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Quantum and thermal fluctuations in the dynamics of a resistively
and capacitively shunted Josephson junction
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We theoretically investigate the phase and voltage correlation dynamics, which includes both the deterministic
contribution and stochastic fluctuations, under a current noise generated by a resistor including thermal and
quantum fluctuations in a resistively and capacitively shunted Josephson junction. An external current is found to
shift and intensify the deterministic contributions in phase and voltage. In addition to effects of external current,
we observe the relaxation of autocorrelation functions of phase and voltage, which includes the variances due
to the current noise, to finite values in the long-time limit. In particular, we find that the asymptotic correlations
depend on the resistance as a consequence of quantum effects. We also find an earlier decay of coherence at a
higher temperature in which thermal fluctuations dominate over quantum ones. These theoretical predictions can
be tested in the next future experiments.
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I. INTRODUCTION

Noise is ubiquitous in diverse physical systems such as
thermal noise in classical many-body systems and 1/ f noise
in electronic devices [1,2]. It is one of the inevitable effects
in a realistic system, but it also plays an important role in
physical properties [3–9]. An origin of the noise is the thermal
fluctuations, which is usually treated as a Gaussian white
noise [1,2]. Another crucial origin of the noise at low tem-
perature is the quantum fluctuations reflecting the quantum
mechanical property of a system [10–18]. These kinds of
noise make the physical observables time-dependent distinct
from equilibrium cases.

In particular, the noise spectrum in a resistively and
capacitively shunted Josephson (RCSJ) junction has been
extensively investigated both theoretically and experimentally
[11,12,15,18]. The schematic picture is given in Fig. 1 with
a resistor, a capacitor, and a Josephson junction in parallel.
The RCSJ junction exhibits interesting physics such as
Schmid-Bulgadaev transition, which states the presence of
the transition to an insulating phase from the superconducting
phase at a larger resistance than a critical resistance, and is an
important platform to investigate quantum dynamics [19–27].
The current noise in this RCSJ junction originates from the
shunted resistor in a RCSJ junction [11,12]. Reference [12]
has experimentally observed the current noise spectrum at
low temperature. This measurement revealed the presence of
a zero-point energy term in the current noise, which justifies
our treatment of quantum noise in this paper. Based on the
several discussions on the quantum noise spectrum with
respect to the current or voltage, it is crucial to determine the
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dynamics of correlations in a RCSJ junction subject to the
quantum current noise.

In this paper, we present the effects of noise including
thermal and quantum fluctuations in a RCSJ junction on the
dynamics of correlation functions, which includes the deter-
ministic part and stochastic fluctuations due to the current
noise induced by a resistor, in order to establish a systematic
understanding of dynamics in a noisy Josephson junction.
Starting from the equation of motion in terms of the phase in
the presence of the external current as well as the current noise
including thermal and quantum fluctuations, we analytically
obtain the dynamics of relative phase and voltage within the
linear regime. Then we observe the relaxation of autocorre-
lation functions, composed of the deterministic contributions
and variances, with respect to the phase and voltage. We
find that the asymptotic correlation in the long-time limit of
phase, as well as that of voltage, involves dependence on the
damping constant. Since, in the high-temperature limit, the
correlations are independent, the dependence on the damp-
ing constant indicates the emergence of quantum effects at
low temperature. Similar dependence on damping has been
observed in a Bose Josephson junction, which involves an
intrinsic coupling between the Josephson mode and bath mode
and exhibits different behaviors compared to our system of the
RCSJ junction [28]. We expect that this quantum effect as a
dependence of the correlations on the damping constant can
be experimentally measured in the RCSJ junction. With this
respect, our work of dynamics in a RCSJ junction provides a
benchmark to test quantum effects in a noisy system out of
equilibrium.

II. EQUATION OF MOTION IN A RCSJ JUNCTION

We consider a RCSJ junction composed of a resistor, a
capacitor, and a Josephson junction in parallel as depicted in
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FIG. 1. RCSJ junction with resistance R and capacitance C that
we study in this paper. Here Ic denotes the critical current in the
Josephson junction and I is the external current.

Fig. 1. It is described by

CV̇ (t ) +V (t )

R
+ ∂Uwash(φ)

∂φ
= η(t ), (1)

φ̇(t ) = 2eV (t )

h̄
, (2)

where φ(t ), V (t ), C, and R are respectively the superconduct-
ing phase, voltage, capacitance, and resistance. In Eq. (1),

Uwash(φ) = −Ic cos φ(t ) − Iφ(t ) (3)

is the tilted washboard potential with the critical current Ic

[24,29]. For a small external current I < Ic, the washboard
potential has potential minima sin φ = I/Ic, while if the ex-
ternal current exceeds Ic, it has no potential minimum and it
may drive the phase into a running state as shown in Fig. 2.
Throughout this paper, we consider the case with a small
external current as in Fig. 2(a) excluding the running state.
Equation (2) provides the relation between the phase and
the voltage. In Eq. (2), e is the elementary charge and h̄ is
the reduced Planck constant. In this paper, we deal with the
phase, voltage, and current noise as classical quantities. Then,
the current noise η(t ) in Eq. (1), which originates from the
shunted resistor, satisfies

〈η(t )〉 = 0, (4a)∫ ∞

−∞
dt〈η(t )η(0)〉e−iωt = 2

R
h̄ω coth

(
h̄ω

2kBT

)
≡ �(ω), (4b)

where kB is the Boltzmann constant and T is the temperature.
The average 〈· · · 〉 stands for the Gaussian average with re-
spect to the colored noise η(t ). In the classical limit h̄ω �
kBT , Eq. (4b) reproduces the classical fluctuation-dissipation
relation as given in Appendix A. On the other hand, at T = 0,
Eq. (4b) results in �(ω) → 2h̄|ω|/R [6,7]. The ω dependence
of the correlation in Eqs. (4) indicates that the quantum noise
η is the colored noise and approaches the white one in the
classical limit. This current noise spectrum of Eq. (4b) has
been experimentally measured in Ref. [12] and includes the
zero-point fluctuations in the shunted resistor.

The equations given in Eq. (1) and Eq. (2) provide the
equation of motion with respect to the relative phase φ as [18]

h̄C

2e
φ̈(t ) + h̄

2eR
φ̇(t ) + ∂Uwash(φ)

∂φ
= η(t ). (5)

FIG. 2. Deterministic part of phase φ0(t ) subject to the wash-
board potential in Eq. (3) in the absence of friction. We set the
initial condition φ0(0) = 1 and φ̇0(0) = 1 for brevity. The upper
panel (a) shows the case of I < Ic, while the lower panel (b) displays
the case of I > Ic. In the former case, the phase oscillates around an
extremum of the washboard potential. On the other hand, in the latter
case, the potential has no extremum leading to the running state with
respect to the phase.

The solution of Eq. (5) can be written as [18]

φ(t ) = φ0(t ) + δφ(t ), (6)

where φ0 is the deterministic part of the relative phase
and δφ represents the stochastic part due to the current
noise. Assuming |δφ(t )| � |φ0(t )|, each of the components
satisfies [18]

h̄C

2e
φ̈0(t ) + h̄

2eR
φ̇0(t ) + ∂Uwash(φ0)

∂φ0
= 0, (7)

h̄C

2e
δφ̈(t ) + h̄

2eR
δφ̇(t ) + Ic cos φ0(t )δφ(t ) = η(t ). (8)

In Ref. [18], Brandt et al. have employed the approximation
|δφ(t )| � |φ0(t )| under the assumption of the small current
noise. We also adopt this assumption throughout this paper.
Hereafter we use the following notations:

�2
J ≡ 2e

h̄

Ic

C
= 2π Ic


0C
, (9)

�RC ≡ 1

2RC
, (10)

where 
0 = h/(2e) is the magnetic flux quantum, �J is
the Josephson plasma frequency, and �RC is related to the
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resistance leading to a damping in phase dynamics; one can
write Eq. (7) and Eq. (8) as

φ̈0 + 2�RCφ̇0 + �2
J sin φ0 = �2

J

I

Ic
, (11)

δφ̈ + 2�RCδφ̇ + �2
Jδφ cos φ0 = �2

J

η

Ic
. (12)

A. Linear analysis in the absence of external current

In this paper, we focus on the linear regime in which the
washboard potential in Eq. (3) can be well approximated to
a harmonic potential in addition to the term that involves
the small external current corresponding to the upper case
in Fig. 2(a). In the linear regime sin φ0 � φ0 and cos φ0 � 1
in the absence of the external current I = 0, the equations of
motion in Eqs. (11) and (12) can be written as

φ̈0 + 2�RCφ̇0 + �2
Jφ0 = 0, (13)

δφ̈ + 2�RCδφ̇ + �2
Jδφ = �2

J

Ic
η. (14)

We can obtain the root of this approximated equation of mo-
tion as

φ(t ) = φ0(t ) +
∫ t

0
dt1G(t − t1)η(t1) (15)

and the two-point correlation function

〈φ(t )φ(t ′)〉 = φ0(t )φ0(t ′)

+
∫ t

0
dt1

∫ t ′

0
dt2G(t − t1)G(t ′ − t2)〈η(t1)η(t2)〉,

(16)
where φ0(t ) is the solution of Eq. (13), and

G(t ) = �2
J

Ic

e−�RCt√
�2

J − �2
RC

sin
(√

�2
J − �2

RCt
)
θ (t ). (17)

Using Eqs. (4), the second term in the right hand side of
Eq. (16) can be written as∫ t

0
dt1

∫ t ′

0
dt2G(t − t1)G(t ′ − t2)〈η(t1)η(t2)〉

=
∫ ∞

−∞

dω

2π
�(ω)Gt (ω)Gt ′ (−ω)eiω(t−t ′ ),

(18)

where

Gt (ω) ≡
∫ t

0
dt1G(t1)e−iωt1 . (19)

The explicit expression of Eq. (19) is given in Appendix B.
Note that Eq. (16) is real, while Eq. (19) is a complex function.
The dynamics in the absence of the noise as a solution of
Eq. (11) is

φ0(t ) = 2πV0


0

e−�RCt√
�2

J − �2
RC

sin
(√

�2
J − �2

RCt
)
. (20)

Hence we finally obtain the correlation function including the
quantum noise as

〈φ(t )φ(t ′)〉 = φ0(t )φ0(t ′) + 2

R

∫ ∞

−∞

dω

2π

× h̄ω coth

(
h̄ω

2kBT

)
Gt (ω)Gt ′ (−ω)eiω(t−t ′ ).

(21)

The energy integral in Eq. (21) involves a logarithmic UV
divergence due to the zero-point fluctuations in the noise
spectrum [11,12]. In our calculations below, we restrict the
energy range as −� � h̄ω � �, where � is the energy
gap of the superconductor. This gap is related to the crit-
ical current by the Ambegaokar-Baratoff formula as Ic =
π�/(2eR) tanh [�/(2kBT )] [30,31]. One may think that, ac-
cording to Eq. (20), φ0(t → ∞) → 0 leads to the breakdown
of the approximation |δφ(t )| � |φ0(t )| that we assumed in
Sec. II. It is true that the higher order in δφ(t ) can affect the
correlations. In the long-time limit in which φ0 vanishes, how-
ever, the results under the approximation can be valid. Setting
φ0(t ) = 0 in the absence of the external current, one obtains

δφ̈ + 2�RCδφ̇ + �2
J sin δφ = �2

J

η

Ic
. (22)

Hence, within the linear regime with respect to δφ, we obtain
totally the same equation as Eq. (14) and our results would be
valid even in the long-time limit.

Figure 3(a) shows the dynamics of the autocorrelation
function of the relative phase 〈φ2(t )〉 for kBT = 0.1h̄�J with
different damping. In the following, we set 2e�J/Ic = 10−2

and V0 = h̄�J/(2e) for brevity. Experimentally, in Ref. [32]
for instance, they used Ic = 9.489 μA and �J = 67.4 GHz,
which corresponds to 2e�J/Ic � 2.3 × 10−3 and V0 � 2.2 ×
10−5 V. Based on these experimental values, we chose the
fixed parameter 2e�J/Ic = 10−2. One can see that the corre-
lation is suppressed as one increases the damping coefficient
�RC/�J . This is a quite intuitive behavior because the large
damping constant leads to an earlier exponential decay of
the phase correlation according to Eq. (17). In addition,
the energy gap � ∼ �J/�RC at low temperatures as an en-
ergy cutoff in Eq. (21) is also responsible for this strong
suppression with a smaller resistance. In the experiment in
Ref. [32], Devoret et al. measured R = 190 � and C = 6.35
pF resulting in �RC/�J � 6.2 × 10−3, which corresponds to
the case with a tiny damping constant. Only in the long-time
limit t → ∞ does the energy integral in Eq. (21) converge
without any cutoff energy. Remarkably, we found that the
asymptotic correlation still depends on the damping constant
as a consequence of quantum fluctuations in the current noise
[see Eq. (C4) in Appendix C]. In the classical limit, as in
Eq. (A4), it is independent of the damping. This quantum
effect as the dependence on the resistance of the correlations
in the long-time limit can be measured experimentally. In
the underdamped limit �RC � �J , in particular, it reduces
to 2e�J/Ic coth [h̄�J/(2kBT )], which recovers the classical
asymptotic value 2kBT/(h̄�J ) in the classical limit kBT �
h̄�J (see Appendix C).

Figure 3(b) illustrates the numerical results with differ-
ent temperature in the underdamped regime �RC = 0.1�J .
It shows that the autocorrelation is enhanced in the high-
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FIG. 3. Time evolution of the autocorrelation function with re-
spect to the phase φ(t ). The upper panel (a) displays the results
for kBT/(h̄�J ) = 0.1. The blue solid, orange dotted, and green
dashed lines respectively stand for the results for �RC/�J = 0.1
(underdamped), �RC/�J = 1 (critically damped), and �RC/�J = 2
(overdamped). The panel (b) displays the results for �RC/�J =
0.1. The blue solid, orange dotted, and green dashed lines respec-
tively stand for the results for kBT/(h̄�J ) = 0.1, 10, 50. The lower
panel (c) displays the coherence factor for �RC/�J = 0.1. We set
2e�J/Ic = 10−2 and V0 = h̄�J/(2e).

temperature region due to the dominant thermal fluctuations
compared to the low-temperature region in which quantum
fluctuations dominate over thermal ones. It also indicates
that the asymptotic value gets closer to the classical one
2kBT/(h̄�J ) as one increases temperature, as expected.

Figure 3(c) displays the time evolution of the coherence
factor for �RC/�J = 0.1. Using the Gaussian property of the
noise η, one can compute it by

〈cos φ(t )〉 = cos φ0(t )e− 1
2 [〈φ2(t )〉−φ2

0 (t )]. (23)

Figure 3(c) shows that the coherence decays earlier at a higher
temperature, which indicates that thermal fluctuations destroy

FIG. 4. Temperature dependence of the coherence factor in the
long-time limit 〈cos φ(t → ∞)〉. The solid line stands for the re-
sult in the underdamped limit �RC/�J → 0 [see Eq. (C6)]. The
dotted, dashed, and dotted-dashed lines represent the results for
�RC/�J = 10, 20, 50, respectively, obtained by Eq. (C4). We set
2e�J/Ic = 10−2 and V0 = h̄�J/(2e).

the coherence. The asymptotic values of the coherence factor
are dependent on the damping, as illustrated in Fig. 4. The
dependence on �RC reflects the dependence of the variance
as in Eq. (23). One can see that the decay of coherence at a
higher temperature gets gradual with larger damping. This be-
havior can be interpreted that the large friction suppresses the
deviation of the coherence due to thermal fluctuations, while
the coherence would be destroyed by thermal fluctuations
with small friction. However, the figure indicates that, even
in the underdamped limit �RC/�J → 0, the coherence keeps
finite as 〈cos φ(∞)〉 → exp[−e�J/Ic] at T = 0. This result
implies that a supercurrent flows even in the underdamped
limit at T = 0 contrary to the picture of Schmid-Bulgadaev
transition, which claims that the junction is insulating with
a resistance above a critical resistance. This consequence is
consistent with the recent work in Ref. [26] on the absence of
the Schmid-Bulgadaev transition.

In a similar manner, one can obtain the dynamics of the
voltage in the absence of noise as

V0(t ) = 
0

2π
φ̇0(t )

= V0
e−�RCt√

1 − �2
RC/�2

J

[
− �RC

�J
sin

(√
�2

J − �2
RCt

)

+
√

1 − �2
RC

�2
J

cos
(√

�2
J − �2

RCt
)]

,

(24)
and the two-point correlation of the voltage as

〈V (t )V (t ′)〉 =V0(t )V0(t ′) +
(


0

2π

)2 2

R

∫ ∞

−∞

dω

2π

× h̄ω coth

(
h̄ω

2kBT

)
eiω(t−t ′ )

× [∂t Gt (ω) + iωGt (ω)][∂t ′Gt ′ (−ω)

− iωGt ′ (−ω)]. (25)
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FIG. 5. Autocorrelation function of the voltage 〈V 2(t )〉. The up-
per panel (a) displays the results for kBT/(h̄�J ) = 0.1. The blue
solid, orange dotted, and green dashed lines respectively stand for
the results for �RC/�J = 0.1 (underdamped), �RC/�J = 1 (criti-
cally damped), and �RC/�J = 2 (overdamped). The lower panel
(b) displays the results for �RC/�J = 0.1. The blue solid, orange
dotted, and green dashed lines respectively stand for the results
for kBT/(h̄�J ) = 0.1, 10, 50. We set 2e�J/Ic = 10−2 and V0 =
h̄�J/(2e).

Figure 5(a) illustrates the dynamics of the autocorrelation
function of the voltage 〈V 2(t )〉 for kBT = 0.1h̄�J with dif-
ferent damping constant. Similar to that of the phase in
Fig. 3(a), one can see that the correlation of the voltage is
strongly suppressed as one increases �RC/�J . The asymptotic
correlation in the long-time limit is also dependent on �RC

as in Eq. (C7) as a consequence of the quantum fluctua-
tions similar to the phase correlation. As well as the phase
correlation, we expect that this dependence on the damping
constant can also be experimentally observed. The difference
from the phase correlation is that, even in the long-time limit,
the integral in Eq. (25) does not converge in general [see
Eq. (C7) in Appendix C]. The voltage correlation in Eq. (25)
indeed converges only in the classical limit with any damping
or in the underdamped limit in any temperature regime. In
the underdamped limit, the asymptotic value converges to
2e�J/IcV 2

0 coth [h̄�J/(2kBT )], which recovers the classical
limit in Eq. (A5).

Figure 5(b) shows the results with different temperature for
�RC = 0.1�J . As well as the phase correlation in Fig. 3(b),
Fig. 5(b) indicates that thermal fluctuations enhance the cor-
relation of voltage in a long time.

FIG. 6. Autocorrelation function 〈φ2(t )〉 for �RC/�J = 0.1 and
kBT/(h̄�J ) = 0.1. The blue solid, orange dotted, and green dashed
lines respectively stand for the results for I/Ic = 0, 0.1, 0.5. We set
2e�J/Ic = 10−2 and V0 = h̄�J/(2e).

B. Effects of external current

In the presence of the external current I , instead of Eq. (13),
we solve

φ̈0 + 2�RCφ̇0 + �2
Jφ0 = �2

J

I

Ic
, (26)

and the resulting deterministic part of the phase φ0 is given by

φ0(t ) = �J√
�2

J − �2
RC

×
{(

2πV0


0�J
− �RC

�J

I

Ic

)
e−�RCt sin

(√
�2

J − �2
RCt

)

+
√

1−
(

�RC

�J

)2 I

Ic

[
1−e−�RCt cos

(√
�2

J − �2
RCt

)]}
,

(27)

which recovers Eq. (20) in I = 0. Since we are working within
the linear regime, the transition to the running state due to the
tilted washboard potential is absent in this case and the exter-
nal current just shifts and intensifies the deterministic part of
the phase instead, as shown in Fig. 6. With a larger external
current, the magnitude of phase correlation is more intensified
and shifted. In order to justify the linear approximation we
employed in Sec. II A, it is required to use the relatively small
external current. Under the original washboard potential in
Eq. (3), with a large external current, the potential has no
extremum and the phase flows away from the initial phase as
illustrated in Fig. 2(b). This running state strongly enhances
the deterministic part of the phase correlation 〈φ2

0 (t )〉 in the
long-time regime, which would make the noise contribution
negligible. With a sufficiently small current, on the other hand,
the phase should oscillate around an extremum of the potential
as shown in Fig. 2(a), and the linear approximation is expected
to well describe the dynamics. Hence, in Fig. 6, we used three
relatively small values of external current I/Ic = 0, 0.1, 0.5.
In t → ∞, the correlation function asymptotically approaches
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the nonzero asymptotic value of the deterministic part φ2
0 (t →

∞) → I/Ic plus that of the variance.

III. CONCLUSION

We have investigated the dynamics of correlations in a
RCSJ junction subject to an external current and the current
noise generated by a resistor including thermal and quantum
fluctuations within the linear regime. The external current
affects the deterministic contribution to phase and voltage.
It intensifies the phase correlation and makes the oscillation
out of phase within the linear regime. We observed the re-
laxation of correlation functions to finite values due to the
current noise with various damping and temperature regime.
Due to the zero-point fluctuations in the current noise, we
employed the superconducting gap as a cutoff in the variance
of phase as well as voltage, which results in suppression of
the correlations in the small resistance regime. We also found
that the correlations are enhanced by thermal fluctuations at
a higher temperature compared to the low-temperature re-
gion in which quantum fluctuations are dominant. It results
in an earlier decay of coherence at a higher temperature.
Prominently, we found that the asymptotic correlations in the
long-time limit depend on the damping constant or resistance
as the emergence of quantum effects, which originate from the
quantum fluctuations in the current noise. We expect that this

dependence on damping in the long-time limit can be detected
experimentally and our work can be tested as the emergence
of quantum effects in a Josephson circuit.
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APPENDIX A: CLASSICAL LIMIT

In the classical limit kBT/(h̄�J ) → ∞, quantum fluc-
tuations are absent and the noise includes only thermal
fluctuations. The classical current noise satisfies

〈η(t )〉 = 0, (A1a)

〈η(t )η(0)〉 = 4

R
kBT δ(t ). (A1b)

One refers to Eq. (A1b) as a classical fluctuation-
dissipation relation without quantum fluctuations. This clas-
sical noise of Eq. (A1) leads to the following autocorrelation
functions as

〈φ2(t )〉 = φ2
0 (t ) + 2e�J

Ic

2kBT

h̄�J

{
1 − e−2�RCt

1 − �2
RC/�2

J

[
1 −

(
�RC

�J

)2

cos
(
2
√

�2
J − �2

RCt
)

+ �RC

�J

√
1 −

(
�RC

�J

)2

sin
(
2
√

�2
J − �2

RCt
)]}

. (A2)

That for voltage can also be obtained as

〈V 2(t )〉 =V 2
0 (t ) +

(
h̄�J

2e

)2 2e�J

Ic

2kBT

h̄�J

{
1 − e−2�RCt

1 − �2
RC/�2

J

[
1 −

(
�RC

�J

)2

cos
(
2
√

�2
J − �2

RCt
)

− �RC

�J

√
1 −

(
�RC

�J

)2

sin
(
2
√

�2
J − �2

RCt
)]}

.

(A3)

Since the noise-free contributions φ0(t ) and V0(t ) vanish in t → ∞, the asymptotic values for each of the autocorrelations are

〈φ2(t → ∞)〉 = 2e�J

Ic

2kBT

h̄�J
(A4)

and

〈V 2(t → ∞)〉 =
(

h̄�J

2e

)2 2e�J

Ic

2kBT

h̄�J
, (A5)

which are proportional to the temperature reflecting the thermal noise in Eqs. (A1), so that both of them flow to infinity in the
classical limit kBT/(h̄�J ) → ∞.
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APPENDIX B: EXPRESSION OF Gt (ω)

Here we explicitly write down the expression of Gt (ω) which is necessary to obtain the autocorrelation functions. Using
Eq. (17) and Eq. (19), one immediately obtains

Gt (ω) = −�2
J

2Ic

1√
�2

J − �2
RC

[
ei(i�RC+

√
�2

J−�2
RC−ω)t − 1

i�RC +
√

�2
J − �2

RC − ω

− ei(i�RC−
√

�2
J−�2

RC−ω)t − 1

i�RC −
√

�2
J − �2

RC − ω

]
. (B1)

As for the correlation of voltage, we need to compute a quantity [∂t + iω]Gt (ω). It is given by

[∂t + iω]Gt (ω) = − i�2
J

2Ic

1√
�2

J − �2
RC

{
i�RC +

√
�2

J − �2
RC

i�RC +
√

�2
J − �2

RC − ω

[
ei(i�RC+

√
�2

J−�2
RC−ω)t − 1

]

−
i�RC −

√
�2

J − �2
RC

i�RC −
√

�2
J − �2

RC − ω

[
ei(i�RC−

√
�2

J−�2
RC−ω)t − 1

]}
. (B2)

APPENDIX C: LONG-TIME LIMIT

Correlation functions in the long-time limit can also be
obtained through Fourier analysis [33,34]. Performing the
Fourier transformation on Eq. (14), we obtain [34]

δφ̃(ω) ≡
∫ ∞

−∞
dt δφ(t )e−iωt = α(ω)�2

J

η̃(ω)

Ic
, (C1)

where η̃(ω) ≡ ∫ ∞
−∞ dt η(t )e−iωt and

α(ω) ≡ 1

−ω2 + 2i�RCω + �2
J

. (C2)

Remarkably, α(ω) is equivalent to the long-time limit of
Gt (ω) in Eq. (19) as

α(ω) = Ic

�2
J

Gt→∞(ω). (C3)

Hence the time-independent autocorrelation function with
respect to the phase in the long-time limit can be
obtained as [34]

〈φ2(t → ∞)〉 = 2�4
J

RI2
c

∫ ∞

−∞

dω

2π
h̄ω coth

(
h̄ω

2kBT

)
|α(ω)|2.

(C4)

In particular, in the underdamped limit �RC � �J , by virtue
of the following relation:

2�RCω|α(ω)|2 → π

2�J
[δ(ω − �J ) + δ(ω + �J )], (C5)

one obtains

〈φ2(t → ∞)〉 → 2e�J

Ic
coth

(
h̄�J

2kBT

)
, (C6)

which is consistent with the classical limit in Eq. (A4).
In a similar manner, one can write the autocorrelation func-

tion with respect to the voltage as well. It is given by

〈V 2(t → ∞)〉

=
(


0

2π

)2 2�4
J

RI2
c

∫ ∞

−∞

dω

2π
h̄ω coth

(
h̄ω

2kBT

)
ω2|α(ω)|2.

(C7)

This energy integral is logarithmically divergent, which is
distinct from the case of phase correlation in Eq. (C4). In the
underdamped limit, it converges and reduces to

〈V 2(t → ∞)〉 →
(

h̄�J

2e

)2 2e�J

Ic
coth

(
h̄�J

2kBT

)
, (C8)

which is also consistent with the classical limit in Eq. (A5).
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