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We study systems of bosons whose low-energy excitations are located along a spherical submanifold of
momentum space. We argue for the existence of gapless phases which we dub “Bose-Luttinger liquids,” which in
some respects can be regarded as bosonic versions of Fermi liquids, while in other respects they exhibit striking
differences. These phases have bosonic analogues of Fermi surfaces, and like Fermi liquids they possess a large
number of emergent conservation laws. Unlike Fermi liquids, however, these phases lack quasiparticles, possess
different RG flows, and have correlation functions controlled by a continuously varying exponent η, which
characterizes the anomalous dimension of the bosonic field. We show that when η > 1, these phases are stable
with respect to all symmetric perturbations. These theories may be of relevance to several physical situations,
including frustrated quantum magnets, rotons in superfluid He, and superconductors with finite-momentum
pairing. As a concrete application, we show that coupling a Bose-Luttinger liquid to a conventional Fermi liquid
produces a resistivity scaling with temperature as T η. We argue that this may provide an explanation for the
non-Fermi liquid resistivity observed in the paramagnetic phase of MnSi.
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I. INTRODUCTION AND SUMMARY

The difficulty of understanding a given phase of matter
roughly scales with the number of low-energy degrees of
freedom it possesses. Phases with finitely many low-energy
degrees of freedom are relatively easy to understand and can
be classified using the framework of topological quantum field
theory. More difficult are theories where the gap goes to zero
at isolated points in momentum space. The low energy physics
of these theories are described by gapless quantum field the-
ories. In many cases these field theories are conformal and
can be understood using powerful techniques from conformal
field theory. More difficult still are a third class of theories
possessing a larger amount of gapless degrees of freedom,
with gapless modes located along a nontrivial submanifold of
momentum space. The canonical examples of such theories
are Fermi liquids and non-Fermi liquids.

This third class of “very gapless” phases of matter is of
fundamental importance to condensed matter physics, but it
is at present unclear whether or not phases in this class can
be understood within any particular unifying framework. It
is therefore valuable to construct examples of such theories
beyond the purview of (non-)Fermi liquids, in order to under-
stand what general features such phases of matter are expected
to possess.

In this paper, we will study phases of bosons which fall
into this third class of matter. The systems we will study have
dispersion relations like

ε(k) ∼
√

r + v2
(
k2 − k2

B

)2
, (1)

so that ε(k) is degenerate along a sphere of radius kB in
momentum space, which we refer to as a “Bose surface.”

We will be interested in scenarios in which amplitude
ordering occurs across the entire Bose surface. In these sce-
narios, the phase degrees of freedom at each point on the Bose
surface fluctuate in a quasi-one-dimensional manner, prevent-
ing the establishment of long-range phase ordering. In the
same way that Fermi liquids can be thought of as a collection
of 1+1D Dirac fermions, with one Dirac fermion for each
point of the Fermi surface, we will see that these phases can
be regarded as collections of 1+1D Luttinger liquids, with one
Luttinger liquid located at each point on the Bose surface. As
such, we dub these phases “Bose-Luttinger liquids.”1

Our motivation for studying these types of systems is
twofold. First, whether or not such “very gapless” phases can
arise in purely bosonic systems (without fine tuning) is an
interesting question in its own right, since one cannot rely
on degeneracy pressure to stabilize the Bose surface. In fact
a similar question has already arisen in the literature, where
it appeared in the context of various two-dimensional ring-
exchange models [5–12]. These models have an anisotropic
dispersion which vanishes along the coordinate axes in mo-
mentum space and are described in the IR by field theories

1Note that such phases are conceptually distinct from “Bose met-
als,” viz. systems of bosons (usually Cooper pairs) which at T = 0
have metallic transport [1–4]. We are instead interested in theories
that possess a large number of gapless excitations (regardless of
whether or not they are metals).
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exhibiting quasi-1+1D behavior. However, the stability of
these models in the thermodynamic limit is a rather delicate
issue and may require the presence of a UV symmetry group
with an infinite number of conserved charges. By contrast,
the phases we will study in this paper are closer in spirit
to Fermi liquids—they are rotation invariant and are stable
in the presence of a small UV symmetry group consisting
only of translation and U (1) charge conservation. Our second
motivation for studying these types of theories can be traced
back to an old idea of Anderson [13], who proposed that
Fermi liquids in 2+1D are generically unstable and instead
flow in the IR to Luttinger liquid like fixed points that lack
well-defined quasiparticles.

This proposal unfortunately turned out to be incorrect, with
the geometry of the Fermi surface protecting the quasiparti-
cle pole against interactions, as long as the interactions are
sufficiently nonsingular. While interactions are not able to
easily create a phase with Luttinger liquid type exponents, this
obstacle can be overcome by working instead with systems
of bosons, where the Luttinger liquid behavior can be built
in at a more fundamental level. We will see how this line of
reasoning can be used to construct fixed points that share some
similarities to those envisioned by Anderson. However as we
will see, there are also significant differences in the precise
structure of the low energy theory, and the underlying degrees
of freedom are bosonic rather than fermionic.

The Bose-Luttinger liquids studied in this paper are phe-
nomenologically somewhat similar to Fermi liquids, although
there are many important differences. Like Fermi liquids these
phases are metals, have a T -linear specific heat, possess corre-
lation functions exhibiting oscillations at integer multiples of
a “Bose momentum” kB, and have a set of Landau parameters
which modify some aspects of their phenomenology. Unlike
Fermi liquids, however, these phases lack quasiparticles, have
correlation functions with continuously tunable exponents,
and will be seen to possess rather different RG flows.

The structure of this paper is as follows. In Sec. II, we
warm up by considering a simple one-dimensional example of
a Bose-Luttinger liquid, which like a one-dimensional Fermi
liquid involves a dispersion which is gapless at two “Bose
points” in momentum space. In the IR this theory can be
understood as a multicomponent Luttinger liquid enriched
with a particular symmetry action.

We then move on to explore a generalization of this ex-
ample to 2+1D, which is the main focus of this paper.
The UV model is introduced in Sec. III and consists of
translation-invariant conserved bosons with a dispersion pos-
sessing degenerate minima along a circle in momentum space.
In Sec. IV we write down a Lagrangian describing the low-
energy physics of the Bose-Luttinger liquid fixed point and
discuss the emergent symmetries and operator content of the
IR theory. In these two sections, we assume the presence of a
microscopic particle-hole symmetry which fixes the system to
be at zero average density. This is done only for simplicity, and
in Sec. VI we explain the generalization to the finite density
case.

In Sec. V we set up an RG analysis to determine the
stability of the Bose-Luttinger fixed point. We find a regime
of parameter space where the fixed point is stable against
all symmetric perturbations and another regime where it

possesses an instability with respect to a BCS-type pairing
interaction. In Sec. VII we discuss the phenomenology of
these phases and compare them to Fermi liquids. Section VIII
discusses how the results of the previous sections generalize
to 3+1D.

In Sec. IX we consider an application of the general theory
put forth in previous subsections. We consider systems con-
sisting of a Fermi liquid coupled to a Bose-Luttinger liquid
and examine the effect that this coupling has on the transport
properties of the Fermi liquid. A concrete example of a ma-
terial where such a theoretical description may be applicable
is the helical magnet MnSi, which exhibits a metallic phase
possessing spin fluctuations whose dispersion has a degener-
ate minimum along a sphere in momentum space. Modeling
this system as a Fermi liquid coupled to a Bose-Luttinger
liquid, we calculate the transport scattering rate and show that
it predicts a resistivity scaling as ρ ∝ T η, where η > 1 is a
nonuniversal exponent. This offers a possible explanation for
the observed T 3/2 scaling of the resistivity in this material
[14], which cannot be explained within the context of Fermi
liquid theory alone.

We close with a discussion of future lines of work in
Sec. X, with discussions of a related model lacking U (1)
symmetry and several technical details relegated to the appen-
dices. The idea of using unconventional dispersion relations to
stabilize higher-dimensional Luttinger liquid-like states has in
fact already appeared in an earlier work by Sur and Yang [15],
who focused on the context of spin-orbit coupled bosons in
2+1D.2 While the general idea of Ref. [15] is quite similar
to that of the present paper, there are several key differences.
Similar to Ref. [15] we analyze the IR theory by decomposing
the Bose surface into a large number of coupled Luttinger
liquids. Unlike in Ref. [15], however, we take care to ensure
that the physical properties of the IR theory do not depend on
the exact way we perform this decomposition, which leads to a
more careful analysis being needed when considering theories
defined at finite density. We also emphasize the importance of
gapped vortex excitations which do not seem to have been
considered in Ref. [15]. Our identification of the emergent
symmetry is also different, and this leads us to a different
perspective on certain vortex operators. We argue that our
treatment is needed in order to be confident about the stability
of the theories we study. Finally, the present work is also
slightly broader in scope and includes discussions of several
other related models, a procedure for performing RG, and an
expanded treatment of various phenomenological aspects.

II. WARMUP: 1+1D

In this section we will warm up by looking at the case of
translation-invariant conserved bosons in 1+1D. We will be
working at T = 0 throughout and will assume the presence of
a reflection or time reversal symmetry ensuring that the dis-
persion is symmetric under k → −k. For simplicity we will
furthermore assume the existence of a particle-hole symmetry
P which fixes the average density of the bosons to be zero.
This symmetry is imposed purely for simplicity, and all of

2We thank Zhen Bi for bringing Ref. [15] to our attention.
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FIG. 1. An illustration of a dispersion possessing minima at the
two Bose points ±kB. The IR theory contains only modes within ±�

of each Bose point.

the results in this section can easily be extended to the finite
density case.

The Bose-Luttinger liquids we will find in 1+1D are noth-
ing more than multicomponent Luttinger liquids endowed
with a certain symmetry action. In 1+1D a Bose surface just
consists of two points, and so these do not really give us ex-
amples of phases with a “large” number of low energy degrees
of freedom. Nevertheless the analysis here is quite simple
and will be useful when we proceed to the more complicated
2+1D case.

A. UV theory

Our starting point will be a Lagrangian whose free part
gives a dispersion ε(k) possessing two minima at ±kB, with
kB > 0. The prototypical example of a Lagrangian with such
a dispersion is

L = ψ∗
(

−v−1∂2
τ + v

4k2
B

(−∂2
x − k2

B

)2 + r

)
ψ + g

4
|ψ |4. (2)

We will be interested in the regime where r < 0, so that
the system is nearly a superfluid. The particle-hole symmetry
acts as P : ψ �→ ψ∗, and the dispersion ε(k) is illustrated in
Fig. 1. One example of a system that exhibits this type of dis-
persion is the lower band of a spin-orbit-coupled boson [16],
although in what follows we will not restrict our attention to
any particular physical realization.

To understand the IR theory we will integrate out modes at
momenta far away from ±kB, assuming that the interaction g
is initially weak in the UV. After integrating out these modes,
we obtain an effective action for the modes with momenta
within ±� of ±kB, where �/kB � 1 (see Fig. 1).

The two-body interaction of the bosons g|ψ |4 is relevant
under the free fixed point scaling, with RG eigenvalue +2.
Since the flow is towards strong coupling, we will need to
switch to a different language to describe the IR physics.

B. IR theory

Since we are assuming the interaction is weak in the UV,
the kinetic energy is the dominant consideration when deter-
mining the correct IR Lagrangian to write down. We thus start

by decomposing ψ as

ψ (x) = 1√
2

(eikBxψR(x) + e−ikBxψL(x)), (3)

with the ψL/R fields which annihilate bosons at the right and
left “Bose points” k = ±kB. The symmetries of translation
through a distance a and U (1) particle number act on the ψα

fields as

U (1):ψα → eiλψα, Ta:ψα (x) → eαikBaψα (x + a), (4)

where α = ±1 when it does not appear as a field index. In
terms of these fields, the IR Lagrangian is

L =
∑

α=R,L

ψ∗
α

(−v−1∂2
τ − v∂2

x + r
)
ψα +

∑
αβ

gαβψ
∗
αψαψ

∗
βψβ,

(5)
where gαβ is a symmetric nondegenerate matrix parametrizing
the interactions.

In using the decomposition (3) and in writing down the
above Lagrangian, we have glossed over an important sub-
tlety. Due to interactions the field ψ will acquire a nonzero
self-energy, which will generically renormalize the value of
kB. If this process is significant enough to renormalize kB

to zero by the time we reach the IR scaling regime, a de-
scription in terms of the ψα fields will not be correct. In
Appendix B we argue that one can always choose the density
and UV interaction strength such that the renormalized kB is
finite, and henceforth we will always assume that this is the
case. In the following, kB > 0 will then be taken to mean the
renormalized Bose momentum.

Since we are working at r < 0, we are prompted to write
ψα in terms of fluctuations about a nearly-superfluid state by
taking

ψα = (r0 + rα )eiφα , (6)

where r0 = √
ρS is the square root of the average boson am-

plitude3 (since the action is L ↔ R symmetric, the potential
favors an equal amplitude for both fields). The IR regime is
reached at length scales larger than the inverse mass of the rα
fields. In this regime we may write down an IR Lagrangian
solely in terms of the phase variables φα , which we take to
have momentum modes in the interval [−�,�].4 Fluctuations
of rα are accordingly taken into account by examining the
effects of the vertex operators eiθα . Here θα are the fields dual
to φα , with the commutation relations

[φα (x), ∂xθβ (y)] = α2π i δα,βδ(x − y). (7)

3We use the term “boson amplitude” here because there is no con-
densate (|〈ψ〉| = 0) and because “superfluid density” is potentially
confusing, given that we are working at zero average boson density.

4Fixing a momentum cutoff of � on ψα is of course not the same as
putting a cutoff of � on φα . A slightly more accurate treatment would
be to use a sharp cutoff for φα while using a soft cutoff for ψα . Given
that the exact cutoff procedure is not important for the effective field
theory approach we are taking here, we will not pay attention to such
subtleties in the following.
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From (4) we see that φα transforms under the relevant micro-
scopic symmetries as

U (1):φα �→ φα + λ,

Ta:φα �→ φα + αakB,

P:φα �→ −φ−α, (8)

with λ ∈ [0, 2π ) a constant and where −α denotes the oppo-
site index to α. The dual fields θα are neutral under U (1) and
Ta, and transform as P : θL/R �→ θR/L + π under particle-hole
symmetry.

These considerations then lead to an IR Lagrangian which
generically takes the form L0 + LI , with

L0 = 1

4πη

∑
α

(v−1(∂τφα )2 + v(∂xφα )2)

+ 1

4πη
(v−1 fρ∂τφL∂τφR + v f j∂xφL∂xφR)

LI = g
∑
α

cos(2θα ) + g±
LR cos(θL ± θR) + · · · , (9)

where . . . are higher-derivative interactions and less relevant
cosines (note that there are no symmetry-invariant cosines
in the φα variables). The parameter η is a nonuniversal
phenomenological coefficient, and the f j, fρ are “Landau pa-
rameters” characterizing the couplings of the spatial current
densities ( f j ) and the couplings of the charge densities ( fρ ).
Positivity of the Hamiltonian requires | fρ |, | f j | < 1.

The Lagrangian is diagonalized using the fields

φ± ≡ φR ± φL√
2

, θ± ≡ θR ± θL√
2

, (10)

which have commutation relations

[φ±, ∂xθ±] = 0, [φ±, ∂xθ∓] = ±2π iδ(x − y). (11)

In terms of these variables, the Lagrangian is

L0 = 1

4π

∑
σ=±

1

ησ

φσ

(
v−1
σ ∂2

τ + vσ ∂
2
x

)
φσ , (12)

where

η± ≡ η√
(1 ± fρ )(1 ± f j )

, v± ≡ v

√
1 ± f j

1 ± fρ
. (13)

By dualizing the Lagrangian L0 in terms of the θ± variables
(under which η± → 1/η±), one finds that the RG eigenvalues
yO = 2 − �O of the most relevant interactions in LI are

ycos(θα ) = 2 − η−1
+ + η−1

−
4

, ycos(θL±θR ) = 2 − 1

η∓
. (14)

If any of these eigenvalues are positive, some or all of the low-
energy degrees of freedom will be made massive. However, it
is always possible to choose η small enough such that all three
of the RG eigenvalues above are negative, and as such there
always exists a regime of parameter space where the free fixed
point described by L0 is stable.

The phenomenology of the fixed point L0 can be de-
termined straightforwardly, since the IR theory is simply
that of two coupled Luttinger liquids acted on by transla-
tion and U (1) symmetries in a particular way. Correlation

functions at the fixed point are characterized by the nonuni-
versal exponents η± and possess oscillations at wave vectors
corresponding to integer multiples of kB. For example, the
two-point function of the UV bosons is

〈ψ (x)ψ†(0)〉 ∼ cos(kBx)

|x|η , η ≡ η+ + η−
2

. (15)

Rather than pursuing a detailed analysis of the phenomenol-
ogy at this fixed point we will instead proceed directly to
2+1D generalizations, which is where our main interest lies.

III. 2+1D: UV THEORY AND PATCH DECOMPOSITION

We will now turn our attention to systems of translation-
invariant conserved bosons in 2+1D. As in the previous
section, we will assume the presence of a UV particle-hole
symmetry, which fixes the average particle density at zero
and forbids a linear time derivative ψ∗i∂tψ from appearing
in the action. In Sec. VI we will explain what happens when
this symmetry is absent. We will furthermore assume that the
bosons have a dispersion with a minimum along a circle of ra-
dius kB > 0 in momentum space. In order that this degeneracy
be exact, we will assume the presence of continuous rotational
symmetry, although we will see later that this assumption is
not essential, as long as the rotation-breaking terms are small.

A general UV Lagrangian satisfying these criteria can be
written as

L = |∂τψ |2 + A|∇ψ |2 + B|∇2ψ |4 + r|ψ |2 + g

4
|ψ |4, (16)

where A < 0. We will be interested in the regime where r < 0,
so that a superfluidlike description can be used in the IR. Such
a scenario can arise in the context of FFLO-type superconduc-
tivity (with the field ψ representing Cooper pairs) or in certain
types of frustrated magnets (which will be discussed further in
Sec. IX), but in what follows we will not be concerned with
any particular physical realization. We will find it convenient
to parametrize the kinetic part of L in terms of the momentum
kB minimizing the dispersion as

L = ψ∗
(

−∂2
τ + 1

4k2
B

(−∇2 − k2
B

)2 + r

)
ψ + g

4
|ψ |4. (17)

To obtain the IR theory, we first integrate out modes with
large |k| − kB, producing a theory with modes supported on
a momentum-space annulus of width 2� � kB surrounding
the Bose surface. As in the 1+1D case the renormalization of
kB as the modes away from the Bose surface are integrated
out will be finite, and one needs to worry about whether or
not kB can in fact be renormalized to zero. We again argue
in Appendix B that one can choose parameters such that this
is generically not the case, and in what follows we will use
kB to denote the renormalized Bose momentum, which we
assume to be nonzero. At energy scales much less than kB,
the dispersion will cause the low-energy fields to fluctuate in
a quasi-1+1D fashion, giving rise to a theory which in the IR
has the potential to be treated using an approach similar to the
one used in the previous section.

After integrating out the modes far from the Bose surface
it is helpful to use a patch decomposition for the remaining
fields, similar to the ones employed in treatments of Fermi
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FIG. 2. How the low-energy annulus in momentum space is bro-
ken up into patches. Each patch is labeled by an angle γ , with
corresponding unit vector γ .

liquids [15,17–20]. We proceed by breaking up the annulus
around the Bose surface into many small patches of size
2�×2� and define patch fields ψγ such that

ψ (x) = 1√
N

∑
γ

eikBγ ·xψγ (x), (18)

where the momentum modes of ψγ lie within a patch centered
on the momentum kBγ , with γ a unit vector (see Fig. 2). The
parameter N is defined as the number of patches, viz.

N ≡ 2πkB

2�
� 1. (19)

The kinetic term for each ψγ field has the form

L0 ⊃ 1

N
ψ∗

γ

(
k2

‖ + 1

kB
(k3

‖ + k ‖ k2
⊥)

+ 1

4k2
B

(k4
‖ + 2k2

‖ k2
⊥ + k4

⊥)

)
ψγ , (20)

where k ‖ = k · γ is parallel to γ , k⊥ = k · γ⊥ is perpendicu-
lar, and where the notation a ⊃ b is to be read as “b is a term
appearing in a.” Note that due to the flatness of the dispersion
along the γ⊥ direction, there is no quadratic term k2

⊥ appearing
in the above kinetic term. Since k ‖ , k⊥ are always much less
than kB, for most purposes we may approximate this as

L0 ⊃ 1

N
ψ∗

γ k2
‖ ψγ . (21)

For some calculations it is, however, important to retain all the
terms in (20), as we will see when we discuss long-distance
real-space correlation functions in Sec. VII. Until then, we
will simply take the dispersion for each patch field ψγ to be
given by (21).

As a brief aside, we note that the exact procedure we use
for breaking up the region near the Bose surface into patches
is rather arbitrary and should not have any bearing on the
universal aspects of the IR theory. In particular, no physical
quantities should have any explicit dependence on N (indeed,
we will see that N flows under RG), which is something we
will need to check as we go forward.

In terms of the ψγ fields, the Lagrangian can be written as

L = 1

N

∑
γ

ψ∗
γ

(−∂2
τ − ∇2

γ + r
)
ψγ + LI , (22)

where LI contains the interactions and where we have used
the notation ∇γ ≡ γ · ∇. As in Fermi liquids, the kinematics
of the Bose surface ensures that the dominant interactions
only occur in the forward-scattering and BCS channels, so that
LI = LFS + LBCS, with

LFS = 1

4N2

∑
γ ,γ ′

ψ∗
γ ψγ gFS(γ − γ ′)ψ∗

γ ′ψγ ′

LBCS = 1

4N2

∑
γ ,γ ′

ψ∗
γ ψ

∗
γ+πgBCS(γ − γ ′)ψγ ′ψγ ′+π , (23)

where due to rotational symmetry the two interactions are
functions only of angular differences. We now turn to writing
down a Lagrangian which captures the IR physics of this
theory.

IV. IR THEORY

We flow to the IR by integrating out modes of ψγ

with large (k · γ )2 + ω2. As in 1+1D, the relevance of the
density-density interactions forces us to switch to a different
description for discussing the IR physics. Since we are taking
r < 0 in (17), we are prompted to minimize the potential
r|ψ |2 + g

4 |ψ |4 by writing each patch field as

ψγ = (r0 + rγ )eiφγ . (24)

In what follows we will make the crucial assumption that
the potential for the ψγ fields favors a state where the ex-
pectation value 〈r0 + rγ 〉 is nonzero and independent of γ .5

Depending on the details of the interactions in the UV this
very well may not be the case, with the system preferring
instead to spontaneously break rotation symmetry and develop
amplitude order only at isolated points along the Bose circle.
Spontaneous symmetry breaking is energetically favorable if
the UV interaction is a simple delta function contact interac-
tion [21,22], although if the interaction acquires momentum
dependence this need not be true [23]. There seems to be
nothing a priori forbidding a state with uniform amplitude
ordering for all of the ψγ , and in what follows we will simply
assume that this is the case.

Making this assumption, and working at length scales
larger than the inverse mass of the rγ fields, we are lead
to a superfluidlike IR description in terms of the phase
fields φγ . These fields are acted on by the microscopic U (1)
symmetry as

U (1):φγ �→ φγ + c (25)

for constant c, while translation along a vector μ acts via

Tμ:φγ (x) �→ φγ (x + μ) + kBμ · γ . (26)

Finally, particle-hole symmetry sends P:φγ �→ −φγ+π .

5Allowing the expectation to be nonzero but with nontrivial γ

dependence is also possible, but we will ignore this possibility for
now.
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The general IR Lagrangian consistent with these symme-
tries is L0 + L f + LI , with LI containing interactions (which
will be discussed shortly in Sec. IV B) and with the first two
terms given by

L0 = kB

4πNη

∑
γ

(v−1(∂τφγ )2 + v(∇γ φγ )2)

L f = kB

4πN2η

∑
γ ,γ ′

(
v−1 f γ ,γ ′

ρ ∂τφγ ∂τφγ ′

+ v f γ ,γ ′
j ∇γ φγ ∇γ ′φγ ′

)
, (27)

where η, f γ ,γ ′
ρ , f γ ,γ ′

j are all dimensionless nonuniversal pa-
rameters, and where v is a nonuniversal velocity. Fluctuations
in the charge (current) density of the ψγ fields at each
patch are represented in the IR as ∂τφγ (as ∇γ φγ ), with
(27) consequently being a general hydrodynamic Lagrangian
parametrizing the gradient energy for fluctuations in the den-
sities and currents. The theory described by this fixed point is
a Bose-Luttinger liquid (BLL) and is the fixed point that we
will focus on for the majority of the rest of this paper.

As in 1+1D, the couplings f γ ,γ ′
j , f γ ,γ ′

ρ are dimensionless

“Landau parameters” characterizing the IR theory. The f γ ,γ ′
j

term couples the spatial current densities for the U (1) particle
number symmetries on patches γ , γ ′, while f γ ,γ ′

ρ couples
the charge densities. Due to rotational invariance, the Landau
parameters will be functions only of γ − γ ′. We will see that
they are marginal under RG, just as in a Fermi liquid.

While in some respects the BLL of (27) is similar to a
bosonic Fermi liquid, there are several key differences. First,
bosonized descriptions of Fermi liquids have only one pair
of fields φ, θ for every pair of antipodal points, which is half
as many as in the present context. Secondly, the coefficient η
(which we will see determines scaling of correlation functions
at the fixed point) can take on any value and is a nonuniversal
function of the microscopic parameters.6 This is in contrast
to the Fermi liquid context, where the value of η is fixed.
Finally, in a Fermi liquid the spatial and temporal components
of the current are related to one another by the Fermi veloc-
ity, and thus Fermi liquids have only a single set of Landau
parameters. Here however the charge and current densities are
distinct, giving two distinct sets of Landau parameters.

A. Emergent symmetry group

As in a Fermi liquid, the BLL fixed point possesses a very
large emergent symmetry group. As formulated in (27) this
symmetry group is naively realized by shifting

φγ (x) �→ φγ (x) + fγ (x · γ⊥), (28)

for some functions fγ of the perpendicular coordinate x · γ⊥.
This symmetry group is much too large however and is an
artifact of approximating the dispersion in each patch γ by a

6In CFT language, η is related to the radius of the φγ bosons as
η = 1/R2.

function only of k · γ .7 Accounting for the small curvature in
each patch reduces the symmetry action (28) to γ -dependent
constant shifts. Since each φγ is a phase variable, the naive
emergent symmetry group is then U (1)N .

This is not correct though, as the way of tiling the region
near the Bose surface into patches is arbitrary. While using
square patches of size 2� × 2� is a particularly convenient
choice, we could equally well consider a decomposition into
a larger number of narrower patches. Since the physical emer-
gent symmetry group at the fixed point cannot depend on an
arbitrary choice like this, identifying the emergent symmetry
as U (1)N is clearly not correct.

One might then think that since we are interesting in the
large N limit, we should simply identify the emergent sym-
metry group with U (1)∞ [15,20,24]. This is also not correct.
A symmetry group of U (1)∞ would imply that the particle
number at each point of the Bose surface is quantized to be
an integer, but in fact we may only speak of a nonquantized
particle density ργ dγ , with the only quantized charge being
the global charge

∫ dγ
2π ργ . Furthermore, elements in U (1)∞

generically shift the φγ fields by discontinuous functions of γ .
When we weakly break this symmetry group by, e.g., adding a
very small magnetic field (which introduces derivatives ∂/∂γ

into the action), these discontinuous shifts create field config-
urations with infinite action, which we regard as unphysical.

The correct identification of the emergent symmetry group
is instead the loop group LU (1) = Map[S1 → S1] [25]. This
group acts on the φγ fields as

LU (1):φγ �→ φγ + fs(γ ), (29)

where fs(γ ) is a smooth function of γ , with fs(2π ) − fs(0) ∈
2πZ [the UV U (1) particle number symmetry is embedded
as the subgroup where fs is independent of γ , which is in fact
the only U (1) subgroup of LU (1)]. The emergent symmetry
group of LU (1) is shared by the “Ersatz Fermi liquids” of
Ref. [25].

Another way to arrive at this conclusion is to declare that
only field configurations φγ which are smooth functions of
γ are physical, as this subspace is only preserved by LU (1)
and is violated by generic elements in U (1)∞. Our statement
above about charge quantization can then be understood by
noting that although the vertex operators einφγ are only well
defined for n ∈ Z, it is not correct to treat the φγ as in-
dependent compact variables, since shifting a single φγ by
2π cannot be done while obeying the smoothness constraint.
Since each φγ is not individually compact, the charge on each
patch is not quantized. The only compact variable is instead∫ dγ

2π φγ , whose compactness ensures the quantization of the
UV U (1) charge.

The LU (1) symmetry is unfortunately not completely man-
ifest in our description (27) of the fixed point and is only
made explicit if we subdivide each square patch γ into many

7As mentioned earlier, this approximation does not change the
analysis of the stability of the fixed point (to be discussed shortly)
but is in fact too crude of an approximation for analyzing several
physical properties of the fixed point. Therefore the fixed point
theory technically must still remember the curvature of each patch,
and the transformations (28) cannot actually be the right emergent
symmetry at the fixed point.

014517-6



BOSE-LUTTINGER LIQUIDS PHYSICAL REVIEW B 104, 014517 (2021)

infinitesimally thin slices. As already discussed, the price of
doing this is that writing down Lagrangians which are local
in real space becomes rather unwieldy. Therefore in what
follows we will continue to work with the a finite number of
square patches, with the acknowledgment that true emergent
symmetry group is in fact LU (1) and not U (1)N .

Reference [25] showed that a large class of translation-
invariant compressible (definable over a continuous range
of densities) systems must necessarily have an infinite-
dimensional emergent symmetry group in the IR, with LU (1)
being the simplest example. Despite the fact that the discus-
sion above has been focused on the particle-hole symmetric
zero-density limit, the BLL fixed point considered here in
fact represents a compressible phase of matter, as we show
in Sec. VI. Thus one may ask whether the existence of the
emergent LU (1) symmetry is a necessary feature of the IR
theory.

However, we cannot actually directly use the results of
Ref. [25], which assumes that the IR symmetry group does
not include any continuous higher form symmetries, which
are symmetries whose charged objects have dimension greater
than zero [26]. This assumption is actually violated in the
present context: The BLL fixed point possesses a continuous
1-form symmetry associated with the fact that the worldlines
of vortices in the UV boson field ψ must form closed loops.
A vortex in ψ causes a simultaneous vortex in every φγ field
and is well defined due to the quantization of the global U (1)
charge. This global vortex is massive at the BLL fixed point
and does not show up in the IR description. Nevertheless it
must be included so that the IR and UV theories live in the
same Hilbert space, and the additional 1-form symmetry it
leads to means that the LU (1) symmetry is not a priori a
necessary feature of BLL-like fixed points, at least within
the context of the filling constraints of Ref. [25]. Simpler
examples of compressible states of matter with emergent con-
tinuous one-form symmetries and their formal properties will
be discussed in Ref. [27].

B. Allowed perturbations to the fixed point

In order to assess the stability of the fixed point described
by L0 + L f , we need to know the interactions that can appear
in LI , which we treat as perturbations to the fixed point.
Any allowed perturbation must respect the UV symmetries of
translation and U (1) charge conservation. The most relevant
symmetry-allowed interaction of the φγ fields is the BCS
pairing term

LI ⊃ 1

N2

∑
γ ,γ ′

gBCS(γ − γ ′) cos(ϕγ ,γ ′ ), (30)

where we have defined

ϕγ ,γ ′ ≡ φγ + φγ+π − φγ ′ − φγ ′+π . (31)

This coupling explicitly breaks the LU (1) symmetry of the
fixed point down to the subgroup generated by functions
with odd angular momenta, under which ϕγ ,γ ′ is invariant.
Since we are working with spinless bosons, the BCS coupling
must consist only of even angular momentum channels, with
gBCS(γ − γ ′) = gBCS(γ − γ ′ + π ).

One important question to ask is whether or not cosines
of the fields θγ dual to φγ may appear in LI . The most

natural way of defining these fields is to have them satisfy
the commutation relations

[φγ (x),∇γ ′θγ ′ (y)] = 2π i
N

kB
δγ ,γ ′δ(2)(x − y), (32)

so that exponentials of θγ create vortices in the phases of the
ψγ patch fields. The θγ are neutral under the microscopic
U (1) symmetry, and since we are working at zero density in
this section they are invariant under translation as well. Thus
from the basis of the symmetry actions alone, one may also
think to include in LI cosines like

LI
?⊃ 1

N

∑
γ

gθ cos(θγ ). (33)

We claim, however, that cosines in the θγ fields do not
represent legal perturbations to the fixed point (unlike in
Ref. [15]) and that we may in fact restrict our attention purely
to the pairing term (30). There are several ways to argue
this,8 with the arguments being similar to those used when
discussing the correct identification of the emergent symmetry
group. First, the existence of well-defined vortex operators eiθγ

would require the charge on each patch to be quantized, as
was discussed above this is not the case, and only the global
charge

∫ dγ
2π ργ is quantized. Furthermore, the action of any

putative vortex operator eiθγ would create a field configuration
which is singular as a function of γ , which would have infinite
action in the presence of a small LU (1)-breaking perturbation
like a small magnetic field. Since there is no way to smoothly
pass between field configurations of different vorticity, it is
impossible to define a “smoothed-out” version of eiθγ which
creates allowable nonsingular field configurations. For these
reasons, we will regard individual vortex operators eiθγ as
being unphysical. Thus the only allowed perturbation to the
fixed point is indeed the pairing interaction of (30) (as well as
less-relevant higher-body operators).

While operators creating vortices in each of the φγ fields
individually are not allowed, there is of course always an
allowed operator which creates a vortex in the UV field ψ .
These vortices will be gapped excitations of the BLL phase.
The low energy description in terms of the phase fields that
we have developed is only legitimate at energy scales below
the vortex gap. Indeed, the phase-only theory of the BLL does
not know about the periodicity of the phase of ψ , and we need
to incorporate these gapped vortex excitations in order to have
an IR theory that lives in the correct microscopic Hilbert space
that ψ lives in. From a formal point of view, the IR theory of
the BLL without the vortices has a U (1) one-form symmetry
which is not present in the UV theory, and therefore we must
also include excitations which explicitly break this one-form
symmetry. An effective action that includes both the gapless
excitations and the vortex field can be written along the same
lines as the discussion for 2+1D bosonized Fermi liquids in
Ref. [28], but we will not do so explicitly here. Despite the
fact that the vortices do not appear in the IR theory, we will
argue in Sec. VI that they play a crucial role in understanding
how the BLL can exist at a generic nonzero density.

8For a related discussion in the context of Fermi liquids, see
Ref. [28].
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C. Fixed-point correlation functions

Before determining the relevance of the terms in LI , let
us first calculate the correlation functions at the fixed point
described by L0. When the Landau parameters vanish, the
two-point functions of the φγ fields are obtained from the
Lagrangian (27) as

Gφ

γ ,γ ′ (k, ω) ≡ 〈φ∗
γ (k, ω)φγ ′ (k, ω)〉 = δγ ,γ ′

2π l�η

ω2/v + vk2
γ

,

(34)

where we have defined

l� ≡
(∫ �

−�

dk⊥
2π

)−1

= π

�
= N

kB
(35)

as the length scale on which the patch fields can be localized.
The effects of the Landau parameters show up only at

order 1/N and as such can be ignored for the purposes of
computing the patch field correlators. For example, if we
consider the simple case where f γ ,γ ′

ρ = fρ is independent of
angle and f γ ,γ ′

j = 0, we can show that fρ modifies the φγ

correlators as

Gφ

γ ,γ ′ (k, ω) = 2π l�η

w2/v + vk2
γ

δγ ,γ ′

− 2π l�η

N
(
ω2 + v2k2

γ

)(
ω2 + v2k2

γ ′
)

× ω2 fρ

1 + fρω/
√
ω2 + v2k2

, (36)

where the square root in the last term comes from an angu-
lar integral over the Bose surface. The fact that the Landau
parameters only enter at order 1/N (provided they are smooth
functions of γ − γ ′) is true for essentially the same reason
as the statement that nonsingular Landau parameters cannot
destroy the quasiparticle in Fermi liquids,9 with the fact that
the leading contribution to the self energy goes as 1/N be-
ing a standard feature of large-N theories (this is essentially
equivalent to the fact that mean field theory becomes exact as
d → ∞).

In Fermi liquids, this means that destroying the quasiparti-
cle with interactions is difficult. In the present context we are
similarly unable to use the Landau parameters to make an or-
der 1 modification to the self energy, but since we are starting
from Luttinger liquids of arbitrary radius on each patch, we
are still able to construct a theory without quasiparticles, as
we will see shortly.

The above discussion by no means implies that the Lan-
dau parameters have no physical consequences (as they make
nonzero contributions to correlation functions involving inte-
grals over the Bose surface), and we will see that they play an
important role in some aspects of the phenomenology of the
BLL fixed point. We will however set both Landau parameters
to zero until we discuss this phenomenology in Sec. VII.

We now calculate the correlation functions of the vertex
operators eiφγ at the L0 fixed point. We find

〈eiφγ (x)e−iφγ ′ (0)〉
∼ δγ ,γ ′ exp

(
−2π l�vη

∫
d2k dω

(2π )3

eik·x+iωτ − 1

ω2 + v2k2
γ

)
, (37)

where the momentum integral is taken over the region
[−�,�]2. The integral in the exponent is

2π l�vη

∫
d2k dω

(2π )3

eik·x+iωτ − 1

ω2 + v2k2
γ

= −l�η

∫ �

−�

dk⊥
2π

(
ln

(
1

L

√
x2

‖ + τ 2v2 + 1

�L

)
eik⊥x⊥ + ln(�L)

)
, (38)

where L is an IR cutoff and x ‖ = x · γ, x⊥ = x · γ⊥.
When the perpendicular displacement x⊥ � �−1 the in-

tegral over k⊥ is trivial and simply cancels the factor of l�.
When x⊥ � �−1 the first logarithm term on the RHS of (38)
vanishes, and when this happens the remaining ln(�L) term is
uncanceled and sends (38) to −∞. Therefore we approximate
the vertex correlator as

〈eiφγ (x)e−iφγ ′ (0)〉 ∼ δγ γ ′δ�(x · γ⊥)

× 1

(1 + (�vτ )2 + (�x · γ )2)η/2 , (39)

where we have defined the function

δ�(x⊥) ≡
{

1, |x⊥| � �−1

0, else
. (40)

Before moving on, let us comment briefly on the range in
which our derivation of the correlation function (39) is valid.
To derive this correlator, we have ignored the terms in the
dispersion (20) depending on k⊥. If we reintroduce the k4

⊥/k2
B

term, the integral over k⊥ means that the integral in (38) no
longer diverges logarithmically at long distances x ‖ � �−1N
[29]. Thus strictly speaking, the eiφγ vertex operators have
power-law correlations only for distances �−1 � x � �−1N .
This is however an artifact of discretizing the Bose surface,
and the power-law behavior persists at all distances �−1 � x
in the limit N → ∞.

V. RG AND STABILITY

We are now interested in studying the stability of the fixed
point governed by the Lagrangian L0 in (27). We will find it

9This is only true in spatial dimensions greater than 1. In 1+1D we
have N = 2, and as we saw the Landau parameters do contribute an
order 1 term to the self energy.
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convenient to use an RG scheme which is slightly different
from the usual Fermi liquid approach [20,30], which avoids
any nonuniform re-scalings of spacetime. More details on this
RG scheme and an application to Fermi liquid phenomenol-
ogy can be found in Ref. [31].

To perform RG, we first write φγ (k, ω) = φ>
γ (k, ω) +

φ<
γ (k, ω), where φ>

γ (k, ω) consists of modes satisfying

s� <
√

(k · γ )2 + ω2/v2 < �, (41)

where

s = 1 − d ln � (42)

is a number slightly less than 1. We then integrate out the
φ>
γ , obtaining an effective action for the φ<

γ . Because after the
mode elimination the resulting patches are no longer square,
we further repartition the low-energy annulus into slightly
smaller square patches of size 2s� × 2s�, thereby increasing
the number of patches to N/s. Finally, we rescale the UV ψγ

fields as

ψγ �→ √
sψγ , (43)

which preserves the 1/N normalization in the patch decompo-
sition of ψ (18).

The RG flow of the couplings in LI is obtained by com-
paring the dimensionless couplings before and after the mode
integration. To evaluate the relevance of perturbations to L0,
we then need to know how to construct dimensionless param-
eters from the couplings appearing in LI .

In conventional scenarios, one is interested in RG flows
near a scale-invariant fixed point. In that case there is only one
scale in the problem (namely the cutoff �), and as such there
is a unique way of defining dimensionless coupling constants.
In the present context however there is another scale, namely
kB. The Bose momentum kB is a defining momentum scale of
the theory and does not change during mode elimination. This
means that if we make a given coupling constant g dimension-
less using powers of both kB and �, only the powers of � will
determine the RG eigenvalue of g.

To determine the flow of a given coupling constant g, we
then need to figure out the correct way of using powers of kB

and � to define a dimensionless coupling constant ḡ. Consider
for example the Landau parameters fρ appearing in the free
Lagrangian L f of (27). As it stands the fρ are dimensionless,
and since no powers of � appear in its contribution to the ac-
tion, it will be marginal under RG. However, we could equally
well keep fρ dimensionless while replacing the kB appearing
in (27) with �. In this case we would naively conclude that the
fρ are relevant under RG. How do we resolve this ambiguity?

To see the answer, recall that kB and � are related by N =
πkB/�. Thus different ways of making coupling constants
dimensionless differ from one another by powers of N . The
correct dimensionless couplings are then chosen in a way such
that the dimensionless couplings always make at most order
N0 contributions in perturbation theory to correlation func-
tions at the fixed point. If instead a dimensionless coupling
always makes Nn<0 contributions to correlation functions it
can be ignored, while if it can make Nn>0 contributions then a
perturbative RG analysis is invalid in the first place.

For example, it is easy to show that as in Fermi liquids,
the Landau parameters only appear in correlation functions in
the combinations f , f /N, f /N2, and so on. Thus the Landau
parameters are dimensionless and can be taken to be of order
1 as they appear in (27) and as such are indeed marginal [the
scaling of the 1/N2 in the Landau parameter term is canceled
by the multiplicative re-scaling of the ψγ fields appearing
in (43)].

The γ -index structure of the BCS term is the same as
that of the Landau parameters and similarly appears only in
the combinations gBCS/(N�3), gBCS/(N2�3), etc. Thus the
correct dimensionless coupling for the BCS interaction is

ḡBCS(γ − γ ′) ≡ 1

N�3
gBCS(γ − γ ′), (44)

so that LI can be written as

LI = kB�
2

N2

∑
γ ,γ ′

ḡBCS(γ − γ ′) cos(ϕγ ,γ ′ ). (45)

Thus the relevance of the BCS term is determined by compar-
ing the dimension of cos(ϕγ ,γ ′ ) to 2 and not to 3, the actual
dimension of spacetime [this is true even though there exist
correlation functions of cos(ϕγ ,γ ′ ) having power-law behavior
along all three spacetime directions].

With this in mind, let us now discuss how to integrate out
the fast modes. To do this, we will need to know correlation
functions of the fast field vertex operators eiφ>

γ . These are

〈eiφ>
γ (0)〉 = exp

(
−η

d ln �

2

)
≈ sη/2 (46)

and

〈eiφ>
γ (x,τ )e−iφ>

γ ′ (0)〉 = exp(η d ln �[δγ ,γ ′δ�(x · γ⊥)

× J0[�
√

(x · γ )2 + v2τ 2] − 1]), (47)

where we have used l�
∫

dk
2π eiqy ≈ δ�(y).

We can now integrate out the fast modes in the usual
manner. The lowest-order contribution in ḡBCS to the effective
action for the slow modes is

Seff ⊃ kB�
2

N2

∑
γ ,γ ′

∫
d3x ḡBCS(γ − γ ′)〈cos(ϕ<

γ ,γ ′ + ϕ>
γ ,γ ′ )〉,

(48)

where the expectation value is taken with the free action for
the φ>

γ fields and where ϕ
>/<

γ ,γ ′ is the fast/slow mode part of
ϕγ ,γ ′ . Separating out the cosine and using 〈sin(ϕ>

γ ,γ ′ )〉 = 0,
we have

Seff ⊃ kB�
2

N2

∑
γ ,γ ′

∫
d3x ḡBCS(γ − γ ′) cos(ϕ<

γ ,γ ′ )〈eiϕ>
γ ,γ ′ (0)〉

= kB(s�)2

N2
s2η−2

∑
γ ,γ ′

∫
d3x ḡBCS(γ − γ ′) cos(ϕ<

γ ,γ ′ ),

(49)

with s� the cutoff for the slow fields. The new dimensionless
coupling is then s2η−2ḡBCS, which determines the RG eigen-
value of ḡBCS to be

ycos(ϕγ ,γ ′ ) = 2 − 2η. (50)
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Thus the pairing interaction will be irrelevant provided that

η > 1. (51)

Loop contributions can be worked out in a similar fashion
using the propagators (47); doing this one finds

dḡl
BCS

dt
= (2 − 2η)ḡl

BCS − C
(
ḡl

BCS

)2
, (52)

where we have defined the harmonics ḡl
BCS =∫

dγ cos(lγ )ḡBCS(γ ) and where C is a positive constant.
Since we are working with spinless bosons we can
restrict to even harmonics with l ∈ 2Z [as ḡBCS(γ − γ ′) =
ḡBCS(γ − γ ′ + π )]. The most important difference with
respect to the case of Fermi liquids is that here the pairing
interaction ḡBCS is generically not marginal at tree level.

If the pairing term is irrelevant, the IR physics is simply
that of the BLL fixed point (27), which we will explore further
in the next section. Consider on the other hand the case where
the pairing terms are relevant. If there exist angular momen-
tum channels with ḡl

BCS < 0 we expect spontaneous symmetry
breaking to occur, with

〈φ+
γ 〉 = l∗γ + c. (53)

Here c is a constant (coming from the global U (1) symmetry),
l∗ is the angular momentum with the most negative ḡl

BCS, and
we have defined

φ±
γ ≡ φγ ± φγ ′ . (54)

In the symmetry-broken phase the φ+
γ are all given expecta-

tion values, while the φ−
γ are unaffected [since the φ−

γ are
neutral under the global U (1), they can never be gapped
out by pairing interactions). The resulting phase is thus a
rather unconventional paired superfluid, possessing a Bose
surface and described in the IR with the remaining fields φ−

γ .
This produces essentially the same IR theory as that of a
BLL arising from a system of real bosons, as we discuss in
Appendix A.

If all of the ḡl
BCS are positive,10 we cannot find a symmetry

breaking pattern for the φ+
γ which minimizes the cosines in the

pairing interaction. However, we see from the beta function
(52) that at least to quadratic order, the flow for positive cou-
plings is in fact towards a nontrivial fixed point with ḡl

BCS =
(2 − 2η)/C. We defer an exploration of this interesting fixed
point to future work.

Summarizing, we see that regardless of the value of η, there
are no relevant perturbations to the BLL fixed point which are
able to completely gap out the Bose surface. To pass into a
trivial gapped phase without explicitly breaking a symmetry,
one may tune the parameter μ in the UV Lagrangian (17) to
be negative or modify the dispersion such that kB is taken
to zero. One may presumably also pass to a Mott insulator
by condensing the vortices for the UV ψ bosons, although

10Even if all the bare couplings are positive, negative couplings still
have the potential to be generated by a bosonic version of the Kohn-
Luttinger mechanism [32]. As in Fermi liquids these effects are,
however, likely to be very small and in any case are only expected
to matter at rather large l .

as mentioned earlier these vortices are massive at the fixed
point and do not have a natural representation in terms of
the IR fields. Figuring out how to condense these vortices,
as well as identifying the nature of the phase transition and
resulting insulating state, are interesting questions that we
leave to future work.

Finally, it is also important to also address the question of
whether or not the BLL phase is stable with respect to small
modifications of the UV dispersion. We have so far assumed
a dispersion possessing rotational symmetry, but as we are
ultimately interested in theories emerging from UV lattice
models, this assumption will generically be violated.

Consider then adding a small perturbation which breaks
the continuous rotational symmetry of the dispersion down
to some discrete subgroup, like δε ∝ k4

x + k4
y . As long as the

change in the dispersion caused by this perturbation is small
compared to the energy scale at which the IR hydrodynamic
description sets in, it can be dealt with by adding terms de-
pendent on γ⊥ · ∇ to the dispersion for the φγ patch fields.
The leading terms will be linear in γ⊥ · ∇, but since these
become total derivatives in the φγ representation they can be
ignored. More generally, since the correlation functions for φγ

at the rotation-invariant fixed point do not depend on x · γ⊥,
the added terms dependent on γ⊥ · ∇ will not modify any
of the fixed-point correlation functions within perturbation
theory. Therefore the BLL phase is insensitive to rotation-
breaking perturbations to the dispersion, provided they are
small enough so that the fixed point Lagrangian (27) is still
a good starting point for describing the IR theory.

VI. GENERALIZATION TO FINITE DENSITY

Until now, we have been assuming the presence of a
particle-hole symmetry which fixes the average particle den-
sity ρ̄ to be zero.11 This limit is not required for stability of the
BLL fixed point, and the BLL is in fact a compressible phase
of matter, definable for a continuous range of densities. The
generalization to the finite-density case requires some care,
however, which we now explain.

Let us first look at the most obvious way of generalizing
the discussion above to finite density, which was the approach
taken in Ref. [15]. We start from the UV Lagrangian

L = ψ∗
(
∂τ − μ + 1

8mk2
B

(−∇2 − k2
B

)2
)
ψ + g

4
|ψ |4, (55)

where the average density is fixed by μ > 0 and g. Note that
we have not included a second order time derivative term
ψ∗∂2

τ ψ , on the grounds that it is irrelevant under the nonrela-
tivistic z = 2 scaling of the g = 0 fixed point.

Starting with this Lagrangian, we again decompose ψ into
patches and make the assumption that each patch field is

11Note that we are always distinguishing between the average
particle density [viz. the expectation value of the generator of the
U (1) symmetry, whose form depends on the structure of the time
derivative terms in the action) and the boson amplitude 〈|ψ |2〉. The
boson amplitude is nonzero in all of the phases we consider, while
the average particle density is nonzero only in the absence of particle-
hole symmetry.
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nearly a superfluid, so that we may write

ψγ →
√
ρ̄ + kB

2π
∇γ θγ eiφγ , (56)

where ρ̄ �= 0 is independent of γ and where kB∇γ θγ /2π
keeps track of long-wavelength fluctuations in the density
on each patch. The hydro fields φγ , θγ are acted on by the
microscopic U (1) as

U (1):φγ �→ φγ + c, θγ �→ θγ , (57)

for constant c, while translation along a vector μ acts via

Tμ:φγ (x) �→ φγ (x + μ) + kBμ · γ,

Tμ: θγ (x) �→ θγ (x + μ) + ρ̄

kB
μ · γ . (58)

Using this bosonized representation, the general hydrody-
namic IR Lagrangian we are led to consider is then L0 + L f +
LI , with LI containing the BCS pairing interactions and with
the first two terms given by

L0 = 1

N

∑
γ

(
ρ̄∂τφγ + kB

2π
∇γ θγ ∂τφγ + β(∇γ φγ )2

)

L f = 1

N2

∑
γ ,γ ′

(gθ (γ − γ ′)∇γ θγ ∇γ ′θγ ′

+ gφ (γ − γ ′)∇γ φγ ∇γ ′φγ ′ ), (59)

where β ∼ ρ̄/2m and where the first term in L0 comes from
the ψ∗∂τψ term in (55).

We then integrate out the θγ fields, producing a term cou-
pling the ∂τφγ on different patches. Doing this, we get

L0 = kB

4πNη

∑
γ

v(∇γ φγ )2

L f = kB

4πN2η

∑
γ ,γ ′

(
v−1 f γ ,γ ′

ρ ∂τφγ ∂τφγ ′

+ v f γ ,γ ′
j ∇γ φγ ∇γ ′φγ ′

)
, (60)

where η, f γ ,γ ′
ρ , f γ ,γ ′

j are again all dimensionless nonuniversal
parameters.

The most important difference between (60) and the theory
with particle-hole symmetry (27) is that here the only term
producing stiffness for charge density fluctuations is the f γ ,γ ′

ρ

Landau parameter term arising from the density-density inter-
actions of the ψγ fields. The fact that there is no (∂τφγ )2 term
in the first line of (60) is due to the absence of the ψ∗∂2

τ ψ term
in the UV Lagrangian, which provides a nonzero stiffness
to the density fluctuations coming from the rest energy of
the charges. In the absence of this term, there is nothing to
provide an O(N0) stiffness for the charge fluctuations, since
the Landau parameters only modify correlation functions of
the φγ fields at order 1/N . As a result, physical properties of
the phase, including correlation function exponents, acquire
explicit N dependence. Unlike in Ref. [15], our view here is
that such dependence is unphysical (as N flows under RG, for

example), and as such we do not regard this approach as a
route to obtaining a stable BLL phase.12

Fortunately, we will now argue that the reasoning leading
to (60) is a bit too hasty. Indeed, we claim that instead of (55),
the correct UV starting point is a Lagrangian containing a term
with a quadratic time derivative, with

L ⊃ ψ∗
(
∂τ − μ − λm

k2
B

∂2
τ

)
ψ, (61)

where λ is a dimensionless parameter. While the λ term is
irrelevant under the z = 2 UV scaling, in the IR variables
φγ , θγ , the λ term in fact has the same scaling dimension as
the linear ∂τ term [as it becomes ∼N−1 ∑

γ (∂τφγ )2 in the IR
representation], and therefore it should be kept.

In particular, we will be interested in situations where the
renormalized value of λ is of order 1. The amount of RG
time required to reach the IR regime where λ is marginal
need not be very long and depends on the exact values of
the microscopic parameters (some further discussion can be
found in Appendix B). Thus this assumption does not require
any particular fine tuning.

With the λ term, the IR theory includes an O(N0) patch-
diagonal (∂τφγ )2 term, giving the charge density fluctuations a
finite stiffness as N → ∞. The IR theory at finite density thus
takes on the same form as in the zero-density case (provided
that the UV value of λ is not too small), and as such the BLL
phase is a compressible phase of matter.

Finally, let us understand how the BLL reacts to a change in
the average density ρ̄. As a compressible phase there is essen-
tially no change in the gapless sector described by the phase
modes φγ . However, much like in the familiar superfluid
phase, the gapped vortices will see the average particle density
as an effective background magnetic field. Thus translations
will act projectively on these vortex degrees of freedom. As
the particle density is changed the effective background mag-
netic field will change, and accordingly so to will the action of
magnetic translations on the vortices. This is the main effect
of changing the density and is sufficient to ensure that the low
energy theory has the correct action [25] of translation when
a uniform 2π magnetic flux is turned on. See Ref. [27] for a
discussion of these issues in a simpler context.

VII. PHENOMENOLOGY

We now make some brief comments on the phenomenol-
ogy of the BLL fixed point, assuming η > 1 so that the pairing
interactions in (30) are irrelevant. In some aspects the phe-
nomenology is similar to Fermi liquids, but in other aspects it
is rather different.

A. Thermodynamics

Since the IR theory is given by a collection of compact
bosons with exactly marginal current-current interactions, the
specific heat C will always be linearly proportional to T ,

12In 1+1D this is not an issue, since there we have N = 2, and the
Landau parameters make a nonzero contribution to the correlation
functions of the patch fields.
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as in a Fermi liquid. To get an exact expression for C we
would need to diagonalize the Hamiltonian resulting from the
Lagrangian (27), which is nontrivial when the Landau pa-
rameters are nonzero. However, the Landau parameters only
enter C at order 1/N and as such can be ignored. Since the
specific heat (density) of a nonchiral 1+1D boson dispersing
as w = vk is C1+1D = πT/3v, we then have

C = πT

3v

2πkB

2π
= πkBT

3v
. (62)

Here kB should not be confused with Boltzmann’s constant,
which is set to unity throughout.

The compressibility is calculated from the connected
density-density correlator, the low-momentum part of
which is

χρρ (k, ω) = 2

(
kB

4πvNη

)2 ∑
γ ,γ ′

ω2〈φγ (k, ω)φγ ′ (−k, ω)〉.

(63)

The compressibility is obtained from this correlation function
by taking the limit ω → 0 after setting k = 0. Since the cur-
rent Landau parameters f γ ,γ ′

j do not contribute to correlation
functions of the φγ fields at k = 0 the compressibility will
not depend on them, and without loss of generality we can set
them equal to zero.

From the above we see that χρρ is proportional
to 〈φ0(k, ω)φ0(−k,−ω)〉 where the charge mode φ0 is
defined as

φ0 ≡
∫

dγ

2π
φγ , (64)

so that the compressibility is only sensitive to the ze-
roth Fourier mode f (0)

ρ = ∫ dγ
2π f γ

ρ . Computing the correlation
function with (36), we then find for the compressibility

κ = 2N

(
kB

4πvNη

)2

2π l�vη

(
1 − f (0)

ρ

1 + f (0)
ρ

)
= kB

4πvη

1

1 + f (0)
ρ

, (65)

which parametrically is the same as in a Fermi liquid, but with
kF replaced by kB.

B. Zero sound

Even though there is no quasiparticle having finite over-
lap with the UV boson ψ (due to the continuous exponent
appearing in the eiφγ correlators), these theories can host col-
lective zero sound modes in a manner similar to Fermi liquids.
Charge and momentum are carried by separate fields, and as
such we can consider collective modes in either the φγ phase
variables or in the θγ density variables.

For example, consider the case where f γ ,γ ′
ρ = fρ, f γ ,γ ′

j =
f j are both constants, so that the fixed-point Lagrangian reads
(now in real time)

L = kB

4πNη

∑
γ ,γ ′

φγ (ω2v−1(δγ ,γ ′ + N−1 fρ )

− kγ kγ ′v(δγ ,γ ′ + N−1 f j ))φγ ′ . (66)

The equation of motion for φγ reads

φγ = 1

N
(−ω2 + v2k2

γ

) ∑
γ ′

( fρω
2 − f jkγ kγ ′ )φγ ′ . (67)

We now sum over γ and replace N−1 ∑
γ → ∫ dγ

2π . We see
then that the f j term drops out and that the equation of motion
becomes

φ0 = fρω
2
∫

dγ

2π

1

−w2 + v2k2 cos2 γ
φ0. (68)

Nonzero solutions exist provided that ω/vk > 1 (so as to
avoid the pole in the denominator), for which we can solve
the above equation to find

fρ = −
√

1 −
(

vk

ω

)2

, (69)

in terms of which

ω = vk√
1 − f 2

ρ

. (70)

Therefore zero sound modes arise at ω > vk as long as −1 <

fρ < 0. Note that as in a Fermi liquid, the zero sound velocity
is always greater than v.

Collective modes of the dual θγ fields are analyzed in a
similar way. When we rewrite the free action in terms of the
θγ fields, we find

L = kBη

4πN

∑
γ ,γ ′

θγ (ω2v−1(δγ ,γ ′ + N−1 f̃ρ )

− kγ kγ ′v(δγ ,γ ′ + N−1 f̃ j ))θγ ′ , (71)

where the dual Landau parameters are

f̃ρ = − f j

1 + f j
, f̃ j = − fρ

1 + fρ
, (72)

which follows from (1 + aC)−1 = 1 − a
1+aC, where C is the

N × N matrix with each entry equal to 1/N . Therefore using
the same steps as above we conclude that regardless of f̃ j ,
a collective mode in θ0(ω, k) ≡ ∫ dγ

2π θγ (ω, k) exists provided
that ω/vk > 1 and −1 < f̃ρ < 0, with the dispersion being

ω = vk/
√

1 − f̃ 2
ρ . Thus couplings of the U (1) charge densities

give rise to collective phase modes, while couplings of the
U (1) current densities give rise to collective density modes.

C. Real-space correlation functions

We now turn to studying the long-distance behavior of
various correlation functions of the UV bosons ψ . When
doing this, it is important to retain the subleading terms
in the dispersion (20) in order to account for the fact that
the Bose surface curves slightly within each patch. These
effects show up on length scales larger than ∼kB/�

2 and
were not important when performing RG in the previous
section, since the RG eigenvalues are calculated using the
correlation functions of the fast fields at zero spacetime
separation. When computing long-distance correlation func-
tions however, the curvature within each patch must be
accounted for.
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To do this, we refine each patch field ψγ as

ψγ (x) =
∫ γ+�/kB

γ−�/kB

dγ ′

2π
eikB (γ ′−γ )·x ψ̃γ ′ (x), (73)

with ψ̃γ (x) supported on an infinitesimally thin sliver of mo-
mentum space oriented along the γ ′ direction. As we did for
the ψγ fields, we then continue to assume that we may work
in a phase representation with ψ̃γ ∼ eiφ̃γ . The free Lagrangian
L0 is still diagonal when written in terms of the φ̃γ ,13 and we
find that the eiφ̃γ have correlation functions

〈eiφ̃γ (x)e−iφ̃γ ′ (0)〉 = δγ ,γ ′
1

(τ 2 + (x · γ )2)η/2 , (74)

with the only difference compared to the eiφγ correlators being
the complete independence on x · γ⊥ (now and in the follow-
ing, we will not be explicitly writing out the regularization by
the UV cutoff or unimportant constant factors). The correla-
tion function for the φγ fields with the curvature in each patch
taken into account is therefore

〈eiφγ (x)e−iφγ (0)〉 ∼
∫ γ+�/kB

γ−�/kB

dγ ′

2π
eikB (γ ′−γ )·x

× 1

(τ 2 + (x · γ ′)2)η/2
. (75)

We now calculate the correlation functions of the UV
bosons at long spacetime distances, x� � 1. We find

χ (x, τ ) = 〈ψ (x, τ )ψ†(0)〉

∼
∫

dγ

2π
〈eiφ̃γ (x,τ )e−iφ̃γ (0)〉

∼
∫

dγ

2π

eikBx cos γ

(τ 2 + (x cos γ )2)η/2 . (76)

Consider now the case of purely spatial separation, with
τ = 0. Since we are interested in xkB � x� � 1, only the an-
gular regions near the stationary points of the exponential (viz.
γ = 0, π ) contribute significantly to the integral. Therefore
we can ignore the cos γ in the denominator, with the integral
over γ then producing a term proportional to J0(kBx � 1) ∝
(kBx)−1/2 cos(kBx − π/4), and hence the leading contribution
to χ (x, τ ) takes the form

χ (x, 0) ∼ cos(kBx − π/4)

xη+1/2
, (77)

which decays faster than any of the eiφ̃γ by virtue of destruc-
tive interference from multiple patches. The phase shift of π/4
in (77) is the same as one finds in Fermi liquids; unlike in
Fermi liquids however, the exponent of the power law in (77)
is continuously tunable.

13Since ψ̃γ is completely delocalized along x · γ⊥, the ψ̃γ fields are
not well suited for dealing with couplings between different angles
on the Bose surface, which is why we did not make use of them
above. These off-diagonal couplings however do not enter into the
expression for the ψ correlator, and so for the present purposes it is
better to calculate with the ψ̃γ fields.

Using the Fourier transformation of the patch vertex op-
erators (75), we see that the equal-time momentum-space
expectation value of the ψ fields is (recall that η > 1 for
stability)

〈ψkψ
†
k〉 ∼ |k − kB|η−2. (78)

Note that if we were to use the approximation [15,18]
where the dispersion in patch γ is a function only of k · γ ,
we would not be able to reproduce the π/4 phase shift and
the added factor of 1/2 in the power law (77). Thus the ψ

correlator is sensitive to the smoothness of the Bose surface
and in order to obtain the correct correlation functions is
essential to integrate over the whole Bose surface.

As a final example we can calculate the “Kohn anomaly”
present at the fixed point, by examining how the correlation
function of ψ†ψ behaves at momenta with magnitude close to
2kB. In real space, we have

〈(ψ†ψ )(x, τ )(ψ†ψ )(0)〉

∼ 1

N2

∑
γ ,γ ′

eikBx(cos γ−cos γ ′ )

[(τ 2 + (x cos γ )2)(τ 2 + (x cos γ ′)2)]η/2
. (79)

We will be interested in the Fourier transform of this expres-
sion at zero frequency and at momentum with magnitude close
to 2kB. Since we are using a UV cutoff at the length scale �−1,
we will always have kBx � 1 when Fourier transforming.
Therefore again only the points of stationary phase (γ , γ ′ =
0, π ) will contribute significantly to the angular integrals,
allowing us to drop the γ , γ ′ dependence in denominator. So
then since k ≈ 2kB also means kx � 1, the dominant part of
the integral is

〈ψ†ψ (k, 0)ψ†ψ (−k, 0)〉

∼
∫

dτ dx dθ dγ dγ ′ xeix(−k cos θ+kB[cos γ−cos γ ′])

(τ 2 + x2)η

∼
∫

dx
cos(kx − π/4) cos2(kBx − π/4)

x2η−1/2k1/2

∼
∫

dx
cos(x[k − 2kB] + π/4)

x2η−1/2k1/2

∼ Re[(2kB − k)2η−3/2]. (80)

Note that if η is such that the ψ fields have the scaling dimen-
sions of fermions (η = 1), we get the same square root as in
2D Fermi liquids (recall that the interactions are irrelevant for
η > 1). In this case the singularity in (80) is one sided and
visible only at k > 2kB (since the real part of

√
2kB − k then

vanishes). For generic values of η, however, the singularity is
two sided and visible for momentum transfer less than kB.

D. Electromagnetic response

We now discuss the electromagnetic response of the BLL
fixed point to determine if it is a superfluid, metal, or insulator.
To do this we consider the response of the BLL phase to a
background gauge field A for the microscopic U (1) symmetry,
setting the Landau parameters to zero for simplicity.
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The background field enters the fixed-point action by cou-
pling minimally to the φγ fields as14

L[A] = kB

4πNη

∑
γ

(v−1(∂τφγ − Aτ )2 + v(∇γ φγ − A · γ )2).

(81)

We now integrate out the φγ fields to obtain the following
effective Lagrangian for A:

Leff [A(k, ω)] = kB

4πηv

∫
dγ

2π
Aμ�

μν
T ;γ Aν, (82)

where �
μν
T ;γ is the transverse projector in the spacetime plane

(x · γ, τ ). Explicitly,

Leff [A(k, ω)] = kBv

4πη

∫
dγ

2π

A2
τ k2

γ + A2
γ ω

2 − 2AτAγ kγ ω

ω2 + v2k2
γ

.

(83)

This expression is simplest in Coulomb gauge ∇ · A = 0,
which we will adopt in what follows. Evaluating the integrals,
we find

Leff [A(k, ω)]= kBv

4πη

(
A2

τ ζ
2v−2

1 + ζ 2+
√

1 + ζ 2
+ A2

1 +
√

1 + ζ 2

)
,

(84)

where we have defined ζ ≡ vk/ω.
Consider a scenario where Aτ = 0, with A tending to a

constant. We can approach this in two limits, depending on
whether we take ω → 0 first followed by k → 0 or take the
limit in the opposite order. The first limit corresponds to in-
troducing a static transverse vector potential. A finite response
in this limit implies Meissner screening and superfluidity. On
the other hand, a finite response in the opposite order of limits
only implies a finite Drude weight [33,34].

If we first set ω = 0 and then take k → 0, we send ζ → ∞
in (84) and conclude that

Leff [A(k → 0, ω = 0)] = 0. (85)

Therefore, like a Fermi liquid, the BLL has zero phase
stiffness—thus there is no Meissner effect, and the BLL is not
a superconductor.

If we now consider the opposite order of limits with ζ → 0,
we see that

Leff [A(k = 0, ω → 0)] = kBv

8πη
A2. (86)

Therefore also like a Fermi liquid, the BLL has a finite Drude
weight D, given by

D = kBv

4η
. (87)

14One way to double check this expression is to rewrite the La-
grangian in terms of the Fourier modes φl = ∫ dγ

2π eilγ φγ . Only φ0 is
charged under the microscopic U (1) symmetry, and so the theory can
be gauged by minimally coupling A to φ0. This gives the same answer
as minimally coupling to the φγ fields directly; see Appendix C
for details.

Note that this is parametrically the same as the Fermi liquid
result DFL = πn/m (in e = 1 units), provided that we identify
m with kB/v and n with k2

B/4η. We conclude that the BLL is
an example of a Bose metal.

VIII. BLLS IN 3+1D

In previous sections we have mostly focused on BLLs in
2+1D, but the generalization to 3+1D is straightforward.
We consider the same type of Lagrangian as in (17), with
a dispersion possessing minima along a sphere of radius kB.
We then proceed by performing a patch decomposition of the
Bose surface. We take each patch γ to be a box of size �3

centered at γ , where now γ lies on the unit S2. The number of
patches is accordingly

N = 4πk2
B

�2
. (88)

Following the same logic as in previous sections we arrive
at the Lagrangian L0 + LI , with LI containing symmetry-
allowed interactions and with L0 given by

L0 = k2
B

4πNη

∑
γ

(v−1(∂τφγ )2 + v(∇γ φγ )2)

L f = k2
B

4πN2η

∑
γ ,γ ′

(
v−1 f γ ,γ ′

ρ ∂τφγ ∂τφγ ′

+ v f γ ,γ ′
j ∇γ φγ ∇γ ′φγ ′

)
. (89)

The only differences with respect to the 2+1D action are the
factors of k2

B up front (from dimensional analysis) and the fact
that now the Landau parameters are functions of zγ,γ ′ ≡ γ ·
γ ′ ∈ [−1, 1].

As in two dimensions, cosines in the dual variables θγ are
forbidden from appearing in LI . The most relevant term in LI

is again the BCS pairing interaction. Following the same logic
as in Sec. V, we write it as

LI ⊃ k2
B�

2

N2

∑
γ ,γ ′

gBCS(zγ ,γ ′ ) cos(ϕγ ,γ ′ ), (90)

with gBCS dimensionless, and with ϕγ ,γ ′ defined as before in
(31). As in two dimensions the relevance of this term is found
by comparing the dimension of cos(ϕγ ,γ ′ ) with 2, so that as
before the pairing interaction is irrelevant if η > 1.15

The properties of the free fixed point (89) are all rather
similar to the 2+1D case. The vertex operators eiφγ now have
correlation functions

〈eiφγ (x)e−iφγ ′ (0)〉 ∼ δγ γ ′δ�(x · γ⊥,1)δ�(x · γ⊥,2)

× 1

(1 + (�vτ )2 + (�x · γ )2)η/2 , (91)

15As in Fermi liquids, there are additional momentum-conserving
two-body interactions present in three dimensions, known as non-
forward scattering interactions [20]. Using the RG framework of
Ref. [31], one can show that these interactions are always less rel-
evant than the BCS pairing interaction and as such can be ignored.
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where γ⊥,1, γ⊥,2, γ constitute an orthonormal triad. Similarly,
the leading part of the equal-time UV boson correlation func-
tion at distances x � k−1

B is now

χ (x, 0) ∼
∫ 1

−1
dz

eikBxz

(1 + (�xz)2)η/2 ∼ sin(kBx)

xη+1
. (92)

The remaining aspects of the phenomenology can all be
worked out in the same fashion as in Sec. VII.

IX. ELECTRON TRANSPORT IN A BLL

In this section we discuss a situation wherein a metallic
state of electrons coexists with a BLL. In such a setting,
electron scattering off of the large density of low energy
excitations of the BLL contributes to the resistivity, which we
will show leads to an unusual temperature dependence of the
form

ρ ∼ T η, (93)

where η > 1 is the exponent controlling correlation functions
at the BLL fixed point.

In particular, we will discuss a potential BLL arising in
a metallic helimagnet in 3+1D, which may be realized for
example in the B20 intermetallic compounds like MnSi and
FeGe [23,35–40]. We now briefly review the experimental
situation in these systems, focusing on MnSi for concreteness.

At ambient pressure, this system is a ferromagnetic metal,
with a small DzyaloshinskiiMoriya (DM) interaction favoring
the development of long-wavelength spiral ordering in the
magnetization [41]. The direction of the spiral ordering is
determined by weak crystalline anisotropies, which pins the
ordering along directions related by cubic symmetry [42,43].

As the pressure is increased, a first-order transition into a
paramagnetic phase is observed [35]. This phase exhibits two
remarkable properties. First, the spin degrees of freedom are
seen to exhibit “partial ordering:” The direction of the spiral
ordering is no longer pinned, but the magnitude of the order-
ing wave vector remains well defined, with neutron-scattering
experiments seeing a nearly uniform intensity over a small
sphere in momentum space [36]. Secondly, the resistivity is
found to take on a non-Fermi liquid form, with ρ ∼ T 3/2

across the high-pressure phase [14]. In what follows we will
see how both of these facts may be explained by modeling the
spin fluctuations in the paramagnetic phase as a 3+1D BLL.

To describe the spin fluctuations in the paramagnetic phase,
we use a Landau-Ginzbarg Lagrangian for the magnetization
vector M, whose potential part quadratic in M contains the
terms

LM ⊃ (∇M)2 + rM2 + 2kBM · (∇ × M), (94)

where the wave vector kB determines the strength of the
DM interaction. To deal with the DM term, we follow
Ref. [23] and decompose the vector M into its constituent
polarizations as

Ma(x) =
∫

d3q

(2π )3
eiq·x

×
(
εa

1Ml,q + εa
2 + iεa

3√
2

M+,q + εa
2 − iεa

3√
2

M−,q

)
,

(95)

where ε1 = q/q and where ε1, ε2, ε3 constitute an orthonor-
mal triad. Substituting this representation into (94), we see
that the DM term becomes

2kBM∗
q · (iq × Mq) = 2kBq(|M+,q|2 − |M−,q|2). (96)

The lowest energy mode is then M−, which from now on we
will write simply as M. Ignoring the higher-energy Ml and M+
modes, we then have

LM ⊃ (
(q − kB)2 − k2

B + r
)|Mq|2, (97)

so that the dispersion of M has a degenerate minimum along
a sphere of radius kB.

Motivated by the fact that neutron scattering sees a nearly
uniform intensity over a sphere in momentum space [36], we
make the assumption that the spin fluctuations can be captured
by a 3+1D BLL formed from the negative polarization mode
M, with the Bose surface being a sphere of radius kB.

We will now compute the consequences that this assump-
tion has for the behavior of the itinerant electrons, which for
simplicity we will take to form a Fermi gas with a spherical
Fermi surface. Including the coupling between the electrons
and the spin fluctuations, the Lagrangian we are interested in
is then

L = LM + Lc + LcM,

Lc = c(∂τ − εk )c

LcM = g c̄ασ
a
αβcβ Ma, (98)

where LM is a BLL action for M of the form written down in
(89), εk is the electron dispersion, and where the Ma in LcM

implicity only contains the negatively polarized piece. In what
follows we will assume that the radius of the Bose surface
is much smaller than that of the Fermi surface (kB/kF � 1),
which is known to be the case in MnSi [36].

The term LcM will induce a finite scattering rate for the
electrons. To determine this scattering rate, we will need to
compute the contribution of the interaction term LcM to the
imaginary part of the electron self energy �. The term which
contributes to � at lowest order in g is

�(K, iω f )

= g2T
∑
ωb

∫
d3q

(2π )3
Gc(K − q, i(ω f − ωb))χM (q, iωb),

(99)

where ω f and ωb are fermionic and bosonic Matsubara fre-
quencies, respectively, Gc is the bare electron Greens function,
and χM is the magnetic susceptibility of the BLL.

The imaginary part of � is determined by employing a
spectral representation for Gc and χM , with the spectral func-
tions Ac ≡ −π−1Im[Gc] and AM ≡ −π−1Im[χM]. Writing Gc

and χM in terms of Ac and AM , and resolving the Matsubara
sum by integrating against the Bose distribution nB, we have

�(K, iω f )

= −g2
∫

d3q

(2π )3
d�1 d�2 (nB(�2) − nB(iω f − �1))

× Ac(K − q,�1)AM (q,�2)

iω f − �1 − �2 + iη
. (100)
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Since ω f is a fermionic Matsubara frequency we may write
nB(iω f − �1) = nF (�1) − 1, with nF the Fermi function. Do-
ing this and continuing to real frequencies, we then take the
imaginary part and obtain

�′′(K, ω)

= πg2
∫

d3q

(2π )3
d�1 d�2 δ(ω − �1 − �2)

× (1 + nB(�2) − nF (�1))Ac(K − q,�1)AM (q,�2).
(101)

Since the electrons are noninteracting in the absence of their
coupling to the spin fluctuations, the electron spectral function
is simply

Ac(k,�) = δ(� − εk ), (102)

so that

�′′(K, ω) =πg2
∫

d3q

(2π )3
(1 + nB(ω − εK−q) − nF (εK−q))

× AM (q, ω − εK−q). (103)

The spectral function for the M field is determined from the
patch correlator (91) after Fourier transforming and continu-
ing to real frequencies as

AM (q,�) = A0

θ (�2 − v2q2
‖ )

(�2 − v2q2
‖ )

2−η

2

, (104)

where A0 is a constant and q ‖ ≡ q − kB as before.
We will first compute the T = 0 scattering rate, working

on-shell with ω = εK. We will take K to lie just outside the
Fermi surface, with

k ≡ |K| − kF � kB � kF . (105)

In this case we have

�′′(K, εK ) =πg2
∫

d3q

(2π )3
θ (εK−q)θ (εK − εK−q)

× AM (q, εK − εK−q). (106)

The region of momentum space contributing to this integral
can be determined with the help of Fig. 3. The vector K
is shown in orange, with its tip marking the origin of the
coordinates for the q integral. The Fermi sphere is drawn
in gray, and a sphere of radius kB is drawn in purple. Since
kB � kF , we will approximate the Fermi surface as flat within
a neighborhood of size ∼kB around K. The first constraint
comes from the θ function in the M spectral function (104),
which tells us that

εK − εK−q ≈ vF q⊥ > vq ‖ , (107)

where q⊥ ≡ q · K/K . Second, the presence of the two θ func-
tions in (106) restricts the integral over q to be such that
q⊥ < k and 0 < q⊥. These two θ functions restrict the range
of q to the region in Fig. 3 bounded by the two planes
which intersect the purple sphere along the two vertical purple
circles.

FIG. 3. The geometry of the scattering processes contributing to
�′′. A portion of the Fermi surface is drawn in gray, with the tip of
the vector K lying just outside the Fermi surface. The purple sphere
has radius kB and is centered on the tip of K. The two vertical purple
circles are separated by a distance of k = |K| − kF .

We may now do the integral, which gives

�′′(K, εK ) = πg2A0
2πkB

(2π )3

∫ k

0
dq⊥

×
∫ vF q⊥/v

0
dq ‖

1

((q⊥vF )2 − (q ‖ v)2)
2−η

2

= C
g2kB

vF v
ε
η

k , (108)

with εk = vF k and with the constant

C = A0�(η/2)

8
√
πη�((1 + η)/2)

. (109)

Since η > 1 is needed for stability, the scattering rate vanishes
faster than εk as K approaches the Fermi surface, and the
quasiparticles remain well defined. As such the electrons re-
main in a Fermi liquid state, albeit one with a faster scattering
rate than in a conventional Landau Fermi liquid (provided that
η < 2).

To extract the transport lifetime of the quasiparticles from
the above scattering rate, we need only multiply �′′ by 1 −
cos θ , where θ is the typical scattering angle. In the present
situation θ ≈ kB/kF � 1, and so the transport scattering
rate is

�tr (ε,T = 0) = k2
B

2k2
F

�′′ ∝ εη. (110)

Extending this result to finite T , the scattering rate is deter-
mined by scaling to be of the form

�tr (ε,T ) = AT ηF

(
ε

T

)
, (111)
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where A is a nonuniversal constant, and F is a universal
function. We thus obtain a contribution to the DC resistivity
proportional to T η, η > 1.

Of course in the present BLL+Fermi liquid theory the ex-
ponent η is nonuniversal, and there is no a priori reason why it
should take on the exact value of 3/2 observed in experiments.
However, a value of η ≈ 3/2 is certainly possible, and as
such the BLL + Fermi liquid model provides one possible
explanation for the observed non-Fermi liquid behavior (with
this explanation having the advantage of being particularly
simple from an analytical standpoint).

X. DISCUSSION

In this work we studied systems of translationally-invariant
bosons (at both zero and nonzero densities) dubbed “Bose-
Luttinger liquids” (BLLs). These phases of matter possess
Bose surfaces and large emergent symmetry groups, and have
regions of parameter space in which they are stable with
respect to all symmetric perturbations. They lack quasiparti-
cles and have continuously varying exponents but also have
phenomenology which is similar to Fermi liquids in some
respects. There are many further questions that would be
interesting to explore in future work.

First, it would be desirable to have a better understanding
of where BLLs are likely to show up in experiment. We have
examined the example of MnSi in some detail, but it would
be nice to explore other physical realizations further, such
as pairing in FFLO superconductors and rotons in superfluid
helium.

In this paper we have only concerned ourselves with the
phenomenology and stability of various BLL fixed points.
One question to address is the ways in which the BLLs studied
here can be connected to other phases of matter. As was
already mentioned, one possibility is to study the transition
driven by condensing vortices in the phase of the UV boson
field. It would be interesting to understand how to perform this
condensation in detail, as well as the nature of the resulting
Mott insulating state one obtains in this way.

One straightforward generalization of our work is to BLLs
with generically-shaped Bose surfaces, beyond the simplest
cases of the spherical Bose surfaces considered in the present
work. As in Fermi liquids, the stability analysis of the IR
theory will depend on the shape of the Bose surface, which
will affect the types of symmetry-allowed perturbations to
the fixed point one is allowed consider. It is also possible to
consider fixed points where the anomalous dimension η varies
over the Bose surface. A scenario like this can occur if the
momentum dependence of the microscopic interaction favors
the average patch density ργ to be a nontrivial function of γ

or if small rotation symmetry breaking terms are included in
the dispersion of the UV bosons. Finally, it would be nice to
have a more careful method of determining how the curvature
of the Bose surface shows up in physical quantities and in RG
flows, in a way which goes beyond the rather artificial patch
construction employed here.

The BLLs constructed in this paper were approached by
thinking of them as a large number of coupled Luttinger
liquids. However, in principle one could imagine constructing
IR theories out of other types of 1+1D CFTs, with one CFT

living at each point on the Bose surface. At present it is not
clear how exactly one would go about coupling the CFTs at
each Bose surface point together or whether there are any
particular constraints on types of CFTs that can be chosen if
the theory is to be regarded as arising from a UV lattice model
of bosons.

A final set of questions to address in future work relates to
our treatment of the IR patch theory. First, it would be useful
to have a more detailed understanding of when exactly our
assumption about the uniform amplitude ordering of the ψγ

patch fields is justified. Secondly, it would be nice to find a
way of dealing with the IR theory which does not rely on
the patch decomposition used here—within this framework
a discussion of the emergent LU (1) symmetry at the fixed
point is rather awkward, as are issues relating to quantiza-
tion and questions of duality between the phase and density
fields. A more careful analysis of the field theories discussed
here potentially would involve issues similar to those encoun-
tered in the analysis of the fractonic field theories studied in
Refs. [7,8,44,45].
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APPENDIX A: REAL BOSONS

In the main text we focused on theories of conserved com-
plex bosons. One natural question to ask is whether the U (1)
charge conservation symmetry is in fact necessary for the real-
ization of a stable BLL phase or whether translation symmetry
alone is sufficient. This is an important question to address,
as there are several scenarios in which we could imagine
nonconserved bosons with the desired dispersion arising in
experiment.

One example is the superfluid phase of liquid He4, where
the low-energy excitations are the sound mode and the roton.
The latter has a dispersion possessing a minimum along a
sphere in momentum space, and while the roton gap �R is
finite in the superfluid phase, �R is small and can be decreased
by applying pressure. It is then perhaps not too outlandish to
imagine a phase of He4 governed by a fixed point similar to
the BLL described in the main text.

1. 1+1D

As in the case of conserved bosons, it is easiest to warm up
by looking at an example in 1+1D. We start by considering
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the Lagrangian

L = 1

2
�

(
−v−1∂2

τ + v

4k2
B

( − ∂2
x − kB

)2 + r

)
� + g

24
�4.

(A1)

We will be interested in the regime where r < 0.
We start by breaking up � into left and right components

�L/R(x) =
√

2
∫

dk

2π
eikx�(±kB + k), (A2)

where the integral is over an interval of length 2�. Due to the
reality of � the left and right fields are not independent, and
in fact constitute a single complex field

ψ ≡ �L = �∗
R. (A3)

In terms of ψ the Lagrangian is then (after dropping irrelevant
terms)

L = ψ∗(−v−1∂2
τ − v∂2

x + r
)
ψ + g

4
|ψ |4. (A4)

Therefore the IR theory is simply that of an XY model, with
lattice-scale translations providing the U (1) symmetry, which
acts as ψ �→ eikBaψ .

The analysis then proceeds as in the case with complex
bosons at zero density, except with half the number of fields
due to the reality constraint. We work in terms of a phase
field φ and its dual θ , with only φ transforming nontrivially
under translation. Writing ψ = (r0 + r)eikBx+iφ , the IR theory
at energy scales below the mass of the r field is

L = 1

4πη
(v−1(∂τφ)2 + v(∂xφ)2) + gcos(θ ) + · · · , (A5)

where the . . . are less relevant symmetry-allowed interactions.
When η < 1/4 the cosine is irrelevant and we obtain a single
free boson, while for η > 1/4 the IR theory is gapped and
trivial. The only novelty about the gapless theory is kB oscilla-
tions in the correlation functions of the UV boson; otherwise
the physics is simply that of the XY model.

2. 2+1D

We now move on to 2+1D and consider a UV Lagrangian
of the form

L = L0 + LI

L0 = 1

2
(∂τ�)2 + β

2
((|∇| − kB)� )2 + r

2
�2

LI = λ

6
�3 + g

24
�4, (A6)

with r < 0. As usual, we define slowly fluctuating fields �γ

by breaking up � into N momentum-space patches as

�(x, τ ) = 1√
N

∑
γ

�γ (x, τ )eikBγ·x, (A7)

with each patch of size 2� × 2�. Each �γ (x, τ ) is a complex
field, but the reality of �(x, τ ) imposes the constraint

�γ (x, τ )∗ = �γ+π (x, τ ). (A8)

When written in terms of the �γ fields the resulting IR La-
grangian is essentially the same as the the theory in (17), but

with two differences: the identification (A8) and the absence
of a microscopic U (1) symmetry.

As usual, we now write �γ ∼ ei�γ . The reality constraint
on the �γ reads

�γ = −�γ+π , (A9)

with the angle γ now only running between 0 and π . Transla-
tion symmetry acts on the �γ as

Tμ:�γ (x) �→ �γ (x + μ) + kBμ · γ . (A10)

The analysis is then exactly the same as the zero-density
limit of the previous theory where the UV bosons are complex
but with only half the number of IR fields. The IR Lagrangian
can accordingly be written down as L0 + L f + LI , with

L0 = kB

4πNη

π∑
γ=0

(v−1(∂τ�γ )2 + v(∇γ�γ )2)

L f = kB

4πN2η

π∑
γ ,γ ′=0

(
v−1 f γ ,γ ′

ρ ∂τ�γ ∂τ�γ ′

+ v f γ ,γ ′
j ∇γ�γ ∇γ ′�γ ′

)
(A11)

and with LI containing the symmetry-allowed interactions. As
before, the coefficients appearing in the above Lagrangian are
all nonuniversal dimensionless numbers. The emergent sym-
metry of this fixed point is the subgroup of LU (1) generated
by odd angular momentum functions.

The most relevant translation-invariant cosine in the �γ

variables is

LI ⊃ g3
kB�

2

N

∑
γ

cos(�γ + �γ+2π/3 + �γ−2π/3), (A12)

with g3 a dimensionless coupling [there is no BCS-type term
due to the constraint (A9)]. Following the steps described in
Sec. V, we see that the RG eigenvalue of this perturbation is

yg3 = 2 − 3η/2 (A13)

and is therefore irrelevant if η > 4/3.
As in the complex case, the absence of further relevant

interactions depends on arguing that cosines in the dual fields
�γ do not represent legitimate deformations to the fixed-point
Lagrangian. The argument is essentially the same as in the
complex case: the patch fields do not carry quantized charges
(and indeed in the present setting there are no quantized
charges at all, since the underlying degrees of freedom are
real), and any putative patch vortex operator ei�γ would cre-
ate singular field configurations having infinite action in the
presence of small perturbations containing derivatives along
the Bose surface.

The phenomenology of the fixed point (A11) can be an-
alyzed following the discussion of Sec. VII. Since there is
no microscopic U (1) symmetry there is no notion of com-
pressibility, but the specific heat and real-space correlation
functions all behave similarly to the complex case.

APPENDIX B: RENORMALIZATION OF kB

In the main text, the Bose momentum kB was defined
simply via ε0(kB) = 0, with ε0 the noninteracting dispersion.
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In Fermi liquids renormalization of the Fermi momentum is
forbidden at fixed density by Luttinger’s theorem (at least in
the presence of rotational symmetry), but of course here there
is no analogous relation between kB and the boson density.
The correct definition of kB in the presence of interactions is

ε0(kB) − �(kB, ω = 0) = 0 (B1)

with �(k, ω) the boson self-energy, meaning that interactions
will generically renormalize kB.

More precisely, renormalization of kB will occur due to the
reflection-odd terms appearing in the expansion for the dis-
persion close to the Bose surface. For example, consider the
case of finite-density (nonrelativistic) bosons in 1+1D, with
the bosons at the right Bose point (say) having the dispersion

ε0(k) = 1

8mk2
B

(
(kB + k)2 − k2

B

)2

= 1

2m

(
k2 + k3/kB + k4/4k2

B

)
, (B2)

where k is the momentum relative to kB. While the k3 term
is irrelevant, it will generate a term linear in k under RG,
which will then renormalize kB. One may then worry that the
renormalization is such that kB as defined in (B1) vanishes.
If this happens then clearly the IR theory will not possess
a Bose surface. In the following we will argue however that
this renormalization can always be made small, so that there
always exists a region of parameter space in which the Bose
surface is stable.

In Sec. VI, we saw that in the case of 2+1D BLLs at finite
density it was important to keep both the ψ∗∂2

τ ψ and ψ∗∂τψ
terms in the UV action. At large momenta the scaling about
the UV fixed point will be governed by the relativistic ψ∗∂2

τ ψ

term, while at lower momenta the scaling will be governed by
the nonrelativistic ψ∗∂τψ term. The crossover between these
regimes will happen at an intermediate scale kr , which may or
may not be larger than the scale at which the IR phase-only
description sets in.

In what follows we will consider scaling only either in
the fully z = 1 regime where the ψ∗∂τψ term is absent (the
particle-hole-symmetric limit of zero density) or in the fully
z = 2 regime where the ψ∗∂2

τ ψ term can be neglected for
the purposes of computing the self energy in the UV scaling

regime. This is done only for simplicity, and a more general
analysis is possible.

1. z = 1 scaling

Let us first discuss the renormalization of kB in the particle-
hole symmetric limit of zero density, where the ψ∗∂τψ term
is absent. We will start by analyzing the 1+1D case and will
consider the Lagrangian

L = ψ∗(−v−1∂2
τ − v∂2

x − iζ∂x − iβ∂3
x + m2

)
ψ + g

4
|ψ |4,

(B3)

where the initial momentum cutoff is � ∼ kB and where
m2 < 0. Here ψ denotes the boson field expanded about one
of the Bose points (for determining the renormalization of kB

it is sufficient to focus on just a single Bose point), and we
have dropped the k4 term in (B2) on the grounds that it is
irrelevant and cannot generate a linear k term by symmetry.
We will start with ζ = 0 in the UV, but a nonzero ζ will be
induced during the RG flow.

If we write ψ = (r0 + r)eiφ , the IR theory we are aiming
for is one written only in terms of the field φ. The IR regime
is then determined by the scale at which we can neglect
fluctuations in the radial mode r and focus only on the field
φ. This happens approximately when the cutoff reaches the
mass mr of the r field, which occurs after an RG time of

tc ≈ ln(kB/mr ). (B4)

The Bose surface will thus be stable if by an RG time of tc the
renormalization of kB satisfies δkB � mr : If this is the case
we will be left with a theory with a dispersion with minima
at ±(kB + δkB), and the k3 term will cease to renormalize
kB since φ∂3φ is a total derivative. By plugging in the polar
representation of ψ into the above action and solving for the
r0 which minimizes the potential, we see that

mr = √
gρS = kB

√
ḡ(0)ρS, (B5)

where ρS = r2
0 = −2m2/g is the boson amplitude evaluated

at the classical minimum of the potential in (B3) and where
ḡ(0) = gk−2

B is the bare interaction strength made dimension-
less with the UV cutoff � ∼ kB.

To get an idea for how the βk3 term contributes to the
self-energy, we break up ψ as ψ = √

ρS + χ , with χ a field
parametrizing the fluctuations about the classical minimum.
The action is now (in v = 1 units and treating χ and its
conjugate χ̄ as two separate fields)

S =
∫

dk dω

(2π )2

(
1

2
(χ̄ χ )−k,−ω

G−1(k, ω)

(
χ̄

χ

)
k,ω

+ g
√
ρS

2
((χ̄ )2χ + χ̄χ2) + g

4
|χ |4

)
, (B6)

with the propagator

G(k, ω) = 1

(ω2 + k2)(ω2 + k2 − 2m2) − β2k6

(
m2 ω2 + k2 − m2 + βk3

ω2 + k2 − m2 − βk3 m2

)
, (B7)

which when rotated to real frequencies has poles at the correct locations ω = k,
√

k2 + m2
r .

We will compute the flow of the self energy �(k, 0) by integrating out modes of all frequencies and with momentum lying
in an interval of width d� about the points ±�. The flow of the zero-frequency self-energy �αα′ (k, 0) (where α, α′ ∈ {χ, χ̄}) is
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then given to 1-loop order by

d�αα′ (k, 0)

d�
=2g2ρS

∫
dω

2π

∑
σσ ′λλ′=χ̄ ,χ

V α
σλV

α′
σ ′λ′ (�(k)Gσσ ′ (�,ω)Gλλ′ (−� + |k|,−ω) + �(−k)Gσσ ′ (−�,−ω)Gλλ′ (� − |k|, ω)),

(B8)

where we have defined the factors V α
βγ , which equal zero if α = β = γ and are equal to 1 otherwise. The diagram corresponding

to the first term proportional to �(k) is shown in Fig. 4.
Since Gσσ ′ (q, ν) = Gσ ′σ (−q,−ν), we can rewrite the above as

d�αα′ (k, 0)

d�
= 2gρS

∫
dω

2π

∑
σσ ′λλ′=χ̄ ,χ

Gσσ ′ (�,ω)Gλλ′ (−� + |k|,−ω)
(
�(k)V α

σλV
α′
σ ′λ′ + �(−k)V α′

σλV
α
σ ′λ′

)
. (B9)

We therefore see that for diagrams in which the two VV
factors above are equal, the change in self energy is in fact
only a function of |k|, and hence cannot contribute to a renor-
malization of kB. As such the �χχ and �χ̄χ̄ components of
the self energy do not pick up any terms odd in k under
the momentum shell integration, and therefore we may focus
on the flow of �χχ̄ . By the same reasoning only a subset
of the 1-loop diagrams appearing in �χχ̄ contribute to the
k-odd part of d�χχ̄/d�; these diagrams are those for which
V χ

σλV
χ̄

σ ′λ′ �= V χ̄

σλV
χ

σ ′λ′ and are shown in Fig. 5.
The full evaluation of these diagrams is rather complicated,

but we will only concern ourselves with the part linear in k/�,
first order in �β, and lowest order in mr/�. We then find that
the flow of the sgn(k)-dependent part of �χ̄χ is given by

d�χ̄χ

dt
⊃ dρSβ̄ḡ2k�, (B10)

where ḡ = g2/�2 and β̄ = β� are dimensionless couplings
and d is a positive constant. If we then let ζ̄ = ζ/� denote
the dimensionless coupling associated to the linear k term, we
then get the leading order flow

d ζ̄

dt
≈ ζ̄ + dρSβ̄(t )ḡ2(t ). (B11)

In the first stages of the flow we have ḡ(t ) ≈ ḡ(0)e2t and
β̄(t ) ≈ β̄(0)e−t . Starting from ζ̄ (0) = 0 and flowing up to tc,
we then get

ζ̄ (tc) ≈ dρSkB

2mr
β̄(0)ḡ(0)2((kB/mr )2 − 1). (B12)

In order for this treatment of the flow of ζ̄ to remain valid,
ḡ(t ) must be small for all t along the flow. This means that we

FIG. 4. The 1-loop diagrams contributing to �αα′ (k, 0) for k > 0.

must have (
kB

mr

)2

ḡ(0) � 1 ⇒ ρS � 1. (B13)

As long as this condition is satisfied, ζ̄ (tc) can be made arbi-
trarily small by taking the dimensionless parameter ḡ(0) → 0,
and thus there exists a regime of parameter space in which we
expect the Bose surface to be stable.

While the above analysis was done in 1+1D, the conclu-
sion is unchanged in 2+1D. In 2+1D, we are interested in the
k dependence of the patch self-energy �γ (k, 0). Since the self-
energy for each patch field is of order 1/N = �/πkB (for the
same reason that the Landau parameters only affect the patch
propagators at order 1/N), kB will cease to renormalize once
we reach cutoffs � such that N � 1. The renormalization of
kB during the early parts of the flow where N is of order 1 can
be argued to be arbitrarily small using a similar argument as
in 1+1D, and we conclude that interactions do not necessarily
destabilize the Bose surface.

2. z = 2 scaling

We now address the limit where the ψ∗∂2
τ ψ term in the

action can be neglected for the purposes of computing the
flow of the linear k term. In 1+1D, the Lagrangian we are
interested in is

L = ψ∗
(

i∂t + μ + 1

2m
ζ i∂x + 1

2m
∂2

x − iβ∂3
x

)
ψ − g

4
|ψ |4,
(B14)

where ζ has units of momentum and is taken to have a
vanishing bare value and where μ, g > 0 set the average
density.

FIG. 5. The diagrams which contribute to the part of �χχ̄ (k, 0)
odd in k. Solid lines represent Gχχ , dashed lines represent Gχ̄ χ̄ , and
mixed dashed-solid lines represent Gχ̄χ ,Gχχ̄ .
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We again write ψ as ψ = √
ρ̄ + χ , with χ a complex field

capturing the fluctuations about the background density. The
action is then the same as (B6), except that the propagator is
now (in real time)

G(k, ω) = i

(ω + βk3)2 − ξ 2
k + i0

×
( −μ ω + βk3 + k2/2m + μ

−(ω + βk3) + k2/2m + μ −μ

)
, (B15)

with

ξ 2
k ≡ k2

2m

(
k2

2m
+ μ

)
. (B16)

When β = 0 we check that G has poles at ±ξk , correctly
giving the Bogoliubov dispersion.

The crossover between the high-momentum nonrelativistic
ω ≈ k2/2m and the low-momentum relativistic ω ≈ √

μ/2mk
occurs at the momentum kc = √

2mμ, which in terms of the
average density ρ̄ is

kc = √
mgρ̄. (B17)

At this scale, the behavior crosses over from massive particles
in the UV to coherent waves in the IR, where the hydrody-
namic phase-only representation sets in.

In order to reach the hydrodynamic regime in the IR, we
then need to flow for an RG time of tc ≈ ln(kB/kc). The 1-loop
diagrams contributing to the part of the self-energy sensitive
to the sign of k are the same as in the previous section. To first
order in m�β and k/�, we find

d�χ̄χ

dt
⊃ cβ̄ḡ2 kρ̄

m
, (B18)

where the dimensionless parameters are now defined as

ḡ = mg

�
, β̄ = m�β, (B19)

and where c is a positive constant. β̄ is irrelevant with RG
eigenvalue −1 under the UV scaling, while ḡ is relevant with
RG eigenvalue +1. In terms of the parameter ζ in (B14),
we see that dζ/dt ≈ ζ + cβ̄ḡ2ρ̄. At an RG time t , ζ is then
approximately

ζ (t ) ≈ cβ̄(0)ḡ(0)2ρ̄et t . (B20)

The hydrodynamic scaling regime is reached after a time tc ≈
ln(kB/kc), at which point the effective dispersion is approxi-
mately k2/2m − kζ (tc)/2m, which gives a renormalization of

kB by an amount δkB ≈ ζ (tc)/2. In order for the Bose surface
to be stable then, we require that ζ (tc)/kc � 1. Now using
kc ≈ √

ḡ(0)kBρ̄, we have

ζ (tc)

kc
≈ cβ̄(0)ḡ(0)2 ln(kB/kc) kBρ̄

k2
c

≈ c
2 β̄(0)ḡ(0) ln

( kB
ρ̄ḡ(0)

)
.

(B21)

Thus ζ (tc)/kc can be made arbitrarily small if ḡ(0) is made
small.

APPENDIX C: A MORE CAREFUL JUSTIFICATION
OF MINIMAL COUPLING

In this Appendix we provide a justification for the claim
that the 2+1D BLL considered in the main text may be cou-
pled to a gauge field A for the microscopic U (1) symmetry by
minimally coupling A to the φγ fields on each patch, as was
written down in (81).

Our motivation for critically examining the minimal cou-
pling of (81) can be understood by thinking about what
happens in the context of Fermi liquids. In the bosonized
description of Fermi liquids, the chirality of the patch fields
means that it is incorrect to minimally couple A to the phase
fields on each patch. Instead, the correct thing to do [28] is to
rewrite the Lagrangian in terms of the Fourier modes

φl =
∫

dγ

2π
eilγ φγ , (C1)

and then to minimally couple A to φ0. Indeed, as was dis-
cussed in the main text, the φγ are not independent 2π
periodic variables—the only periodic variable is φ0, and so
only φ0 should couple to A.

Unlike the Fermi liquid the BLL is not chiral, and this
means the naive minimal coupling in (81) is indeed correct.
It is, however, worthwhile to demonstrate this fact explicitly.

Working in the zero density limit and setting the Lan-
dau parameters to zero for simplicity, we can write the IR
Lagrangian as

L = k
∫
γ

((∂τφγ )2 + (∇γ φγ )2) = k
∑
n,m

(
∂τφn∂τφmδn,−m +

∫
γ

(cos(γ )∂x + sin(γ )∂y)φn(cos(γ )∂x + sin(γ )∂y)φmeiγ (n+m)

)

= −k
∑

n

φn

[
∂2
τ φ−n + 1

4

(
∂2

x (2φ−n + φ−n−2 + φ−n+2) + ∂2
y (2φ−n − φ−n−2 − φ−n+2) + 2i∂x∂y(φ−n+2 − φ−n−2)

)]
(C2)

where for convenience we have defined k = kB/4πη and
∫
γ

= ∫ dγ
2π . The part of L containing φ0 is

L[φ0] = −k
[
φ0

(
∂2
τ + 1

2
∇2

)
φ0 + 1

2
φ0((∂x + i∂y)2φ2 + (∂x − i∂y)2φ−2)

]
(C3)

with the couplings to φ±2 taking the correct form required by rotational symmetry.
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If we now couple φ0 minimally to A, the terms dependent on A are

L[A] = k
[−2∂τφ0Aτ + A2

τ − A · ∇φ0 + 1
2 A2 − 1

2 (Ax + iAy)(∂x + i∂y)φ2 − 1
2 (Ax − iAy)(∂x − i∂y)φ−2

]
. (C4)

If we now rewrite this in terms of the patch fields, we find

L[A] = k
∫
γ

[
A2

τ + 1

2
A2 + (−2Aτ ∂τ − A · ∇ − cos(2γ )(Ax∂x − Ay∂y) − sin(2γ )(Ax∂y + Ay∂x ))φγ

]
= k

∫
γ

[
A2

τ + A2
γ + (−2Aτ ∂τ − 2 cos2(γ )Ax∂x − 2 sin2(γ )Ay∂y − 2 cos(γ ) sin(γ )(Ax∂y + Ay∂x ))φγ

]
= k

∫
γ

[
A2

τ + A2
γ − 2(Aτ ∂τ + Aγ ∇γ )φγ

]
, (C5)

which has exactly the same A dependence as the naive minimal coupling in (81).
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