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Functional-integral approach to Gaussian fluctuations in Eliashberg theory
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The Eliashberg theory of superconductivity is based on a dynamical electron-phonon interaction as opposed to
a static interaction present in BCS theory. The standard derivation of Eliashberg theory is based on an equation
of motion approach, which incorporates certain assumptions such as Migdal’s approximation for the pairing
vertex. In this paper we provide a functional-integral-based derivation of Eliashberg theory and we also consider
its Gaussian-fluctuation extension. The functional approach enables a self-consistent method of computing
the mean-field equations, which arise as saddle-point conditions, and here we observe that the conventional
Eliashberg self-energy and pairing function both appear as Hubbard-Stratonovich auxiliary fields. An important
consequence of this fact is that it provides a systematic derivation of the Cooper and density-channel interac-
tions in the Gaussian-fluctuation response. We also investigate the fluctuation contribution to the diamagnetic
susceptibility near the critical temperature.
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I. INTRODUCTION

In the Bardeen, Cooper, and Schrieffer (BCS) theory of
superconductivity [1,2], the ordered phase originates from a
static effective attraction between electrons near the Fermi
surface, which leads to electron pairing and the formation of
Cooper pairs [3]. Eliashberg theory [4,5], however, is based
on a dynamical electron-phonon interaction, and this results
in a frequency-dependent pairing function. Early reviews of
Eliashberg theory were given in Refs. [6–8], followed by dis-
cussions of the critical temperature [9] and thermodynamics
[10], and more recent reviews on the subject matter can be
found in Refs. [11,12]. One of the standard approaches to
deriving the self-consistent Eliashberg equations involves the
equation of motion method [12,13]. As outlined in Ref. [14],
there are a number of assumptions in the standard Eliashberg
theory, such as Migdal’s approximation [15] and ignoring
particle-hole interactions [16]. While these assumptions can
be tested a posteriori, it is beneficial to have a robust theoreti-
cal treatment where the approximations made at each stage of
the derivation are clearly articulated.

There has recently [17,18] been a new approach to studying
electron-phonon interactions. The method is again based on
an equation of motion approach, but now it is cast in the
form of the functional Schwinger-Dyson equations [19]. One
advantage of this formulation of the problem is that it allows
the tools from quantum field theory to be utilized, and in par-
ticular the Ward identities for the electron-phonon system can
be derived in the same manner as the Ward identities for quan-
tum electrodynamics. Other functional-integral applications
to electron-phonon systems include topological superfluids
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[20] and generalizations of the Sachdev-Ye-Kitaev model
[21,22]. With this renewed interest in functional formulations
of Eliashberg theory, here we aim to understand electron-
phonon systems by using a functional-integral approach, and
in addition we aim to bring the theoretical understanding of
the Eliashberg fluctuation theory to the same level as the
well-understood BCS counterpart [23–26].

In this paper, we develop a model describing electron-
phonon interactions and we derive the mean-field Eliash-
berg equations using a functional-integral approach, which
achieves what has been done [23–26] for the counterpart
BCS theory. We show that when the effective electron inter-
action is decoupled in the density and Cooper channels, the
saddle-point solutions of this description correspond to con-
ventional Eliashberg theory. Deriving Eliashberg theory from
the functional-integral formalism has the benefit of providing
an alternative way to understand the theory compared to the
canonical derivation, making it accessible to a wider range of
physicists and also enabling those who are familiar with the
canonical derivations to see the theory in a new light.

A natural extension of the functional formalism is to con-
sider fluctuations of the Hubbard-Stratonovich (HS) fields
about their mean-field values. In the case of Gaussian-
fluctuation theory for a static electron-electron interaction,
normal-state fluctuations have been studied in the diagram-
matic [23,27] and functional-integral [28,29] approaches. The
extension to fluctuations in the superconducting phase has
also been derived using the functional approach [25,26,28,29]
and the advantage of this method is that gauge invariance
and thermodynamic sum rules are manifestly satisfied [26].
Normal-state fluctuations in Eliashberg theory have not been
extensively investigated, and the main studies have been on
the fluctuation contributions to the electrical conductivity
[30,31], the specific heat [32], and the Hall and Nernst effects
[33]. The functional-integral formalism we develop enables us
to systematically derive the fluctuation action and response at
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the Gaussian level, and moreover, since this method clearly
identifies the apposite fields which can fluctuate, we will
rigorously derive the physics investigated in Refs. [30–32].
Our paper thus provides the theoretical framework for the
fluctuation theory of Eliashberg superconductors, and in prin-
ciple it should be possible to extend it to the superconducting
phase and also to incorporate other effects such as Coulomb
interactions. An experimental quantity of interest [34] is the
diamagnetic susceptibility, and here we calculate the fluctua-
tion contribution in the strong-coupling limit.

The structure of the paper is as follows. In Sec. II we
present the electron-phonon model and integrate out the
phonons to obtain an attractive interaction. In Sec. III we
perform the HS analysis and then in Sec. IV we obtain the
mean-field Eliashberg equations. The Gaussian-fluctuation re-
sponse is studied in Sec. V and in particular we compute
the Aslamazov-Larkin (AL) contribution to the diamagnetic
susceptibility near the critical temperature. The conclusion is
presented in Sec. VI.

II. THE ELECTRON-PHONON INTERACTION

A. The model

We consider the following Hamiltonian for an interacting
electron-phonon system [13,24]:

Ĥ =
∑
k,σ

εkĉ†
kσ ĉkσ +

∑
q

�qb̂†
qb̂q

+
∑
k,q,σ

gq(b̂q + b̂†
−q)(ĉ†

k↑ĉk+q↑ + ĉ†
−k−q↓ĉ−k↓). (2.1)

Here, ĉ† and b̂† are the respective electron and phonon
creation operators, whereas ĉ and b̂ are the corresponding
annihilation operators. The electron and phonon dispersion
relations are, respectively, denoted by εk and �q. The
electron-phonon interaction is gq, which satisfies g∗

q = g−q.
In the case of a multibranch phonon dispersion, we take q to
also include branch indices.

As in BCS theory, the energy can be minimized by the
pairing of electrons with equal and opposite momentum and
spin [13]. To ensure this type of scattering is predominant,
a macroscopic number of phonons with equal momentum is
introduced. The interaction physically describes the scattering
of an electron from k + q ↑ to k ↑ due to the emission of
a phonon of momentum q, which can then be absorbed by
scattering an electron from −k − q ↓ to −k ↓.

To examine the model in Eq. (2.1) using the finite-
temperature functional-integral formalism [24], we construct
an action functional through the Legendre transform:

S[c̄, c, b̄, b] =
∫ β

0
dτ

[ ∑
k,σ

c̄kσ (∂τ + μ)ckσ +
∑

q

b̄q∂τ bq

+ H (c̄, c, b̄, b)

]
. (2.2)

Here, τ denotes imaginary time and β = 1/T . In this pa-
per we use Natural units c = h̄ = kB = 1. The operators
ĉ†, ĉ, b̂†, b̂ from the Hamiltonian formalism have been re-
placed by the Grassmann-valued functions c̄(τ ), c(τ ), and

the complex-valued functions b̄(τ ), b(τ ), respectively. The
fermionic chemical potential is denoted by μ, and we as-
sume there is no chemical potential imbalance: μ↑ = μ↓ ≡ μ.
Since the number of phonons is not fixed, the phonons have
zero chemical potential [35].

We can express the field operators in terms of Matsubara
frequencies by taking the Fourier transform of the imaginary-
time expressions:

ckσ (τ ) = 1

β

∑
ωn

ckσ e−iωnτ ; bq(τ ) = 1

β

∑
�m

bqe−i�mτ .

(2.3)
Here, ωn ≡ (2n + 1)πT , where n ∈ Z are the fermionic
Matsubara frequencies and �m ≡ 2mπT , where m ∈ Z are
the bosonic Matsubara frequencies. Defining the four-vector
momenta by k ≡ (iωn, k) and q ≡ (i�m, q), the action in
Eq. (2.2) becomes

S[c̄, c, b̄, b] = −
∑
k,σ

c̄kσ G−1
0 (k)ckσ −

∑
q

b̄qD−1
0 (q)bq

+
∑
k,q,σ

gq(bq + b̄−q)c̄kσ ck+qσ . (2.4)

Here,
∑

k ≡ T
∑

iωn

∑
k and

∑
q ≡ T

∑
i�m

∑
q. The free-

particle fermionic (inverse) Green’s function is defined
by G−1

0 (k) ≡ iωn − ξk, where ξk = εk − μ, and D−1
0 (q) ≡

i�m − �q is the (inverse) scalar propagator for the bq field.
Given this action functional, the finite-temperature partition
function is then Z = ∫

D[c̄, c, b̄, b]e−S[c̄, c, b̄, b].

B. Integrating out the phonons

The fermionic density function is defined by ρq ≡∑
k,σ c̄kσ ck+qσ and it satisfies ρq = ρ̄−q. Using this definition,

we can factor out the part of the partition function depending
on the phonon variables and write

Zph[c̄, c] =
∫

D[b̄, b] exp

[ ∑
q

(
b̄qD−1

0 (q)bq

− gq(bq + b̄−q)ρq
)]

. (2.5)

The functional integral over the fields b̄ and b is Gaussian,
and thus it can be computed exactly by performing shifts in
the fields given by b̄q → b̄q + gqD0(q)ρ̄−q and bq → bq +
g−qD0(q)ρ−q. As in the previous section, b̄q �= b−q and thus
we can perform independent transformations of these fields.
On performing these transformations, the action is then writ-
ten explicitly as a quadratic function of b̄ and b, and thus
the functional integral may be computed exactly using the
standard formula [24]. The result is

Zph[c̄, c] =
∫

D[b̄, b] exp

[∑
q

(
b̄qD−1

0 (q)bq

− |gq|2D0(q)ρqρ̄q
)]

= N exp

[
−

∑
q

|gq|2D0(q)ρqρ̄q

]
. (2.6)
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The prefactor N is an unimportant constant independent of
ρq. In obtaining the result above, we have used the properties
g∗

q = g−q and ρ̄q = ρ−q. Notice that in the effective interac-
tion term the propagator D0(q) is coupled to a quantity that is
manifestly even in q. Therefore, only the even part of D0(q)
contributes to the sum, i.e., only the propagator for the sum of
scalar field operators, bq + b̄−q, is important. Hence, we write
the phonon part of the partition function as

Zph[c̄, c] ∼ exp

[
−1

2

∑
q

|gq|2D0(q)ρqρ̄q

]
, (2.7)

where the phonon propagator D0 appearing above is [35]:

D0(q) ≡ D0(q) + D0(−q) = 2�q

(i�m)2 − �2
q

. (2.8)

We emphasize that D0 is the propagator for the field bq,
whereas D0 is the propagator for bq + b̄−q. The full partition
function thus reduces to

Z =
∫

D[c̄, c] exp

[∑
k,σ

c̄kσ G−1
0 (k)ckσ + 1

2

∑
q

λ(q)ρqρ̄q

]
,

(2.9)
where λ(q) ≡ −|gq|2D0(q) and we have ignored the prefactor
term as it does not affect the electronic quantities of interest.
At this stage of the development, integrating out the phonons
has resulted in a dynamical density-density interaction term
for the fermion fields, and the full partition function is of
the form

∫
D[c̄, c]e−SF [c̄, c]. The dynamical properties of this

interaction term give rise to a frequency-dependent pairing
function, in distinction to the static pairing function present
in the BCS theory of superconductivity. Formulated in real
space, the fermionic action reads

SF [c̄, c] = −
∫

x,y

∑
σ

c̄xσ G−1
0 (x − y) cyσ

− 1

2

∫
x,y

∑
σ,σ ′

λ(x − y)c̄xσ cxσ c̄yσ ′cyσ ′ . (2.10)

Here,
∫

x ≡ ∫
d3r

∫
dτ denotes integration over both space

and imaginary time. Sums over repeated spin labels are taken
to be implicit from now on.

III. SUPERCONDUCTIVITY IN THE COOPER CHANNEL

A. Hubbard-Stratonovich transformation

The interaction term in the fermionic action in Eq. (2.10)
is quartic in the fermionic fields c̄ and c. At present there
are no known techniques for exactly computing the functional
integral of such an interaction, but we can make progress by
reformulating the calculation in terms of auxiliary fields using
the Hubbard-Stratonovich (HS) transformation. This proce-
dure eliminates the interaction term at the cost of introducing
a functional integral over the auxiliary fields. We first expand
the interaction term in the action into the two parts where

σ = σ ′ and σ �= σ ′, which results in

SInt[c̄, c] ≡ −1

2

∫
x,y

λ(x − y)c̄xσ cxσ c̄yσ ′cyσ ′

= −
∫

x,y
λ(x − y)

(1

2
c̄xσ cxσ c̄yσ cyσ + c̄x↑c̄y↓cy↓cx↑

)
.

(3.1)

We now introduce the bosonic auxiliary fields φ̄, φ, � and a
measure D[φ̄, φ,�] chosen such that

1 =
∫

D[φ̄, φ,�] exp

[
−

∫
x,y

φ̄xyφxy + 1
2�σ

xy�
σ
yx

λ(x − y)

]
, (3.2)

which is then inserted into the partition function, giving

Z =
∫

D[c̄, c, φ̄, φ,�]

× exp

[
−SF [c̄, c] −

∫
x,y

φ̄xyφxy + 1
2�σ

xy�
σ
yx

λ(x − y)

]
. (3.3)

In principle, the interaction term in Eq. (3.1) can be de-
coupled in three possible channels [24]—Cooper, Density,
and Exchange—which capture different physical phenomena.
The Cooper channel is apposite for describing superconduc-
tivity, the density channel encapsulates density fluctuations,
and the exchange channel describes electron-hole interactions.
Weighting these channels is nontrivial, and while there are
examples of multichannel HS decompositions in the literature
[36–38], we use physical arguments to proceed. Since we are
interested in describing singlet superconductivity, it is natural
to use the Cooper channel to decouple the part of the interac-
tion in Eq. (3.1) with opposite spins. Hence, we can identify
φ as being related to fermion pairing and superconductivity.
The term with the same spins is decoupled in the density
channel, since the spins appearing on the fermions are not
pertinent, and thus � acts as a collective density fluctuation.
This decomposition of a single interaction into two different
channels, which are treated on equal footing, is one of the
main tenets of Eliashberg theory [14]. Our neglect of decou-
pling the interaction in the exchange channel will preclude this
analysis from obtaining Kohn-Luttinger corrections, which
have recently been considered in the diagrammatic framework
[14,16].

We now shift the fields according to the transformations:

φ̄xy → φ̄xy − λ(x − y)c̄x↑c̄y↓, (3.4)

φxy → φxy − λ(x − y)cy↓cx↑, (3.5)

�σ
xy → �σ

xy + iλ(x − y)c̄yσ cxσ . (3.6)

The resulting action now has no quartic interaction term, albeit
at the expense of coupling the fermionic fields c̄ and c to the
HS fields φ̄, φ, and �. This transformation results in a new
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action given by

S[c̄, c, φ̄, φ,�] =
∫

x,y

[
φ̄xyφxy+ 1

2�σ
xy�

σ
yx

λ(x − y)
−c̄xσ G−1

0 (x−y)cyσ

− φxyc̄x↑c̄y↓ − φ̄xycy↓cx↑ + i�σ
xyc̄xσ cyσ

]
.

(3.7)

We consider translation-invariant systems, and thus the HS
fields φ̄, φ, and � depend only on a relative coordinate.
After performing the Fourier transform of the action, the
momentum-space form is expressed as

S[c̄, c, φ̄, φ,�] =
∑
k,k′

φ̄(k)φ(k′) + 1
2�σ (k)�σ (k′)

λ(k − k′)

−
∑

k

{
c̄kσ

[
G−1

0 (k) − i�σ (k)
]
ckσ

+ φ(k)c̄k↑c̄−k↓ + φ̄(k)c−k↓ck↑
}
. (3.8)

B. Integrating out the fermions

We now introduce the Nambu fields ψk and ψ̄k , defined
by ψk = (ck↑, c̄−k↓)T and ψ̄k = (c̄k↑, c−k↓), which facilitate
writing the action as

S[ψ̄, ψ, φ̄, φ,�] = −
∑

k

ψ̄kG−1(k)ψk

+
∑
k,k′

φ̄(k)φ(k′) + 1
2�σ (k)�σ (k′)

λ(k − k′)
,

(3.9)

where we define G−1
n,σ (k) ≡ G−1

0 (k) − i�σ (k) and the inverse
Nambu Green’s function is

G−1
k ≡

(
G−1

n,↑(k) φ(k)

φ̄(k) −G−1
n,↓(−k)

)
. (3.10)

The action is quadratic in the Nambu fields ψ̄ and ψ , and
hence the functional integral over these fields can be per-
formed exactly to produce∫

D[ψ̄, ψ] exp (−S[ψ̄, ψ, φ̄, φ,�])

= exp

[
Tr ln(−βG−1) −

∑
k,k′

φ̄(k)φ(k′) + 1
2�σ (k)�σ (k′)

λ(k − k′)

]

≡ exp (−SHS[φ̄, φ,�]). (3.11)

The trace operation Tr represents a matrix trace over the
Nambu indices and an integration over the spatial degrees of
freedom. The original, microscopic model of electrons inter-
acting with phonons has been reformulated as a description
in terms of an HS action SHS which depends on the fields
φ̄, φ, and �. Excitations in the field φ are coupled to the
annihilation of two fermions, whereas the � field is coupled
to fermion density fluctuations.

IV. HS ACTION ANALYSIS

A. Saddle-point conditions

We expect large contributions to the partition function from
the field configurations where the effective action is slowly
varying about its extremum. Enforcing that the effective ac-
tion is stationary with respect to the HS fields � and φ results
in two saddle-point equations, the solutions of which are the
saddle-point or mean-field values �mf and φmf. For the HS
action in Eq. (3.11), the saddle-point condition for � is

0 = δSHS[φ̄, φ,�]

δ�σ
k

∣∣∣∣
�=�mf,φ=φmf

=
∑

k′

{
λ−1(k − k′)�σ

mf(k
′)

+ iTr

[
Gk′

(
δk,k′δσ↑ 0

0 −δk,−k′δσ↓

)]}

=
∑

k′
λ−1(k − k′)�σ

mf(k
′) + iG−1

nσ̄ (−k)

G−1
n,σ (k)G−1

n,σ̄ (−k) + |φmf(k)|2 .

(4.1)

Using the identity δ(k − k′) = ∑
k′′ λ(k − k′′)λ−1(k′′ −

k′), we can simplify the above equation to solve for �σ . By
taking advantage of the spin symmetry of the system, i.e.,
μ↑ = μ↓, we can define � ≡ i�↑ = i�↓ and Gn ≡ Gn,↑ =
Gn,↓, to obtain

�mf(k) =
∑

k′
λ(k − k′)

G−1
n (−k′)

G−1
n (k′)G−1

n (−k′) + |φmf(k′)|2 .

(4.2)
This equation motivates defining the full Green’s function as

G(k) ≡ G−1
n (−k)

G−1
n (k)G−1

n (−k) + |φmf(k)|2 . (4.3)

The self-consistent equation for �mf in Eq. (4.2) now becomes

�mf(k) =
∑

k′
λ(k − k′)G(k′). (4.4)

The saddle-point analysis of the pairing field φ can also be
performed, leading to

0 = δSHS[φ̄, φ,�]

δφ̄k

∣∣∣∣
�=�mf,φ=φmf

=
∑

k′
λ−1(k − k′)φmf(k

′) − Tr

[
Gk

(
0 0
1 0

)]
. (4.5)

Solving this equation for φ gives

φmf(k) =
∑

k′
λ(k − k′)

φmf(k′)
G−1

n (k′)G−1
n (−k′) + |φmf(k′)|2 .

(4.6)
This homogeneous equation has the familiar form of a gap
equation for the superconducting order parameter φmf. One
possible solution to the above equation is φ = 0, which repre-
sents a normal-state system.

Based on these mean-field equations, we can now gain
some physical intuition about the parameters �mf and φmf.
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FIG. 1. A diagrammatic representation of the mean-field Eliash-
berg equations (4.7) and (4.8). The dotted lines terminated by circles
denote λ, i.e., the phonon propagator and the coupling constants. The
double-struck solid lines denote Gn and the bold solid lines are the
full fermion propagator G. The lines at the ends of the diagram are
external legs.

The simplest case is the normal state, where φmf = 0. The
full Green’s function then reduces to G = Gn, where G−1

n =
G−1

0 − �mf. Thus, when φmf = 0, Gn is a normal-state Green’s
function dressed by �mf, with �mf playing the role of the
normal-state self-energy. While � is an HS field whose physi-
cal interpretation is unknown a priori, based on the mean-field
equation we find that �mf can be interpreted as a self-energy
(hence the choice in notation for this particular HS field). For
nonzero φ, however, Gn is modified by superconducting inter-
actions. For Eliashberg theory, we can define the self-energy
�sc(k) = −|φmf(k)|2Gn(−k), which is nonzero only in the
superconducting phase, and then the inverse Green’s function
can be written as G−1(k) = G−1

n (k) − �sc(k), and depicted in
Fig. 2.

In the conventional [11–13] formulation of Eliashberg the-
ory, based on the equation of motion technique, it is not
apparent that the self-energy �mf arises from the saddle-point
value of an HS field. The importance of this result, which
naturally appears in the functional-integral approach, is that
it enables one to consider fluctuations beyond the saddle-
point condition and possible corrections to the mean-field
Eliashberg equations. This will be explored further in the
next subsection. For convenience, from now on we drop the
subscripts in �mf and φmf.

Together, these mean-field equations produce the standard
[11–13] Eliashberg equations depicted in Fig. 1:

φ(iωn, k) = T
∑

k′,iωm

λk−k′ (iωn − iωm)F (iωm, k′). (4.7)

�(iωn, k) = T
∑

k′,iωm

λk−k′ (iωn − iωm)G(iωm, k′). (4.8)

Gn(iωn, k) = [
G−1

0 (iωn, k) − �(iωn, k)
]−1

. (4.9)

G(iωn, k) = G−1
n (−iωn,−k)

G−1
n (iωn, k)G−1

n (−iωn,−k) + |φ(iωn, k)|2 .

(4.10)

F (iωn, k) = φ(iωn, k)Gn(−iωn,−k)G(iωn, k). (4.11)

A diagrammatic representation of the propagators is shown in
Fig. 2. The superconducting phase corresponds to a nontrivial
solution for φ(iωn, k). The critical temperature Tc, computed
at the mean-field level, is the highest temperature for which a
nonzero φ(iωn, k) exists. Extensive discussion on methods to
determine the mean-field Tc can be found in Ref. [9].

FIG. 2. A diagrammatic representation of the dressed propaga-
tors appearing in the Eliashberg equations (4.9) and (4.10).

B. Gaussian fluctuations in the normal state

In this section we shall focus on normal-state fluctuations,
that is, fluctuations about φmf = 0. We allow φ and � to
depend on both a relative and a center-of-mass coordinate:

φxy = φ
(

x − y;
x + y

2

)
; �σ

xy = �σ
(

x − y;
x + y

2

)
. (4.12)

The Fourier transforms of φxy and �σ
xy are denoted by φ(k; q)

and �σ (k; q), respectively, and those of c̄x↑c̄y↓ and c̄xσ cyσ are
c̄k+q/2↑c̄−k+q/2↓ and c̄k+q/2σ ck−q/2σ , respectively. We restrict
our attention to small fluctuations away from the saddle-point
condition, where we enforce that q = 0, and consider

φ(k; q) ≡ φ(k)δq,0 + η(k; q) , (4.13)

�σ (k; q) ≡ �σ (k)δq,0 + ζ σ (k; q). (4.14)

Here, φ(k) and �(k) are given by the mean-field solutions to
the Eliashberg equations (4.7)–(4.11), and η(k, q) and ζ (k, q)
are small perturbations about these solutions. We emphasize
that the four-momentum k in η(k, q) is not transferred but
rather acts merely as a label, whereas the four-momentum q is
transferred. This is required on the grounds that the Matsub-
ara frequency associated with k, i.e., k0 = iωn, is fermionic,
whereas φ (and hence η) are bosonic fields.

We now expand the inverse Green’s function about

its mean-field value via G−1 = G−1
mf (1 − Gmf�η − Gmf�ζ ),

where

�η(k; q) ≡
(

0 −η(k; q)
−η̄(k; −q) 0

)
, (4.15)

�ζ (k; q) ≡
(

iζ ↑(k; q) 0
0 −iζ ↓(−k; q)

)
. (4.16)

Hence, the action may be written as

SHS[φ̄, φ, η̄, η,�, ζ ]

=
∫

x,y

(φ̄xy + η̄xy)(φxy + ηxy) + 1
2

(
�σ

xy + ζ σ
xy

)(
�σ

yx + ζ σ
yx

)
λ(x − y)

− Tr ln
[−βG−1

mf (1 − Gmf�η − Gmf�ζ )
]
. (4.17)

Using the fact that the perturbations η and ζ σ are small, we
can expand the logarithm to quadratic order, noting that the
saddle-point conditions ensure that the terms linear in φ and
� vanish identically. The HS action is thus

SHS[φ̄, φ, η̄, η,�, ζ ] = Smf [φ̄, φ,�] +
∫

x,y

η̄xyηxy + 1
2ζ σ

xyζ
σ
yx

λ(x − y)

+ 1

2
Tr[(Gmf�η + Gmf�ζ )2]. (4.18)
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FIG. 3. A diagrammatic representation of the Dyson equation for
the normal-state Eliashberg fluctuation propagators.

We assume that the system under study is above the
superconducting critical temperature Tc and set φ = φ̄ = 0.
After performing some matrix algebra, the squared trace term
simplifies to the following result expressed in momentum
space

1

2
Tr[(Gmf�η + Gmf�ζ )2]

= 1

2
Tr(Gn�ηGn�η ) + 1

2
Tr(Gn�ζGn�ζ )

= −
∑
k,q

[
η̄(k − q/2; q)Gn(k)Gn(q − k)η(k − q/2; q)

+ 1

2
ζ σ (k − q/2; q)Gn(k)Gn(k − q)ζ σ (k − q/2; −q)

]
.

(4.19)

Thus, the HS action is now of the form
SHS[φ̄, φ,�, η̄, η, ζ ] = Smf[φ̄, φ,�] + S[η̄, η, ζ ], where

S[η̄, η, ζ ]

= −
∑
k,k′,q

[
η̄(k − q/2; q)�−1

η (k, k′; q)η(k′ − q/2; q)

+ 1

2
ζ σ (k − q/2; q)�−1

ζ (k, k′; q)ζ σ (k′ − q/2; −q)

]
.

(4.20)

We have introduced �η(k, k′; q) and �ζ (k, k′; q) as fluctuation
propagators for the fields η and ζ σ respectively, and they are
defined by the following Dyson equations

�−1
η (k, k′; q) = −λ−1(k − k′) + δ(k − k′)Gn(k)Gn(q − k),

(4.21)

�−1
ζ (k, k′; q) = −λ−1(k − k′) + δ(k − k′)Gn(k)Gn(k − q).

(4.22)

The Dyson equations for the fluctuation propagators are
shown in Fig. 3. Notice that �η has a particle-particle loop,
whereas �ζ has a particle-hole loop; this is due to the fact
that the η field corresponds to fluctuations in the Cooper
channel, whereas ζ σ represents fluctuations in the density
channel. After performing the functional integral over the
fields η̄, η, and ζ we obtain the fluctuation action Sfluc, defined

by
∫
D[η̄, η, ζ ] exp(−S[η̄, η, ζ ]) = exp(−Sfluc), where

Sfluc =
∑

p

ln
[−�−1

η (p)
] + 1

2

∑
p,σ

ln
[−�−1

ζ (p)
]
. (4.23)

To invert Eqs. (4.21) and (4.22), we multiply Eq. (4.21) by
�η(k′, p′; q)λ(p − k) and integrate over k′ and k to obtain

∫
dk′dk [−λ−1(k − k′)�η(k′, p′; q)λ(p − k)

+ δ(k − k′)Gn(k)Gn(q − k)�η(k′, p′; q)λ(p − k)]

= −�η(p, p′; q) +
∫

dk′Gn(k′)Gn(q − k′)

× �η(k′, p′; q)λ(p − k′)

=
∫

dk′dk �−1
η (k, k′; q)�η(k′, p′; q)λ(p − k)

= λ(p − p′). (4.24)

The same analysis can be done for �ζ . On rearranging terms
and relabeling variables, we obtain the following two integral
equations for �η and �ζ :

�η(p, p′; q) = −λ(p − p′) +
∑

p′′
λ(p − p′′)

× Gn(p′′)Gn(q − p′′)�η(p′′, p′; q). (4.25)

�ζ (p, p′; q) = −λ(p − p′) +
∑

p′′
λ(p − p′′)

× Gn(p′′)Gn(p′′ − q)�ζ (p′′, p′; q). (4.26)

The fluctuation propagators satisfy a Bethe-Salpeter-like inte-
gral equation [39], where a symmetric combination of Green’s
functions appears in the integral kernel. Other approaches, like
FLEX [40], go beyond Gaussian fluctuation theory and are not
considered here.

Our result for �η in Eq. (4.25) agrees with that found
in Eq. (1) of Refs. [30–32], after restoring the coupling
constant in their expressions. The function �η(k, k′; q) phys-
ically represents the propagator for two electrons above Tc,
with relative momentum k and center-of-mass momentum
q, to form a short-lived Cooper pair before separating into
two electrons with relative momentum k′. The condition
that �−1

η (k, k′; 0) → 0 would imply that these fluctuations
proliferate at q = 0, signaling a phase transition to the super-
conducting state. In Ref. [32], the fluctuation contribution to
the electron self-energy was ignored; here, however, we have
incorporated this effect. In particular, the function �ζ (k, k′; q)
parameterizes fluctuations in the � field and physically ac-
counts for density interactions. The Dyson equation for �ζ has
a similar form to the phonon propagator in Migdal-Eliashberg
theory [11,41–43], where the bare phonon propagator is cor-
rected by a phonon self-energy involving a particle-hole loop
of two fermionic Green’s functions.
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Using the results from Eqs. (4.18) and (4.23), the full
normal-state action is given by

S(T > Tc) = −
∑
p,p′

�(p)λ−1(p − p′)�(p′)

− 2
∑

p

ln
[−G−1

n (p)
]

+
∑

p

ln
[−�−1

η (p)
] + 1

2

∑
p,σ

ln
[−�−1

ζ (p)
]
.

(4.27)

The normal-state action was also considered in Ref. [32], by
adding Cooper-pair fluctuations to the normal-state result of
Ref. [41]. Here we have incorporated fluctuations in the �

field and rigorously derived the Copper-pair fluctuations using
the functional integral. We emphasize that the result above
has fixed � at its mean-field value, but also incorporated
fluctuations about this quantity. As a result, this action is not
extremal with respect to variations in �.

As discussed in Sec. IV A, Tc is the maximum temperature
at which φ is nonzero. We have not investigated how Gaussian
fluctuations affect Tc; that is, we still use the mean-field equa-
tions to define Tc. The importance of how fluctuations affect
the number equation and superfluid density has been studied
in the BCS case [25,44]. The Gaussian-fluctuation analysis
can also be performed about a nonzero value of φ, which will
result in a fluctuation action that depends on φ. In principle,
one could then examine the solutions to δSfluc/δφ = 0, which
would yield Gaussian-fluctuation corrections to the gap. Such
an analysis has been done for the fluctuation extension of BCS
theory [45]. Our primary focus, however, is on the normal-
state response, as in Refs. [30–32], and in the next section we
study the diamagnetic susceptibility.

V. FLUCTUATION RESPONSE

In this section we derive the normal-state fluctuation re-
sponse based on the propagators derived in the previous
section. The temperature region over which fluctuations are
important is characterized in terms of the Ginzburg-Levanyuk
number (Gi), which is defined as the value of the reduced
temperature (ε ≡ T/Tc − 1) at which the fluctuation correc-
tion of the heat capacity (in zero magnetic field) equals the
value of the discontinuity in the heat capacity [23]. For ul-
traclean three-dimensional systems, Ginzburg-Landau (GL)
fluctuation theory predicts Gi ∼ 80(Tc/EF )4 � 1, where EF

is the Fermi energy. Thus, fluctuations are important only in
a very narrow range of temperatures near Tc. To discern the
effect of electron-phonon interactions on Gi, we let λ denote
the electron-phonon coupling (not to be confused with the
bare phonon propagator); for an Einstein phonon spectrum, λ

is related to gq by λ = 2N |gq|2/ωE , where N is the single-spin
density of states (DOS) [11]. From Eq. (10) of Ref. [32], we
can infer the value of Gi to be Gi ∼ λ9(Tc/EF )4, as λ → ∞.
Thus, very strong electron-phonon coupling would increase
the range of temperatures over which fluctuations are impor-
tant; however, as noted in Ref. [32], since real metals have
λ ∼ 1, the effect on the prefactor may be roughly an order of
magnitude.

FIG. 4. Cooper-channel fluctuation response diagrams in the nor-
mal state. The top left diagram is the AL diagram, next is the
MT diagram, followed by the two DOS diagrams, and finally the
diamagnetic diagram.

To derive the electromagnetic response, the standard
method [24] is to introduce an external gauge field Aμ and ap-
ply a minimal-coupling procedure. To simplify the derivation,
we assume that p, p′ ≈ pF in the propagators �η(p, p′; q) and
�ζ (p, p′; q), where pF is the Fermi momentum. Thus, if we let
q denote the momentum of the external gauge field Aμ, then
we can derive the response in the same manner as the con-
ventional fluctuation response [29,46]. The fluctuation action,
in the presence of the external field, has the form Sfluc[A] ∼
ln[−�−1

η [A]] + 1
2 ln[−�−1

ζ [A]]. The response is then obtained
using the definition Kμν = δ2S[A]/δAμδAν |A=0. Performing
these derivatives, we obtain

Kμν

fluc ∼
∑

a=η,ζ

[
−�a

δ�−1
a

δAμ

�a
δ�−1

a

δAμ

+ �a
δ2�−1

a

δAμδAν

]
. (5.1)

The first terms are the AL diagrams, one with the fluctuation
propagator �η describing the transport of Cooper pairs and the
other with the fluctuation propagator �ζ describing the density
fluctuations. The second term comprises the Maki-Thompson
(MT), DOS, and diamagnetic contributions [23,29,46]. These
diagrams are shown in Figs. 4 and 5.

Here we compute the singular contribution to the diamag-
netic susceptibility for the Eliashberg fluctuation response.
This was initially investigated in Ref. [47], albeit the con-
clusions reached were disputed [32].The Kubo formula for
diamagnetic susceptibility is [48]:

χ = − 1

q2
Kxx(i�m = 0, qy )|qy→0,qx=qz=0. (5.2)

The absence of a normal-state Meissner effect requires [13]
that Kxx(i�m = 0, q → 0) = 0, thus the above Kubo formula
is well defined. Near the transition temperature the fluctuation
propagator becomes singular, and since the AL diagram has
one more propagator than the other fluctuation diagrams, we
may expect this term to provide the sole contribution to the
diamagnetic susceptibility [49]. Since χ is a thermodynamic
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FIG. 5. Density-channel fluctuation response diagrams in the
normal state.

quantity, no analytic continuation needs to be performed, and
thus there is no anomalous MT contribution to consider [23].
As a result, the AL term does indeed provide the dominant
singular contribution near Tc.

The vertex function �η can be written as [30]:
�η(p, p′; q) = φ(p)L(q)φ̄(p′), where φ is the solution to the
linearized version of Eq. (4.7) and L is the fluctuation propa-
gator, which depends only on the center-of-mass momentum
q. Following Refs. [23,30], the AL diagram for the fluctuation
Cooper pairs, i.e., η fluctuations, in the top left diagram in Fig.
4, is then

Kxx
AL,η(0, qy ) = −4e2

m2
T

∑
p,εm

L(iεm, p+)Cx(p+, p−)

× L(iεm, p−)Cx(p−, p+). (5.3)

Here, p± = p ± q/2. The vertex Cx is defined in posi-
tion space by Cx(x, y, z) ∼ δL−1[A](x, y)/δAx(z); for the
momentum-space form, see Ref. [30]. The critical regime
is characterized by L−1(0, q → 0) → 0, thus the Matsubara
frequency equal to zero provides the dominant contribution
and so we set εm = 0. Performing the Taylor expansion of
the fluctuation propagators and using the Kubo formula, we
obtain

χfluc = e2

m2
T

∑
p

[Cx(p, p)]2[LL′′ − (L′)2]. (5.4)

Here the prime denotes differentiation with respect to py. The
vertex Cx(p, p) has the form Cx(p, p) = pxC(0). Performing
the derivatives and using integration by parts, we obtain

χfluc = −2

3

e2

m2
T

∑
p

[Cx(p, p)]2L3(0, p)[L−1(0, p)]′′. (5.5)

The inverse retarded fluctuation propagator has the form
[30]: L−1

R (�, p) = N ( i�
Tc

b − Dp2 − ε), where ε = T/Tc − 1.
Here, N is the single-spin DOS at the Fermi surface, b is a
constant, and D is related to the square of the coherence length
[50]. Inserting the propagator into Eq. (5.5) and performing

the integration, we find

χfluc = 4

3
ND

e2

m2
T

∑
p

[pxC(0)]2L3(0, p)

= 2

9π2
ND[C(0)]2 e2

m2
T

∫ ∞

0
d pp4L3

= − e2T

24π

[
C(0)

NDm

]2√D

ε
. (5.6)

The critical exponent for the fluctuation contribution to dia-
magnetic susceptibility agrees with the GL result [23,49].
Indeed, independent of the particular pairing mechanism,
whether it be electron-phonon based or BCS based, the crit-
ical exponent is dependent only on the dimensionality of the
system. This observation was also noted in Refs. [30,31], in
the context of the fluctuation contribution to electrical con-
ductivity. The result we have obtained here is for ultraclean
systems. However, the exponent is still expected to be the
same for systems with impurities. In Ref. [51], the diamag-
netic susceptibility was studied for dirty superconductors near
the Anderson localization transition, and the critical exponent
was found to be the same as in the ultraclean case—the only
differences were certain prefactors and the definition of the
coherence length. This phenomenon is also discussed in Ref.
[52].

Note that the factor in Eq. (5.6) in square brackets is
dimensionless, although it does depend on the strength of
the coupling constant. In the conventional fluctuation theory,
[C(0)/(NDm)]2 = 4, and in this case we recover Aslamazov
and Larkin’s result [49]:

χAL = −e2T

6π

√
D

ε
. (5.7)

The presence of the electron-phonon interaction can signifi-
cantly modify the prefactor appearing above. Indeed, in the
strong-coupling limit, Ref. [30] finds that

N ∼ mpF , b ∼ 1

λ
, D ∼ 1

λ3

v2
F

T 2
c

, C(0) ∼ 1

λ2

p3
F

T 2
c

. (5.8)

Thus, the effect of strong coupling is to modify the diamag-
netic susceptibility by

χfluc

χAL
∼ λ

1
2 , λ → ∞. (5.9)

In the limit of large electron-phonon coupling, the diamag-
netic susceptibility is increasingly large due to the prefactor
λ

1
2 . Thus, in comparison to the seminal results of Ref. [49],

when the electron-phonon coupling becomes increasingly
large the fluctuation regime for large diamagnetic suscepti-
bility is broadened.

In regard to future directions for functional applications
of Eliashberg theory, we note that the functional-integral ap-
proach is a natural method to incorporate many fluctuating
degrees of freedom. The Coulomb interaction, for example,
can be naturally incorporated by extending the HS analysis to
include another HS field [53,54]. The resulting EM response,
with Coulomb and phase fluctuations, then has a matrix
structure for the phase, amplitude, and Coulomb degrees of
freedom. In principle, this can be extended to the case of
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the ordered phase of Eliashberg theory, where the interaction
constant would be replaced by the phonon propagator. One
could also study the EM response at the Gaussian level within
Eliashberg theory, following similar lines to Ref. [26] for the
BCS case.

VI. CONCLUSION

The Eliashberg theory of superconductivity incorporates
the dynamical nature of the electron-phonon interaction, and
conventionally it is derived within an equation of motion
approach. Here we have shown how to derive the mean-field
Eliashberg equations using a functional-integral method. Im-
portantly, this analysis illustrates that the electron self-energy
appears as an HS field, which enables its fluctuations about
the mean-field solution to be considered. We reproduced the
standard mean-field equations as saddle-point conditions of
the HS action, without recourse to intricate diagrammatic ar-
guments. In addition, we considered the Gaussian-fluctuation

response and obtained both Cooper- and density-channel ex-
citations. The former had been studied previously, but our
systematic analysis naturally obtains both fluctuations at the
same time. As a result, we obtained the fluctuation diagrams
for Eliashberg theory and have provided the complementary
account for what has been done for BCS theory. Furthermore,
we computed the fluctuation diamagnetic susceptibility near
the critical temperature and determined its strong-coupling
form. Our functional approach enables clear pathways for
going beyond the traditional Eliashberg theory framework by
considering alternative HS decouplings.
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