapp
e-e scattering channel—is distinctly different from traditional ones in that disorder leads to a breakdown of
lattice momentum conservation (significantly enlarging available phase space), to a spectral weight transfer
towards lower frequencies (modifying electron-phonon coupling constant λ), and to a relaxation of kinematic
constraints (all phonic polarization modes become available for mediation). On modeling the distorted structure
in terms of Hosemann’s paracrystal and using standard quantum many-body techniques, we demonstrate the
role of distortion and softening in establishing this pseudo-Umklapp channel and, consequently, the surge of
superconductivity, the FL transport, and the correlation of their parameters. This unifying approach allows us
to derive analytical expressions for Tc(ρ◦) (hallmark of superconductivity), the coefficient A(ρ◦) (hallmark of
FL transport), and the universal kinematic scaling relation ln( Tc

θ
) ∝ A

−1
2 : All are in satisfactory agreement with

experiments (θ is an energy scale; residual resistivity ρ◦ measures the extent of disorder).
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I. INTRODUCTION

Real crystalline solids do not exhibit a perfectly ordered
atomic arrangement; rather, some degree of imperfection,
Fig. 1(a), is always present in the form of naturally occur-
ring or artificially engineered defects [1]. Manipulation of the
type, concentration, and distribution of these defects can be
exploited for effecting a dramatic variation in the mechanical,
thermal, optical, and electronic properties. Such a manipula-
tion is extensively employed for engineering highly desirable
technological or scientific marvels, such as stainless steel,
semiconductor electronic components, and high-temperature
superconductors.

Here we are interested in the influence of defect incor-
poration on the electric transport properties. We consider
the introduction, under well specified and controlled con-
ditions, of a defective substructure within a metallic or
semiconducting target which can be in the form of a bulk
or a thin film. A variety of techniques can be used for
such defect incorporation, e.g., ion bombardment (implan-
tation [2–7] or irradiation [8]), particles bombardment (e.g.,
electrons [9], neutron [9], proton [10]), co-sputtering [11,12],
co-evaporation [13–16], laser irradiation [17], or (vapor,
liquid) quench condensation [14,17,18]. The evolution of
the electric transport with defect incorporation is usually
monitored by in situ or ex situ probes such as electrical
resistivity [4,15,19–21] (the only property to be considered
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here). A vast body of data on the evolution of resistivity with
defect incorporation has been collected during the last seven
decades. A detailed analysis of these data indicates that, under
certain conditions, defect incorporation leads to a surge of
macroscopic quantum phenomena [namely superconductivity
and Fermi-liquid (FL) states] and that the evolution of, and
correlations among, these effects are strongly controlled by
the type and extent of incorporated defects.

These important findings can be illustrated by considering
defect incorporation within an aluminium [4,6–8,11,16,22,23]
(or tin [2,14,22,24–26]) thin film. An Al film, less than
1 μm thick and free of intentionally incorporated defects,
exhibits a small residual resistivity, ρ◦ � 10 μ� cm, low
superconducting transition temperature, Tc � 1.2 K, and a
temperature-dependent resistivity consisting of a dominant
Bloch-Gruneisen βT 5 term and a negligible electron-electron,
e-e, AT 2 contribution, A � 10−7 μ� cm/K2. Incorporation of
a few percents of defects (e.g., implanted O, Si, Ge, H, or
even Al) gives rise to [4–8,11,16,22,23] (i) an increase in
ρ◦ (10 μ� cm → 104 μ� cm), (ii) an enhancement [27] in
Tc (1 K → 8.4 K) [6,7,11,16], and (iii) a surge of a robust
A (10−7 μ� cm/K2 → μ� cm/K2) [28]. These influences
were attributed to stabilized defect complexes since their
reduction by annealing minimizes or even eliminates these
features [4,8,29,30].

These defect-incorporation-related features, observed in a
variety of conventional superconductors, are impressive, un-
expected, and quite puzzling. Consider the following three
arguments (for details and references, see below): First, al-
though Anderson’s theorem [31] predicts no change in Tc

when nonmagnetic defects are incorporated, yet experiments
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FIG. 1. Defectal description and implication. (a) Examples of point defects in a crystalline solid; (b) a sketch of agglomerated defects (rep-
resented as a sphere with a radius nm < D < μm) arising after, e.g., implantation/irradiation with heavy ions effected at low temperature [17]:
As diffusion is extremely hindered, this leads to a frozen-in of a nano-sized agglomerate (labeled here as defectal) within an otherwise perfect
crystal. (c) Modelling of a defectal-bearing crystal in terms of a distorted lattice plus a heavy, Lifshitz-type scatterer. The curved arrow suggests
that panel (c) is an extension of defectal structure of panel (b) to the whole crystal: a valid approximation whenever the mean free path and
coherence length are much shorter than D. Effective e-e scattering process occurring within a pristine (d) and distorted (e) direct lattices. The
same e-e process within the first Brillouin zone of pristine (f) and distorted (g) reciprocal lattices; similarly, in terms of Feynman diagrams
for the pristine (h) and distorted (i) cases. The Fraunhoffer diffraction pattern for pristine (j) and distorted (k) structures, in which a typical
amorphization halo is observed at higher-order reciprocal lattice points [18].

indicate a strongly modified Tc. Second, it is recalled that the
phase space available for momentum relaxation is severely
limited by lattice momentum conservation and, accordingly,
one expects a negligibly small A [32]; yet, experiments
demonstrate a dominant AT 2 FL contribution. Finally, it
is expected that ρ◦ is determined by the electron-impurity
scattering (ρ◦ ∼ |Vimp|2) that Tc ∼ e−1/λ is associated with
electron-phonon coupling (λ ∼ |Vep|2), and that A is de-
termined by e-e interaction (A ∼ |Vee|2). Accordingly, one
expects ρ◦, Tc, and A to be independent [33]; yet, experiments
reveal that Tc and A are markedly correlated with each other
as well as with ρ◦.

Various theoretical investigations analyzed the surge of
such disorder-driven features (see, e.g., Refs. [18,30,34–
40] and references therein). These analyses considered such
features to be driven by separate causes; accordingly, no
correlation or scaling were established among their param-
eters. As an illustration, the disorder-driven trend of Tc was
attributed to an additional phonon-mediated e-e scattering
process [18,30,34] while, on the other hand, the surge and
evolution of defect-driven AT 2 contribution is either not
considered or implicitly attributed to a Koshino-Taylor-type
scattering process [38,39]. Surprisingly, no unification of

these two effects was attempted even though both analyses
employed similar physical insight and quantum many-body
techniques and, moreover, both considered disorder as being
due to a set of nonagglomerated defects.

This work, while bearing some resemblance to
Refs. [18,30,38,39], adopts an alternative empirical and
theoretical approach that treats superconductivity, FL
transport, and their correlation as being driven by a
multiply-polarized, phonon-mediated e-e scattering channel,
operating within a region of stabilized agglomeration of
defects which we consider, in contrast to previous studies,
to be similar to those in Figs. 1(b) and 1(c) rather than to a
collection of isolated impurities as in Fig. 1(a).

Below in Sec. II, we first survey, classify, and ratio-
nalize a vast body of empirical data; representatives were
drawn from a variety of defect-bearing conventional (and
less conventional) superconductors. Then, from there we ex-
tract empirical expressions that identify and correlate the
evolution of the superconducting and the FL properties. Sec-
ondly, in Sec. III and Supplemental Material (SM) [41],
we model the distorted structure in terms of Hosemann’s
paracystalline lattice [42,43]. Employing standard theories
of Migdal-Eliashberg (superconductivity) and Boltzmann
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(transport), we highlight the emergence of the pseudo-
Umklapp scattering channel and show how it is responsible
for the surge of superconductivity, FL character, and their
correlation. Based on this unified analysis, we derive analytic
expressions—most importantly a universal kinematic scaling
of Tc(ρ◦) and A(ρ◦)—that reproduce the experimental obser-
vations as well as the main conclusions of Refs. [18,30].

II. EMPIRICAL ANALYSIS: DESCRIPTION AND
IMPLICATIONS OF DEFECTAL

Based on the above considerations, the low-temperature
resistivity, after subtracting the lattice contribution from the
total resistivity ρtot, can be simplified as

ρ(T ) = ρtot(T ) − βT 5 = �(T − Tc)[ρ◦ + AT 2], (1)

wherein �(T − Tc) = 1(0) for T > (<) Tc. Moreover,
ρ◦, Tc, and A were found to be uniquely correlated. As
well illustrated for defect-bearing Al or Sn thin-film cases,
such features appear only when certain types of agglom-
erated defects are stabilized [8,21,44,45]. These large-sized
agglomerations can be created by any of the above-cited
defect-incorporating processes. Moreover, these disturbances
can be stabilized by certain incorporated active anchors or
pinning centers (e.g., oxygen, nitrogen) [8,21,45]. Each indi-
vidual agglomerate, labeled as a defectal, can be thought of
as a three-dimensional disordered metallic region, idealized
in Fig. 1(b) as a sphere of agglomerated defects, which is
embedded in an otherwise perfectly arranged host. A defectal
is a generalization of the term “oxygen-stabilized defect-
complexes” coined and used in Ref. [8] for describing the
disorder in the self-ion irradiated Al films.

We envisage an e-e scattering channel, see Figs. 1(d)–
1(i), to be operating within the defectal space and that such
a channel leads, see Secs. II A and II C, to the surge and
correlation of Tc(ρ◦) and A(ρ◦). This channel is denoted as
pseudo-Umklapp electron-electron scattering process; a name
coined by Bergmann [30] who was the first to recognize its
crucial role in disordered and amorphous superconductors
(but no extension to FL transport was attempted).

Usually, ρ◦ is taken to be a measure of disorder. But, in
theoretical analysis, the extent of disorder is often gauged
by the effective mean-free path, � ∝ 1

ρ◦
[26]: a scaling length

that interpolates between the initial, before intentional incor-
poration, limit (marked by �◦

◦ and ρ◦
◦ ) and the amorphous

limit (whereat ρ◦ → ρam
◦ as, via Ioffe-Regel limit, � → �am ≡

a◦, the distance between neighboring atoms). Taking δ� ≡
1/( 1

�
− 1

�◦◦
), we obtain

δ�

�n
= ρ◦

◦
δρ◦

, (2)

with �n = a◦( ρam
◦
ρ◦◦

− 1) and ρam
◦ � ρ◦

◦ .

A. Correlation of Tc and ρ◦

The empirical correlation among Tc and ρ◦ is shown in
Fig. 2 as Tc−T ◦

c
T ◦

c
vs ρ◦−ρ◦

◦
ρ◦◦

curves for representative defectal-
incorporated superconductors. Here, ρ◦

◦ and T ◦
c represent

some initial values, often not the pristine but the ones just

before the controlled defect incorporation. As such, δρ◦ ≡
ρ◦ − ρ◦

◦ (≈ ρ◦ for small ρ◦
◦ ) is a measure of the extent of the

intentionally introduced defectals.
Figure 2 indicates that, in spite of such an extensive list of

different materials that had been subjected to different disor-
dering techniques, the evolution of δTc

T ◦
c

vs δρ◦
ρ◦◦

can be grouped
into the following four broad disordered classes (represented
by the four quadrants of Fig. 2): (i) weak-coupled supercon-
ductors [15,29] (first quadrant); (ii) strong-coupled supercon-
ductors [15,29] (fourth quadrant); (iii) semiconducting-based
distortion-bearing superconductors [46] (second quadrant);
(iv) nonconventional superconductors [47] (third quadrant).
In this work, we concentrate only on the properties of the
two defectal-bearing conventional superconductors (first and
fourth quadrants). It is emphasized that the above men-
tioned broad classification, in particular into weak and strong
coupled superconductors, is intended for convenience of dis-
cussion. As we will see in Sec. III C, the defectal incorporation
in conventional superconductors can be seen as promoting
the running towards either the weak- or strong-coupling limit
depending on the initial properties of the starting system.

1. Defectal-bearing weakly-coupled superconductors

Figures 2(b) and 2(c) show the Tc(ρ◦) correlation in
In [2,22,24,26,48], Zn [22], Ga [22,45], Al2Au [22],
AuIn2 [22], Sn [26], and Al [8,22]. Various other weakly-
coupled superconductors (e.g., simple metals Be, Zn, Cd,
Sn) [22,25] can be added to this list. All exhibit a common
property: defectal incorporation leads to an enhancement [29]
of Tc and ρ◦ (linear for small δρ◦: δTc ∝ δρ◦) with a slope
that depends solely on material properties [see the red line in
Figs. 2(c)]. The surge of Tc(ρ◦) correlation in self-ion irra-
diated aluminum film, Fig. 2(c), indicates that the chemical
character of the bombarding projectiles is not essential for
defectal formation and stabilization.

2. Defectal-bearing strongly-coupled superconductors

Figures 2(d) and 2(e) show the Tc(ρ◦) correlation in
V3Si [3], Nb [21,49], Nb3Ge [20], V3Si [3,50], V3Ge [20],
Pb [22], and Pb1−xGex (x = 0.3, 0.7) [51]. In this class,
defectal incorporation leads to a reduction in Tc together
with an increase in ρ◦ [29]. This very same correlation was
evident in Nb-Ti superconducting alloy [52], hydrogenated
Pd [44,53], and solid-solution Pd-X (X=noble metal) [54]
(interestingly, Pd is a nonsuperconducting metal in the pure
state). A common property of this class is the nonlinear
character of δTc(δρ◦) (for all δρ◦ � 0) and the negative
derivative, d (δTc)/d (δρ◦) < 0. Finally, it is worth mentioning
that, for the superconducting binary alloys such as A1−xBx,
the paraboliclike δTc(δρ◦) behavior, Fig. 2(e), is related to the
nonmonotonic evolution of ρ◦(x) as dictated by Nordheim’s
rule ρ◦(x) ∝ x(1 − x).

B. Correlation of A and ρ◦

In addition to Tc(ρ◦), defectal-incorporation leads
to a concomitant change in A(ρ◦). As an illustration,
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FIG. 2. Correlation of Tc and ρ◦. (a) Evolution of δTc
T ◦

c
vs δρ◦

ρ◦◦
for representative defectal-bearing superconductors (note the scale break in the

x axis). This plot, emphasizing only the excess due to the pseudo-Umklapp channel, is an improvement on earlier Tc(ρ ) plots reported in, e.g.,
Refs. [4,24,26]. Weak-coupled (first quadrant): Q.I.1: Al and O co-deposition [55]. Q.I.2: indium-granular film [26]. Q.I.3: Sn - granular [26],
Q.I.4: In-Ar-irradiated [24], Q.I.5: In-Ar-implanted [24], Q.I.6: O-incorporated Al with Al irradiation [8]. Strong-coupled (fourth quadrant):
Q.IV.1: V3Si Kr-irradiated [3], Q.IV.2: V3Si He-irradiated [3], Q.IV.3: Nb N-implantated [21], Q.IV.4: Nb Ne-irradiated [21]. Additional
curves on defect-bearing A-15 superconductors were reported in, e.g., Refs. [20,50,56–58]. To illustrate the generality of our analysis,
we select two additional classes of superconductors, namely, the semiconducting quenched-condensed class within the second quadrant
(e.g., Ge74Cu26 alloys after Cu irradiation [46]) and the nonconventional superconductors class within the third quadrant, namely pnictide
BaFe2As2 [59,60], chalcogenide Tl0.6Rb0.4Fe1.76Se2 [60,61], and heavy-fermion CeCu2Si2 [47,62]. (b) log-log plots of irradiated/implanted
thin-films of weakly-coupled conventional BCS superconductors: In [2,22,24,26,48], Zn [22], Ga [22,45], Al2Au [22], AuIn2 [22], and
Sn [26]. (c) Log-log plots of self-ion irradiation of pure (empty symbols) and granular (filled symbols) thin films of aluminum with varying
concentration of defectal-stabilizing oxygen (�7%) [8,22]. (d) Semilog plots of the strong-coupled conventional BCS superconductors:
Nb [21,49], Nb3Ge [20], V3Si [3,50], V3Ge [20], Pb [22], and Pb1−xGex (x = 0.3, 0.7) [51]. (e) Semilog plot of irradiated/implanted thin
films of strong-coupled conventional BCS superconductors [52]. For more details, see text.

Figs. 3(a1)–3(a10), 3(b1)–3(b3) show the defectal-induced
evolution of Tc, A, and ρ◦ of strong-coupled V3Si
superconductor and weak-coupled In superconductor.
Neutron-irradiation-induced defectal incorporation in V3Si
[Figs. 3(a5), 3(a6), and 3(a7)] leads to a surge of AT 2

contribution [Figs. 3(a1), 3(a2), 3(a3), 3(a4)] with A being
strongly correlated to ρ◦ [Fig. 3(a8)], to a reduction in
Tc(ρ◦) [Fig. 3(a5)], and to a correlation between Tc and
A [Fig. 3(a10)] [9]. Similar features are evident for ion
implantation in In thin films [Figs. 3(b1), 3(b2), 3(b3)] [2].
As a further illustration of defectal-incorporation induced
effects, alloying into a strong-coupled superconductor [52]
was shown to induce an increase in ρ◦, a change in Tc, and a
switching of the T n (n = 3–5) behavior into a T 2 contribution.

Unfortunately, except for a few reports—such as in
Refs. [2,9,52]—the A(ρ◦) correlation had not been highly
appreciated nor extensively explored. As such, there are no
extensive reports from which one can construct a universal
A−A◦

A◦
vs ρ◦−ρ◦

◦
ρ◦◦

plot. Nevertheless, for weak ρ◦, the following

empirical dependence

A(ρ◦) = A◦ + A1ρ◦ + A2ρ
2
◦ , (3)

can be readily identified when examining the evolution of
A(ρ◦) in the representative defectal-bearing strong-coupled
[Fig. 3(a8)] and weak-coupled [Fig. 3(b1)] superconductors.

C. Correlation of Tc and A

Figure 3(c) reveals a remarkable BCS-like, Tc = θe−F/
√

A,
expression wherein θ and F are material-dependent parame-
ters. Similarly, ln( Tc

θ
) ∝ ( −1√

A
), as shown in Figs. 3(a10) and

3(b3), describes reasonably well the data of the representa-
tive (weak- and strong-coupled) superconductors. In fact this
is a universal scaling; it is also evident in pnictides [60],
chalcogenides [63], and heavy fermion [47] superconductors.
It was previously recognized and theoretically approached in,
e.g., Refs. [52,64,65]; below, in contrast to these pioneering
works, we attribute its surge to the pseudo-Umklapp scattering
channel.
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FIG. 3. Correlation of Tc(ρ◦) and A(ρ◦). (a) Bulk single-crystal V3Si subjected to irradiation by neutron flux (data taken from Ref. [9]).
(a1) 21.5 × 1018 n/cm2, (a2) 18 × 1018 n/cm2, (a3) 11 × 1018 n/cm2, and (a4) 0 n/cm2. The red lines are fit to ρtot(T ) = ρ◦ + βT 5 + AT 2. (a5)
Tc vs fluence, (a6) A vs fluence, and (a7) ρ◦ vs fluence. (a8) A vs ρ◦, (a9) Tc vs ρ◦, and (a10) ln(Tc ) vs A− 1

2 ; (b) thin films of In deposited at
200 K and annealed at 300 K; afterwards implanted with In+ ions at 2 K (data taken from Ref. [2]): (b1) A vs ρ◦, (b2) Tc vs ρ◦, Inset: lnTc vs ρ-1

o ,
and (b3) ln(Tc ) vs A− 1

2 . (c) Universal kinematic correlation between Tc and A for several weakly- and strongly- coupled BCS superconductors
(data taken from Ref. [64]).

III. THEORETICAL ANALYSIS

A. The mechanism: Distortion and softening

As evident from above, defectal-incorporation modifies
significantly the superconducting and FL transport properties.
Below, we explore theoretically how such changes emerge.
We start by modeling a defectal, see Fig. 1(b), in terms of
a distorted lattice plus a heavy scatterer. Despite its sim-
plicity, the structural representation of Fig. 1(c) embodies the
two most important consequences of defectal-incorporation:
distortion and softening. Next, we show that these combined
effects trigger the surge of the pseudo-Umklapp e-e scattering
process and as a consequence the superconductivity, the FL
transport and their correlation.

1. Distortion: Hosemann’s paracrystal

For describing the distorted structure in terms of a Hose-
mann’s paracrystal [42], we start by assuming, for simplicity,
a defectal-free cubic structure with primitive unit-cell vectors
|ai=1,2,3| = a◦. Then, on an introduction of a defectal, such a
cubic structure would be modified as, say, in Fig. 1(b). We
consider that, due to the very same distortion, the mean free
path as well as the coherence length are much smaller than the
diameter of the distortion. Then, as far as the scattering events
are concerned, the distortion can be extended to the whole
crystal. Let us describe such an extended distortion in terms
of the modified cubic structure of Fig. 1(c), wherein the new
“unit vectors” vary in length and direction from cell to cell but
nevertheless can still be organized in “rows and columns.” We
consider a Gaussian statistical probability distribution [30,42]
in which the average |ai=1,2,3| = a◦ corresponds to the center
of the distribution, while the extent of distortion is given by

the width σi j = �a j/ai [42]. For simplicity, we consider equal
variance, σi j = σδi j [66].

It is recalled that for defectal-free long-range ordered
crystal, Bragg reflections occur at reciprocal lattice points,
g(h, k, l ) = hb1 + kb2 + lb3. However, for defectal-bearing
structures, the amplitude of “Bragg reflections” is steadily de-
creased, while the linewidth δg at g(h, k, l ) is monotonically
broadened [42]: Fig. 1(k) shows the Frauhoffer broadening in
a diffraction pattern of a distorted lattice and how this differs
from that of a pristine crystal shown in Fig. 1(j).

Based on such Hosemann analysis, we proceed to analyze
the influence of defectal-induced distortion on, say, the quasi-
momentum conservation during an electron-phonon scattering
event: In the above-described distorted lattice, an electron,
initially at a state k1 that goes into a final state k′

1 after
being scattered by a phonon with wave vector q, transfers
an amount of quasimomentum k′

1 − k1 − q = g + δg. Evi-
dently, for a defectal-free system, δg = 0, quasimomentum
is conserved exactly and q = k′

1 − k1 − g. In contrast, for a
defectal-bearing system wherein δg �= 0, quasimomentum is
no longer conserved [18,30,52] in the sense that q = k′

1 −
k1 − g − δg becomes increasingly arbitrary, especially when
δg is lying in higher Brillouin zones. This is the essence of
Gurvitch’s interpretation of T n → T 2 feature in terms of the
breakdown of the electron-phonon momentum-conservation
law [52].

Further insight into the electron-phonon scattering within
a distorted lattice of Fig. 1(c) can be gained if the analysis of
the last paragraph can be restated in terms of the electron-
phonon structure factor, Sq(k′

1 − k1) = |ϕ(k′
1 − k1 − q)|2,

when written in terms of the phase of electron-phonon inter-
action, ϕ(k′

1 − k1 − q) = (1/
√

N )
∑

r ei(k′
1−k1−q)·r (N is the
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number of ions) [67]. For a pristine lattice, Sq(k′
1 − k1) =∑

g δk′
1−k1−q,g is a sum of normal, g = (0, 0, 0), and Umk-

lapp, g �= (0, 0, 0), scatterings. As that, in a perfect crystal,
the low-temperature ions deformation is smooth and of long
wavelength (small q), one usually retains only the normal
events and, as a result, only longitudinal phonon modes
with a well defined polarization, ê(q = k′

1 − k1), are ex-
citable. In contrast, in a defectal-bearing distorted lattice, the
electron-phonon structure factor acquires broadened fea-
tures at g �= 0 because distortions provide a source of short
wavelength (large q) phase interference [18,30]. Within the
framework of the distorted lattice, these features are intrinsic,
as one can verify by looking at the averaged structure factor
(calculated in SM1) [41]

S
�

q(k′
1 − k1) ≈ δk′

1−k1−q,0 +
∑
g �=0

Smax(g)

1 + �2
hkl (k

′
1 − k1 − q − g)2

.

(4)
The peak amplitudes in Eq. (4) are Smax(g) = 4/σ 2g2 =
a2

◦/σ
2π2(h2 + k2 + l2), while the Lorentzian linewidths,

�hkl ≡ |δg|−1 = 4/σ 2g2a◦ = a◦/σ 2π2(h2 + k2 + l2) =
�/(h2 + k2 + l2), with � = a◦/σ 2π2, are inversely
proportional to the widths of its peaks, δg [42]. Since now
k′

1 − k1 − q − g �= 0, multiple phonon modes [longitudinal
and transverse, of all polarizations ê(q �= k′

1 − k1 − g)]
become kinematically involved: Multiple phonon modes will
be available for mediating e-e scattering.

2. Softening: Lifshitz’s resonance

Next we elaborate on the notion of a heavy scatterer or
a Lifshitz’s resonance [68]. Each one of such a large collec-
tion of misplaced and/or implanted atoms (being part of a
defectal) can also be seen, from the point of view of long
wavelength phonon waves, as a heavy scatterer. This leads
to a slowing down of long wavelength vibrations and to an
important transfer of spectral weight towards the lower edge
of the spectrum. If the amplitude of the incident and scattered
phonon waves are ϕ(i)

q,ν and ϕ(s)
q,ν [68], respectively, then these

two quantities are related by

ϕ(s)
q,ν = 1

1 − εD(ω)
ϕ(i)

q,ν , (5)

where ε = (M − M )/M, with M being an effective defect-
related mass, and D(ω) is a function of only the frequency
ω. If the frequency of the driving wave lies inside the
continuum of vibrations, especially at the bottom of the
phonon bands, then D(ω) = Re[D(ω)] + iIm[D(ω)], and a
resonance is found at a frequency ωR given by the condi-
tion εRe[D(ωR)] = 1. Generally, the function Re[D(ω)] ∼
ω2 and the effective mass M is much heavier than the typical
mass of the lattice ion M. Then, for sufficiently large ε � 1,
the resonance frequency (ωR ∼ 1/

√
ε) will be located at the

low-frequency range of the spectrum [68].
The phase shift due to the phonon-wave scattering off

defectals can be written as [68]

�(ω) = arctan

[
εIm[D(ω)]

1 − εRe[D(ω)]

]
, (6)

which, when close to ωR, changes rapidly from 0 to π , indi-
cating that the effective impurity oscillates out of phase with
respect to the underlying lattice ions. This acts as a driving
force that produces the sharp resonance peak in the vibrational
density of states F (ω). For a concentration Nd of defectals,
containing nd defects, this peak is given by

δFR(ω) = 3

π

d�

dω
≈ nd

2π

�

(ω − ωR)2 + 1
4�2

, (7)

and the width � of the resonance at ωR is given in terms of the
phase shift �(ω), during the scattering of phonon waves off a
dilute concentration nd as

� = 2πF (ωR)

{d�(ω)/dω}ωR

. (8)

As we can see, the larger the mass M, the lower the frequency
ωR, since ωR ∼ 1/

√
ε, and the sharper the resonance will be,

as � is proportional to F (ωR) [68].

3. Combining distortions and softening

A combination of the distortion-broadened structure factor
[Eq. (4)] and the quasilocalized phonon modes lead to the
following generalized Eliashberg’s spectral function:

α2F�(ω) =
∑

{k′,k}=kF ,q,ν

S
�

q(k′ − k)|gk′,k,q,ν |2
{
δ(ω − ωq,ν ) + nd (�)

2

π

�

4(ω − ωR)2 + �2

}
, (9)

where gk′,k,q,ν = α(ωq,ν )ê(q, ν) · (k′ − k) is the amplitude
of the electron-phonon matrix element [including the bare
α(ωq,ν ) due to all branches, ν = L, T1, T2, with dispersion
ωq,ν and polarization ê(q, ν), see Sec. SM1] [41]. The first
term is calculated in SM2 [41]. In the second term, ωR and
� are, respectively, the frequency and linewidth of the low-
energy, quasilocalized phonon resonances associated with
concentration, nd (�), of Lifshitz scatterers.

α2F�(ω) of Eq. (9) summarizes, mathematically, the
spectral function of our simple distorted-lattice-plus-heavy-
scatterer model; it includes (i) the softening of the vibrational

spectrum, through the continuous transfer of spectral weight,
tracked by �, from high, ωD, to low, ωR, frequencies, (ii) the
new phonon branches, ν, and polarizations, ê(q, ν), through∑

q,ν , and (iii) the sum of all kinematically unconstrained
wave vectors, k′, k, g, and q (0 � |q| � 2kF ), whose rules
of momentum transfer are controlled by S

�

q(k′ − k). We
calculated α2F�(ω) within the Debye model for phonons
interacting with nearly free electrons, see SM2 [41]: Its
evolution, calculated for different values of �, is shown
in Fig. 5(g).
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FIG. 4. Trend of calculated evolution of Tc(ρ◦) and A(ρ◦). Correlated variations of δTc(δρ◦/ρ◦
◦ )/T ◦

c [left, (a)] and A(δρ◦/ρ◦
◦ ) [right, (b)]

for the two classes of conventional superconductors considered in this work: strongly-coupled superconductors (red, decreasing) and weakly-
coupled superconductors (blue, increasing). Recall that δρ◦

ρ◦◦
= �n

δ�
in Eq. (2).

B. Surge and correlation of superconductivity and FL transport

We consider here the two-particle process, shown in
Figs. 1(e), 1(g), and 1(i), wherein electrons, initially at states
k1 and k2, scatter—within the defectal region—into final
states k′

1 and k′
2 by exchanging all kinematically uncon-

strained phonon modes q with a nonzero spectral weight. The
resulting retarded, attractive e-e interaction reads

Vk′
1,k1,k′

2,k2 (q, �) ≈ −φq(k′
1, k1, k′

2, k2)Vee(�). (10)

This fully expounds the role of distortions and soft-
ening through both the phase, φq(k′

1, k1, k′
2, k2) =

(1/N )
∑

r ei(k′
1−k1−q)·r ∑

r′ ei(k′
2−k2+q)·r′

, and amplitude,
Vee(�), obtained after averaging over Fermi and Debye
surfaces.

1. Tc(�) from Eliashberg’s theory

The influence of distortion and softening on Tc(�) is ana-
lyzed in SM3 [41], giving

Tc(�) = θe−(1+λ� )/(λ�−μ∗ ) with θ = 1.13h̄ωc

kB
, (11)

where λ� = N (εF )Vee(�) and μ = N (εF )VC (with the pseu-
dopotential itself being renormalized as μ∗ = μ/(1 +
μ ln (εF /ωc)) [69,70]. The strength of Tc is dominantly con-
trolled by Vee(�) since N (εF ), ωc, and μ∗ are not expected to
be influenced by defectal incorporation [71]. Vee(�) is highly
sensitive to softening, namely, to shifts in spectral weight
relative to an optimal frequency ωopt, Figs. 5(g) and 5(h). This
explains the empirical findings that Tc can be controlled by pa-
rameters such as defectal incorporation or physical/chemical
pressure.

According to the scaling theorem of Coombes and Car-
botte [72], when the total integrated area under the spectral
function, α2F�(ω) in Eq. (9) and Fig. 5(g), is equal to a
constant A, then the best shape that maximizes Tc is a δ

function (here, introduced as an Einstein spectrum). Then,
in order to model the softening that clearly occurs due to
distortion, see for example Fig. 5(g); we follow Combes and
Carbotte [72] and replace our calculated Eliashberg’s spectral
function by an Einstein spectrum with distortion dependent

Einstein frequency, as described below:

α2F�(ω) = Aδ(ω − ωE (�)),

ωE (�) ≈ ωE (∞) + 1

kF �
[ωR − ωE (∞)], (12)

for kF � � 1, ωE (∞) � ωR and ωE (∞) is an average phonon
frequency calculated self-consistently in terms of the defectal-
free α2F∞(ω). ωE (�) is monotonically decreased whenever �

is lowered towards a◦: Such softening was reported in disor-
dered [30] and amorphous metals [8,18]. The evolution of the
normalized λ�, undergoing such a softening, is

δλ�

λ∞
≈ 1

kF �

[
ω2

E (∞)

ω2
opt + ω2

E (∞)

(
2 − 1

2kF �

)
− 1

]
(13)

wherein both ωE (�) and ωopt are much higher than the reso-
nance frequency ωR, see Figs. 5(g) and 5(h). The evolution of
the corresponding Tc(�) is shown in Fig. 4(a) for the following
two classes of conventional superconductors.

a. Weakly coupled superconductors. A defectal-free mem-
ber of this class is characterized by ωE (∞) � ωopt, ωR

(λ∞ < 1 and a relatively low T ◦
c ). Incorporation of defec-

tals decreases � and leads, via Eq. (12), to a downwards
shift of ωE (�) towards ωopt. This, based on the structure of
Vee(ωE/ωopt) of Fig. 5(g), leads to an enhancement [30,73]
of both λ� and Tc(�) [see Fig. 4(a)(blue)]: This explains the
evolution of Tc(ρ◦) in the first quadrant of Figs. 2(a)–2(c).
Furthermore, for weak but positive δρ◦

ρ◦◦
, one arrives at [see

Eqs. (11), (13)]

δTc(δρ◦/ρ◦
◦ )

T ◦
c

≈ λ∞
(λ∞ − μ∗)2

1

kF �◦

(
δρ◦
ρ◦◦

)
�⇒ δTc

T ◦
c

∝ δρ◦
ρ◦◦

:

(14)
a linear evolution valid within the weak defectal-concentration
range [26]. Indeed, this is consistent with the initial linearity
of the curves in Figs. 2(a)–2(c), the experiments of, e.g.,
Refs. [8,22,26] and the theory of Ref. [35]. In particular, the
fact that the slope in Eq. (14) is material dependent is in
excellent agreement with the finding of Ref. [22].

b. Strongly coupled superconductors. A defectal-free mem-
ber of this class is characterized by ωR � ωE (∞) � ωopt

(λ∞ � 1 and a relatively high T ◦
c ). Incorporation of defectals
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FIG. 5. Comparison of the pseudo-Umklapp channel with the traditional e-e channels and the evolution of both α2F (ω/vskF ) and

Vee(ωE/ωopt ). (a) �
k′

1,k′
2

k1,k2
of a defectal-free system which may be under any of the following kinematically constrained scattering processes:

(b) multiband or Baber scattering [74]; (c) multizone or Umklapp scattering [75,76]; (d) multisheet or topological scattering [77]. (e) �
k′

1,k′
2

k1,k2

of a defectal-bearing system. (f) The kinematically unconstrained, pseudo-Umklapp relaxation channel. (g) Eliashberg’s spectral function,
α2F , in terms of ω/vskF for different values of �, showing the transfer of spectral weight from high to low frequencies. (h) Effective e-e, Vee,
interaction as a function of ωE/ωopt, showing the defectal-incorporation-induced phonon softening and the flow towards lower frequencies (as
indicated by the black arrows). This leads to an increase in the interaction for soft superconductors and a decrease for hard ones. It is worth
mentioning that although the analysis of Figs. 2–4 emphasizes the distinct difference among the two hard and soft superconducting limits,
panel (h) indicates that starting from any initial superconducting target (not necessarily a limit case), defectal-incorporation leads to a flow
from weak to strong coupling (if target is above ωopt) or from strong to weak limit (if target is below ωopt).

shifts ωE (�) downwards, away from ωopt but in the direction of
ωR. This, based on the structure of Vee(ωE/ωopt) of Fig. 5(h),
indicates a reduction of Tc(�) [30,73]: consistent with the
results of the fourth quadrant of Fig. 2(a). Furthermore, for
weak but positive δρ◦

ρ◦◦
, Eqs. (11) and (13) indicate that

δTc(δρ◦/ρ◦
◦ )

T ◦
c

≈ −t1

(
δρ◦
ρ◦◦

)
− t2

(
δρ◦
ρ◦◦

)2

, (15)

with t1 = (λ−1
∞ /kF �◦)(1 − 2ω2

E (∞)/(ω2
opt + ω2

E (∞))) [which
is positive for ωE (∞) � ωopt] and a reasonably large value for
t2 = (λ−1

∞ /8kF �◦)ω2
E (∞)/(ω2

opt + ω2
E (∞)) > 0. This shows a

deviation from linearity which is consistent with the evolu-
tion of Tc(ρ◦) of the fourth quadrant of Fig. 2(a), see also
Fig. 4(a)(red).

2. A(�) from Boltzmann’s transport theory

It is evident from SM4 [41] that in a defectal-free system,
the condition f∞(k1 + k2 → k′

1 + k′
2) = δk1+k2,k′

1+k′
2

restricts
severely the availability of phase space for net momentum
transfer to the lattice. This is most evident for the follow-
ing traditional scattering channels [Figs. 5(b)–5(d)]: (i) the
Baber mechanism, for a multiband Fermi surface [74]; (ii)
the Umklapp mechanism, for Fermi surfaces that are at least
quarter filled [75,76]; (iii) the normal mechanism, for mul-
tiply connected Fermi surfaces with an infinite number of

self-intersecting points [77]. Then, due to that restriction,
any allowed A∞T 2 contribution is typically very small (low
scattering efficiency) or even vanishes identically for topolog-
ically trivial, single band, small Fermi surfaces.

The extreme specificity of these three relaxations is in
stark disagreement with the ubiquity and robustness of the
FL transport of defectal-bearing systems (see, e.g., Fig. 3).
Indeed, Eq. SM26 of SM4 [41] indicates that the e-e structure
factor f�(k1 + k2 → k′

1 + k′
2) �= δk1+k2,k′

1+k′
2

and, moreover,
the evolution of ρee(T, �) exhibit a nontrivial quadratic-in-T
character:

ρee(T, �) = A(�)T 2 = [
F 2

� |Vtot(�)|2]T 2, (16)

wherein A(�), Eq. SM37 [41], depends on the total e-e in-
teraction, Vtot(�) (≡ VC−Vee(�)

1+λ�
in Eq. SM31), and the efficiency

of momentum relaxation, F� (Eq. SM38) [41]. Equation (16)
indicates a robust FL contribution which, as mentioned before,
is driven by the pseudo-Umklapp scattering process whereby
the enlargement of the available phase space for quasimo-
mentum relaxation stems from the monotonically increasing
broadening of the Bragg reflections at higher-order reciprocal
lattice points. Eventually, at the amorphous limit, this broad-
ening merges into a halo-shaped diffraction pattern as the one
shown in Fig. 1(k), Fig. 5(e), and Ref. [18]. Let us now ana-
lyze A(�) of the two classes of defectal-bearing conventional
superconductors.
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3. A(�) for weak- and strong-coupled superconductors

It is recalled that, due to the defectal-induced relaxation of
the kinematic constraints, all electrons lying within the Fermi
surface would be involved; then, A(�) of SM4 [41] becomes

A(�) ∝
∑

ki,i=1...4∣∣∑
k

∣∣2 → N2(εF ). (17)

Moreover, on approaching the superconducting insta-
bility from the FL side, Vtot(�) is renormalized [see
Eq. (SM31)] [78]. Then,

A� ∝ N (εF )2|Vtot(�)|2 = F 2
�

(
λ� − μ∗

1 + λ�

)2

. (18)

Within the range of long � and 1 � kF �p < ∞, Eq. (18) can
be expanded around λ∞, as

A�(δλ�) � A∞ + a1(δλ�) + a2(δλ�)2, (19)

where A∞ is the negligibly small kinematically constrained
contributions from the host matrix, while the second and third
terms, with a1 = 2(|λ∞ − μ∗|(1 + μ∗))/(1 + λ∞)3 and a2 =
(1 + μ∗ − 2|λ∞ − μ∗|)(1 + μ∗)/(1 + λ∞)4, include contri-
butions from all kinematically unconstrained relaxation pro-
cesses.

Equation (19) is not suitable for a direct comparison with
experiments; rather, as seen in Figs. 3(a8) and 3(b1), it is
advantageous to express A in terms of ρ◦. This can be straight-
forwardly established by employing δλ ∝ δρ◦ (see note [79]).
Alternatively, we proceed by recalling that in a typical FL, the
frequency dependence of the imaginary part of the self-energy
is given by Im�(ω) ∼ ω2. Then, on considering the relevant
energy scale to be set by kBT , one obtains the characteristic
FL quadratic-in-T resistivity [80]. In contrast, at T = 0 limit,
the relevant energy scale in a disordered system is set by
the fuzziness of the Fermi surface (δg �= 0 or σ �= 0 in the
Hosemann’s paracrystalline structure) which is driven by the
spatially and randomly distributed defectals. This, together
with the analysis of Eq. (4), suggests that ρ◦ ∝ �−1 ∝ σ 2π2

a◦
:

This establishes a correlation among ρ◦ and each of Tc(�) and
A(�). Guided by these considerations, as well as Eq. (19) and
the empirical relation deduced from Figs. 3(a8) and 3(b1), one
obtains

A(�) � A◦ + A1(ρ◦) + A2(ρ◦)2, (20)

where Ai(i = 0, 1, 2) are functions of F 2
� , μ∗, and λ∞ [81].

Calculated trends of A(ρ◦), based on Eq. (20), are plotted in
Fig. 4(b): The red line represents the evolution of a defectal-
bearing strongly coupled superconductor while the blue line
that of a distorted weakly coupled superconductor. A fit of
Eq. (20) to the A(ρ◦) curve of neutron-irradiated V3Si strong-
coupled superconductor [9], shown in Fig. 3(a8), gives A =
.0027 − 1.71 × 10−5ρ◦ − 6.67 × 10−8ρ2

◦ μ� cm K−2. Simi-
larly, a fit of Eq. (20) to the data of weak-coupled In thin-film
superconductor [2], shown in Fig. 3(b1), gives A = 0.095 +
0.0075ρ2

◦ μ� cm K−2. All ρ◦ values are in μ� cm.

C. Universal scaling law between Tc(�) and A(�) in
defectal-bearing superconductors

The correlation of Tc and A is obtained after combining the
expressions of A(�) [Eq. (18)] and Tc(�) [Eq. (11)]:

Tc(�) = 1.13
h̄ωc

kB
e−(1+λ� )/(λ�−μ∗ ) = θe−F�/

√
A� , (21)

wherein F� is given in Eq. (SM38) [41]. Within the stud-
ied experimental ranges, both F� and θ are assumed to be
hardly influenced by temperature or defectal incorporation. It
is assuring that all the studied superconductors, see Fig. 3(c),
obey the scaling of Eq. (21), namely those with intentional
defectal incorporation. The ranges of θ and F� can be illus-
trated by the fit parameters of V3Si: θ ≈ 45 K and F� ≈ 0.004
(m�)1/2 cm1/2 K−1.

Within the spirit of the renormalization group, defectal
incorporation in conventional superconductors can be seen
as a relevant perturbation that promotes the running of λ�

towards either the weak- or strong-coupling limits, depending
on the relative values of ωE (∞) and ωopt. For weakly coupled
superconductors, where ωE (∞) � ωopt and λ∞ < 1, the run-
ning is towards stronger coupling: This justifies the procedure
used in Refs. [25,82] for calculating, via McMillan strong-
coupling equation [Eq. (11)] [69,70], the maximum Tc of soft
superconductors such as Al, Zn, and Sn. On the other hand,
for the strongly coupled superconductors, with ωE (∞) � ωopt

and λ∞ � 1, the running is towards weaker couplings: This
explains the finding, in Refs. [19–21,56], of a universal trend
of Tc versus resistivity ratio of hard superconductors such as
Nb and A-15. Based on Eq. (21), we conclude that the incor-
poration of defectals promotes the correlated flow of Tc(�) and
A(�), without ever leaving the curve plotted in Fig. 3(c).

IV. DISCUSSIONS, SUMMARY, AND OUTLOOK

The generalization of our approach to the analysis of
other properties can be demonstrated by calculating the
Kadowaki-Woods ratio and the gap-to-Tc ratio of defectal-
bearing conventional superconductors. Below we show that
a strong variation in these two parameters can be observed if
distortion and softening are introduced.

The Kadowaki-Woods ratio is defined as A/γ 2 and is
expected to be a universal constant in FLs since A ∝ m∗2

and γ ∝ m∗. Based on the ratio expressions reported for
transition-metal-based [83] or heavy-fermion [47] materials,
we calculate the defectal-related Kadowaki-Woods ratio to be
modified by a geometric multiplication factor F 2

� /F 2
∞:

A(�)

γ 2
=

(
F 2

�

F 2∞

)
81

4π h̄k2
Be2

1

d2nN2(εF )
〈
v2

0x

〉

�⇒
(A(�)

γ 2

)
(A(∞)

γ 2

) = F 2
�

F 2∞
, (22)

where 〈v2
0x〉 is a Fermi surface average of the carrier veloc-

ity squared that accounts for anisotropies, e is the electric
charge of the direct, Coulomb, electric-electric interaction,
n is the carrier density, and d ∼ 1 is a dimensionless num-
ber [83]. As we have discussed earlier, F 2

� /F 2
∞ is a measure of

the efficiency of momentum relaxation via pseudo-Umklapp
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scattering process (due to the induced easing of kinematic
constraints, F 2

� > F 2
∞).

Based on the analysis of Ref. [72], the gap-to-Tc ratio of a
defectal-bearing superconductor, within the Tc/θ � 1 range, is
approximated as

2�(�)

kBTc(�)
≈ 3.53

(
1 + 12.5

[
Tc(�)

θ

]2

ln

[
θ

2Tc(�)

])

⇒
( 2�(�)

kBTc (�)

)
( 2�(∞)

kBTc (∞)

) ≈
1 + 12.5

[ Tc (�)
θ

]2
ln

[
θ

2Tc (�)

]
1 + 12.5

[ Tc (∞)
θ

]2
ln

[
θ

2Tc (∞)

] (23)

which, in satisfactorily agreement with the empirical find-
ings of Ref. [26], indicates that—for weakly-coupled su-
perconducting defectal-free simple metals—the gap-to-Tc

ratio is the universal ratio 2�(∞)/kBTc(∞) = 3.53. As de-
fectals are incorporated, this ratio increases with Tc(�),
showing that the flow is towards stronger couplings. The
opposite occurs for the case of defectal-free, strongly cou-
pled, superconductors, where 2�(∞)/kBTc(∞) = 3.53{1 +
12.5[Tc(∞)/θ ]2 ln [θ/2Tc(∞)]} > 3.53. But, as defectals are
incorporated, Tc(�) decreases while this ratio decreases, to-
wards the universal ratio of 3.53, showing that the flow is
towards weaker couplings.

Finally, the universality of the above mentioned exotic ef-
fects can be gauged from the extensive experimental (see, e.g.,
compiled data in Figs. 2 and 3, Refs. [11,13,15,17,19,53,84–
86] and references therein) as well as theoretical (e.g.,
Refs. [18,30,34–40] and references therein) studies. Our
theoretical approach is successfully applied to the analy-
sis of these effects which emerge from all metallic thin
films wherein “stabilized defect complexes” are incorporated.
Nevertheless, our analysis is not applicable to any defec-
tive, but defectal-nonbearing, superconductor that exhibits
(i) superconductivity in annealed defective samples wherein
segregated single isolated, granular (nano-)structured defects
emerge [87], including as well annealed soft superconductors
exhibiting a weak drop in Tc for doping below 1% [88],
(ii) superconductivity within multilayered structures wherein
metal-metal or metal-insulator effects are dominant [15],
(iii) superconductivity in material with activated normal-state
conductivity [15,86], (iv) superconductivity at cavities [15],
(v) superconductivity in H(D)-implanted transition metals
wherein anharmonicity or negative isotope effects are dom-
inant [19,53], and (vi) superconductivity involving one or
two dimensions or ultrathin films wherein surface or size
quantization effects enter into consideration [15]. It is worth
emphasizing that, in contrast to this limited list of excluded
systems, our analysis is suitable for rationalizing the afore-
mentioned wide class of defectal-bearing superconductors.
Preliminary analysis indicates that it can be extended to the
following list of highly possible candidates: magnesium di-
boride MgB2 (a strong-coupled superconductor that shows
a correlation among Tc and A) [64], the pervoskite titanate
SrTiO3−δ (exhibiting a correlated superconductivity and AT 2

contribution within a wide temperature range) [89,90], the
conventional high Tc sulphur hydride H2S superconduc-
tor [91], the irradiated La1.875BaCuO4 perovskite [10] as well

as the broader class of overdoped, high-Tc, superconducting
cuprates (revealing a FL regime close to the superconducting
state) [84,85,92,93].

In summary, we analyzed, empirically, the surge and
correlation of superconductivity and FL transport of defectal-
bearing conventional superconductors [shown in the first and
fourth quadrants of Fig. 2(a)]. We also showed, though briefly,
that these features are evident as well in other nontraditional
defect-bearing superconductors such as the ones shown in the
second quadrant (irradiated semiconducting-based alloys) and
those in the third quadrant (the pnictides, the chalcogenides,
and the heavy fermion superconductors). Theoretically, af-
ter modeling the lattice distortion in terms of Hosemann’s
paracrystalline structure and using standard quantum many-
body techniques, we demonstrated that the influence of both
distortion and softening leads to a surge of the pseudo-
Umklapp scattering channel. We derived expressions that
describe the evolution of the superconductivity, the FL state,
and their universal scaling correlation. We showed that these
analytical expressions are in satisfactory agreement with the
experimental data. Finally, limitation of our analysis as well
as its extension to other defect-bearing superconductors are
also outlined.

V. METHODS

The experimental data analyzed in this work were col-
lected from the extensively reported literature on the influence
of disorder on superconductivity, FL character, and residual
resistivity. The experimental methods, techniques, and anal-
ysis used for obtaining the original data were detailed in
the cited literature. Here, we measure the extent of defectal-
incorporation in terms of the ratio of the residual resistivities
δρ◦
ρ◦◦

. On the other hand, the extent of its influence on the super-

conductivity is probed in terms of the evolution of δTc
T ◦

c
while

that of the Fermi liquid character is in terms of the evolution
of A. The correlation among superconductivity and FL state is
demonstrated in terms of the log-log plot of Tc vs A

1
2 . For

the theoretical analysis, we made use of standard quantum
many-body techniques and the description of defectals in
terms of Hosemann’s paracrystal supplemented by a Lifshitz
resonance. All superconducting properties were calculated
within the formalism of electron-phonon superconductivity
according to Eliashberg’s theory, where the effects of soften-
ing are most relevant for the evolution of Tc. For the analysis of
FL resistivity, we used low-temperature Boltzmann’s quantum
transport theory for a distorted lattice, where distortion is the
most relevant ingredient for enlarging the phase space for
momentum relaxation. Our calculations include both weakly
and strongly coupled regimes at low temperature and arbitrary
strength of disorder.
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