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Intrinsic dissipative Floquet superconductors beyond mean-field theory
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We study the intrinsic superconductivity in a dissipative Floquet electronic system in the presence of attractive
interactions. Based on the functional Keldysh theory beyond the mean-field treatment, we find that the system
shows a time-periodic bosonic condensation and reaches an intrinsic dissipative Floquet superconducting (SC)
phase. Due to the interplay between dissipations and periodic modulations, the Floquet SC gap becomes “soft”
and contains the diffusive fermionic modes with finite lifetimes. However, bosonic modes of the bosonic
condensation are still propagating even in the presence of dissipations.
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I. INTRODUCTION

Periodic driving schemes provide a simple way to study
systems out of equilibrium [1–3], also known as Floquet
engineering [4–32]. An interesting example is the Flo-
quet topological superconductor (SC) [11,13,14,22,25,33].
Nonequilibrium superconductivity, including the enhance-
ment of superconductivity due to nonequilibrium electrons
[33–40] or nonequilibrium phonons [41–46], and dynamics
of Cooper correlations due to time-dependent interactions
[47–56], has been widely studied and obtained great exciting
results. In this paper, however, we want to understand Floquet
structures and their behaviors in the presence of dissipations,
which is unavoidable and a sensitive factor to Floquet en-
gineering. Floquet superconductivity can be induced in two
different routes: proximity-induced SC and intrinsic SC. The
proximitized SC provides not only Cooper correlations but
also strong dissipations, which could significantly change
the behavior of Floquet systems [57,58]. For the intrinsic
case, SC is created due to the interaction instability near
the Fermi surface or other strong interaction effects [59,60].
Those interaction instabilities and related dissipations could
be significantly modified by the periodic driving potential
in Floquet engineering; and so, the Floquet treatment, i.e.,
Floquet theorem for quadratic BCS mean-field Hamiltonian,
could be unreliable in the Floquet engineering. Therefore,
a careful self-consistent treatment of all critical factors, i.e.,
periodical driving force, interaction instabilities, and dissipa-
tions, should be considered for Floquet engineering. Based
on those motivations, we focus on the following questions:
Can the interaction cause fermion-to-boson transition in the
dissipative Floquet systems; and how well is the Floquet BCS
mean-field treatment in describing periodically driven intrin-
sic SC?

*Corresponding author: dongeliu@mail.tsinghua.edu.cn

In this paper, we study Cooper instability for a realistic
periodically driven electronic system with interactions and
dissipations. Based on the functional Keldysh field theory
[61,62], we consider both the stationary point analysis and the
Gaussian fluctuation, which is beyond the mean-field theory.
We show that the system develops a periodic bosonic con-
densation, and reaches a dissipative Floquet superconducting
phase below a critical value γc or Tc, where γ is the system-
bath coupling and T is the temperature of the bath. The
fermionic quasiparticle shows a “soft” energy gap, acquires
a finite lifetime, and becomes diffusive. However, bosonic
modes of the condensation are still propagating even in the
presence of dissipations. In addition, we also find that the os-
cillation amplitude of the order parameter is a nonmonotonic
function of dissipation; therefore, a certain finite dissipation
will be helpful for the Floquet SC.

Summary of the treatment

In order to avoid bringing confusions to readers and make
our paper easy to read, we summarize the treatment we used
in this paper. Our treatment is a generalization of the method
used in the equilibrium superconducting case, to the dissipa-
tive Floquet system. The first step is to write the Hamiltonian
(1) of the composite system (electronic system with peri-
odic driving + normal metal bath) under consideration. We
then apply a time-dependent unitary transformation shown
in Eq. (2) to obtain an equivalent time-independent elec-
tronic system (then we can directly use the knowledge of
the static electronic system). We focus on the possibility of
dissipative Floquet superconductivity in the presence of the
bath. We further apply the functional Keldysh field theory
[62] to obtain the action (3) from the Hamiltonian (2); this
treatment is a standard routine (see Appendix A). Next, we
use the Hubbard-Stratonovich transformation to decouple the
four-fermion attractive interaction by introducing an auxiliary
bosonic field, and then integrate out fermionic degrees of
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freedom using Gaussian integrals, arriving at an effective
bosonic field theory (6) (see Appendix A). Those are formu-
lated in Sec. II. After that, based on the effective bosonic
theory, we do the stationary point analysis in Sec. III and
the Gaussian fluctuation approximation, which is beyond the
mean-field theory, in Sec. IV. Generalized Feynman diagram
rules are developed in Sec. IV to facilitate the analysis.

II. INTRINSIC DISSIPATIVE FLOQUET SC

We consider a single-band electronic system with a
time-periodic chemical potential and attractive interactions,
coupling to a normal fermionic bath. The Hamiltonian of the
whole system can be written as

H (t ) = HD + Hint + HT + HB, (1)

where HD = ∑
kσ [εk − μ0 − μ(t )]c†

kσ ckσ describes the non-
interacting electronic system with the time-periodic chemical
potential μ0 + μ(t ), where μ(t ) = −K cos(�t ) with � the
driving frequency, and c† (c) is the fermionic creation (an-
nihilation) operator. Hint = −g

∑
qk1k2

c†
k1+q↑c†

k2−q↓ck2↓ck1↑
with g > 0 describes the attractive interaction. Here, HB =∑

qσ εqa†
qσ aqσ is the fermionic bath Hamiltonian, which pro-

vides dissipations; and a† (a) is the creation (annihilation)
operator of the bath. Such a bath is necessary for a driving
interacting system to avoid the featureless infinite-temperature
state [63] and thermalize to a nontrivial phase [3]. One can
imagine either an unavoidable dissipation resources or a large
engineered equilibrium system weakly coupled to the small
driven part, and the bath is in equilibrium state with tem-
perature T . The system-bath coupling term can be written
as HT = W

∑
kqσ (c†

kσ
aqσ + H.c.) with W being the coupling

strength.
For a periodically driven system, it is convenient

to consider a rotating frame [11,17,44,57] by using
of a time-dependent unitary transformation UF =
exp[−i f (t )

∑
kσ c†

kσ ckσ ] with df /dt = −μ(t ), which results
in an equivalent system in the rotating frame

HF (t ) = U †
F [H (t ) − i∂t ]UF

=
∑
kσ

(εk − μ0)c†
kσ ckσ + Hint

+W
∑
kqσ

(
ei f (t )c†

kσ aqσ + H.c.
) + HB. (2)

In the absence of the bath, that is W → 0, we reach a
time-independent system with equilibrium superconductivity,
because the interaction term fully commutes with our periodic
driven chemical potential term (thus commutes with UF ). Note
that the original electron-phonon interaction also commutes
with the periodic driven term, thus, the phonon-induced at-
tractive interaction is unchanged under the periodic driving.
In those cases, without coupling to a bath, the periodic driving
is trivial, and can be removed using a time-dependent unitary
transformation. It is also our purpose to consider such a simple
model that the periodical driving potential cannot simply spoil
the formation of the SC correlation for the analysis of Floquet
SC. In the presence of the bath with finite W , the supercon-

ductivity can be modified by the time-dependent system-bath
coupling as shown in Eq. (2).

Then, the standard procedure leads to the total action of the
system in the closed-time contour [62]:

S =
∫

c
dt

∫
c

dt ′ ∑
k

��†
sk(t )Q̂−1

s0k(t − t ′) ��sk(t ′) + Sint

+
∫

c
dt

∫
c

dt ′ ∑
q

��†
bq(t )Q̂−1

b0q(t − t ′) ��bq(t ′)

+
∫

c
dt

∑
kq

[ ��†
sk(t )M̂(t ) ��bq(t ) + H.c.], (3)

where ��sk = [ψk↑, ψ̄−k↓]t , ��bq = [φq↑, φ̄−q↓]t , Q̂s0k and
Q̂b0q are free-fermion Green’s functions in Nambu space,

M̂(t ) =
[
Wei f (t ) 0

0 −We−i f (t )

]
,

and in Sint = g
∫

c dt
∑

kk′ ψ̄k↑ψ̄−k↓ψ−k′↓ψk′↑, we only count
in terms describing the interaction between electrons with
opposite momenta and spins.

In order to study the nonequilibrium steady state in such
a system, one can first integrate out the bath’s degrees of
freedom with a Keldysh functional integral formalism [57,62]
to obtain an equivalent effective fermionic action:

S′ =
∫

c
dt

∫
c

dt ′ ∑
k

��†
sk(t )Q̂−1

k (t, t ′) ��sk(t ′) + Sint, (4)

where Q̂k(t, t ′) is the dressed Green’s function given by the
Dyson’s equation

Q̂k(t, t ′) = Q̂s0k(t − t ′)

+
∫ +∞

−∞
dt1dt2Q̂s0k(t − t1)
̂k(t1, t2)Q̂k(t2, t ′),

(5)
with the self-energy from the bath being 
̂k(t1, t2) =∑

q M̂(t1)Q̂b0q(t1 − t2)M̂†(t2). These Green’s functions can
be derived analytically through perturbative expansions in
the small parameter κ = K/� [the driving potential reads as
μ(t ) = −K cos(�t )] (see Appendix A for details).

For the four-fermion interaction, it is common to decou-
ple them through the Hubbard-Stratonovich transformation
[62,64]. Such a procedure will introduce an auxiliary bosonic
field, denoted as � here. Applying the Keldysh transformation
for the bosonic fields and the Keldysh-Lakin-Ovchinnikov
transformation for the fermionic fields [62], one turns the
effective fermionic action S′ into the Keldysh⊗Nambu space.
Note that now S′ is in a quadratic form with respect to the
fermionic degrees of freedom, thus, one can also integrate out
fermionic fields and arrive at the effective bosonic action

Seff = −1

g

∫
dt�̄ασ̂

αβ

1 �β (t ) − i Tr ln
[
1 − Q̆k(γ̂ ᾱ ⊗ �̂α )

]
,

(6)

where we have restricted the pairing between electrons with
opposite momenta, thus �α here denotes the zero-momentum
bosonic field; �̂α = (1/

√
2)(�ατ̂+ + �̄ατ̂−) with α ∈ {cl, q}

introduced by the Keldysh rotation; γ̂ ᾱ = γ̂ ασ̂1, γ̂ cl = σ̂0,
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γ̂ q = σ̂1, and τ̂± = σ̂1 ± iσ̂2, with σ̂μ (μ = 0, 1, 2, 3) being
the four Pauli matrices. One should not confuse the dissipation
strength γ with matrices γ̂ α in the Keldysh space and we
use the hat symbol for 2 × 2 matrices acting in either Nambu
or Keldysh spaces and the check symbol to denote 4 × 4
matrices acting in the Keldysh⊗Nambu space.

In the nonequilibrium case, one will often encounter two-
time functions, like Q̆k(t, t ′). Here, we show how to transform
them into the Floquet representation [57] widely used in our
discussion.

Due to the periodic driving, those two-time functions will
possess the discrete time-translational symmetry Q(t, t ′) =
Q(t + τ, t ′ + τ ), where τ is the period. One can introduce two
new variables s ≡ t and u ≡ t − t ′ and define the new function
Q(t, t ′) → Q(s, u) which satisfies Q(s + τ, u) = Q(s, u) for
all u. Thus, one can perform the Fourier transformation for u
and the Fourier series expansion for s:

Q(s, ω) =
∫ +∞

−∞
du eiωu Q(s, u),

Q(n, ω) = 1

τ

∫ τ

0
ds e−in�s Q(s, ω).

(7)

Turning Q(n, ω) into a matrix form, known as the Floquet
structure, one has

Q =

⎡
⎢⎢⎢⎣

· · ·
Q(0, ω + �) Q(1, ω) Q(2, ω−�)

Q(−1, ω + �) Q(0, ω) Q(1, ω−�)
Q(−2, ω + �) Q(−1, ω) Q(0, ω−�)

· · ·

⎤
⎥⎥⎥⎦.

(8)

III. STATIONARY POINT ANALYSIS

In equilibrium, the stationary point analysis of the effec-
tive bosonic action is just the mean-field theory and provides
the gap equation. Out of equilibrium, we do not know what
exactly the mean field is. However, we can always consider
the stationary point, around which the action can be expanded
perturbatively. A variation of the bosonic action (6) with re-
spect to �̄cl (t ) generates the stationary point equation

�q(t ) = i
g√
2

Tr

[
(γ̂ q ⊗ τ̂−)

∑
k

Q̆k,�

]
, (9)

where in the time domain,

Q̆−1
k,�(t, t ′) = Q̆−1

k (t, t ′) − γ̂ ᾱ ⊗ �̂α (t )δ(t − t ′), (10)

and Q̆k(t, t ′) is the noninteracting fermionic Green’s function
dressed by the self-energy of the bath in the Keldysh⊗Nambu
space as mentioned before. We want to ask the following: (1)
if we have a stationary point solution for �q(t ); (2) if the
solution describes the SC order parameter or “gap” of the
dissipative Floquet superconductor. We will address the two
questions below.

As the system is periodic in the time domain, it is natural to
assume that Q̆k,�(t, t ′) = Q̆k,�(t + τ, t ′ + τ ), where τ is the
period. Indeed, the validity of this ansatz will be confirmed
later. Then, in the stationary point, the dominated field �q(t )

is also periodic in time. The Fourier transformation and the
Fourier series expansion shown in Eq. (7) lead to

�q
n = i

g√
2

∫
dω

2π
Tr

[
(γ̂ q ⊗ τ̂−)

∑
k

Q̆k,�(n, ω)

]
, (11)

where Q̆k,�(n, ω) is one matrix element of the Floquet matrix
Q̆k,� which has an infinite-dimension structure, and can be
expressed as

Q̆−1
k,� = Q̆−1

k

− 1√
2

[�α(n) ⊗ (γ̂ ᾱ ⊗ τ̂+) + �̄α(n) ⊗ (γ̂ ᾱ ⊗ τ̂−)],

(12)

where the repeated index α denotes the summation over α ∈
{cl, q}, a general object X has the so-called Floquet structure
shown in Eq. (8), and the superscript (n) in �α(n) (or �̄α(n))
with n ∈ N stands for the ith order in κ , e.g.,

�α(1) =

⎡
⎢⎢⎢⎣

· · ·
0 �α

1 0
�α

−1 0 �α
1

0 �α
−1 0

· · ·

⎤
⎥⎥⎥⎦, (13)

where �α
n comes from the Fourier series expansion of �α (t ).

Now, let us solve the stationary point equation (9) for the
solution �q(t ) = ∑

n �
q
nein�t with n ∈ Z. Here, we consider

small κ = K/�, and only keep terms up to leading order
O(κ ). The details are shown in Appendix B.

For the zero harmonic �
q
0, the stationary equation is ex-

actly the gap equation in the equilibrium superconducting case
when γ → 0+, where γ = πρFW 2 is the dissipation strength
provided by the self-energy from the bath, with ρF being the
density of states (DOS) in the vicinity of Fermi surface of the
fermionic bath. For finite γ , we reach the following equation:

1 = gρF

∫ ωD

�0

dω
cos θ

2 tanh ω
2T[(

ω2 − γ 2 − �2
0

)2 + 4ω2γ 2
]1/4 , (14)

where we define �0 ≡ (1/
√

2)�q
0 and tan θ = 2ωγ /(ω2 −

γ 2 − �2
0), and ωD is the Debye frequency. The numerical

result for �0 is shown in Fig. 1(a), indicating a special scaling
behavior �0 ∝ √

γc(γc − γ ) (fitting from data points) and
approaches zero at γc, which has the same feature as its
equilibrium counterpart. Thus, γ could be regarded as the
effective temperature, and the critical value γc as the transition
temperature (we will analytically derive it later). DOS of
quasiparticles in the rotating frame can be derived from the
following expression:

ν(ω) = − 1

π
Im Tr

[
Q̆R

�(0, ω)
]
, (15)

based on the n = 0 component Q̆R
�(0, ω) of the quasiclassi-

cal Green’s function [65,66], which is a matrix element of
Q̆R

� in the Floquet space. As shown in Figs. 1(a) and 1(b),
DOS of quasiparticles in the vicinity of the superconducting
gap damps as the dissipation increases. Moreover, there still
exist fermionic modes within the gap ω ∈ [−�0,+�0] when
γ is finite, and therefore, we consider them as “soft” gaps.
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FIG. 1. These three figures are plotted under conditions ωD/� =
10, � = 100 K, T = 0 K, gρF = 0.2, and κ = 0.4. Here ω, �0,
γ , and the amplitude of �q(t ) are all rescaled by being divided
by �. (a) The tendency of �0, i.e., the soft gap with the effective
temperature γ . It scales as ∝√

γc(γc − γ ), where γc is the transi-
tion temperature. This scaling suggests that the critical value is 1

2 .
(b) The DOS of quasiparticles in our intrinsic dissipative Floquet
superconductors. (c) The amplitude of the order parameter �q(t ) for
different γ ’s. Note that the amplitude of �q(t ) is nonmonotonic, as
the amplitude is proportional to γ�0 and �0 changes in the opposite
direction with the changing of γ .

The Green’s function of quasiparticles Q̆R
k,�(0, ω) shows a

finite imaginary part in the denominator due to the interplay
between the dissipation and the periodical modulation; there-
fore, the quasiparticle acquires a finite lifetime and becomes
diffusive.

For our Floquet system, we should regard the time-resolved
field �q(t ) obtained from the full stationary equation as the
SC order parameter, which includes higher harmonics. Up to
leading orders of κ , only lowest two harmonic components
�

q
0 and �

q
±1 are relevant. In Fig. 1(c), we numerically plot

the amplitude of the SC order parameter as a function of the
dissipation strength γ , defined as �

q
a = maxt∈[0,τ ](�

q
+1ei�t +

�
q
−1e−i�t ). One can observe that �

q
a is a nonmonotonic func-

tion of γ : as increasing γ , �
q
a first increases, and then starts

to decrease after crossing a turning point. For larger γ , dis-
sipations suppress the periodic modulation of the Floquet
superconductor, and both the average value and the oscil-
lation amplitude will drop to zero after γc. We also note
that the amplitude �

q
a also approaches to zero in the limit

γ → 0. This comes from the fact that if γ = 0, the system-
bath coupling disappears. Therefore, in the rotating frame
as shown in Eq. (2), the Floquet Hamiltonian reduces to its
equilibrium counterpart, and the bosonic condensation is no
longer periodic in time. Note that at a certain value of γ , the
amplitude of the order parameter �q(t ) reaches a maximum.
This comes from the competition of two effects resulted from
the dissipation strength. On one hand, in the rotating frame,
the periodicity of the order parameter comes from the system-

bath coupling. Thus, we need γ to be large in order that the
fermionic system has a clear periodicity. On the other hand,
we need γ to be small in order that it will not kill the order
parameter. Thus, the competition of these two effects results
in the maximum value. From this physical interpretation, one
can think that at this certain value of γ , the periodicity of the
order parameter is most clear and stable, which makes it easier
to detect this periodicity experimentally.

In fact, this stationary point analysis can be regarded as
a Floquet BCS mean-field treatment in our self-consistent
functional formalism. To obtain a more comprehensive under-
standing, let us go beyond this mean-field treatment.

IV. FORMATION OF PERIODIC BOSONIC
CONDENSATION

From the previous discussion, we find that the bosonic field
in the stationary point has a nonzero value when γ is below
a critical value γc. One can think that the nonzero bosonic
field results from the condensation of Cooper pairs, just as the
equilibrium SC case. The fact that some bosonic condensation
exists in a pure fermionic system implies a fermion-to-boson
phase transition.1 We now discuss how this bosonic conden-
sation is formed in the dissipative Floquet systems.

In the vicinity of γc, �cl (q)(t ) is small, which means one
can expand Seff around the critical point. Thus, we expand the
Tr ln term in Seff in powers of �cl (q), and simply keep terms
up to the second order in �cl (q). This can be easily achieved
by using of the series expansion ln(1 + x) = −∑∞

n=1
1
n (−x)n.

Then applying transformations shown in Eq. (7), one can
obtain the Gaussian action in the frequency space

S(2) =
∫ �

0

dω

2π
�̄�(ω)

[
−1

g
1 ⊗ σ̂1 +

∑
k

�̂k

]
��(ω), (16)

where to avoid redundancy, we have restricted the integration
range in [0,�], known as the first Floquet-Brillouin zone
(FBZ) [58,67], and the vector is defined as �� = [�cl ,�q]t

and �̄� = [�̄cl , �̄q]. The Floquet matrix structure denoted by
the underline has already been defined in Eq. (8). Note that
the identity in the Floquet space 1 only has diagonal elements
and all of them are γ̂ cl . The matrix elements �̂k(n, ω) of �̂k
come from the Fourier transformation and the Fourier series
expansion of �̂

αβ

k (t, t ′), which is defined as

�̂
αβ

k (t, t ′) = i

2
Tr[Q̆kp(t, t ′)γ̂ ᾱQ̆−kh(t ′, t )γ̂ β̄], (17)

with subscripts p and h denoting particle and hole, respec-
tively.

1This is the reason that we use this phrase: Originally our system
is a fermionic system, but below γc, we find that the bosonic field
� exists a nonzero value in the stationary point. This implies that
the system now exists something kind of like bosons and this must
come from the fermionic degrees of freedom in the fermionic system.
Therefore, we designate this phenomenon as the fermion-to-boson
transition.
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Then, the Green’s function of the bosonic field in the Flo-
quet space can be defined as

D̂ = −i〈�(ω) �̄(ω)〉

∼ −i

〈⎡
⎣ ��(ω + �)

��(ω)
��(ω − �)

⎤
⎦[ �̄�(ω + �) �̄�(ω) �̄�(ω − �)

]〉
,

(18)

where 〈·〉 describes the average with respect to the weight
exp(iS(2) ). The function is defined in the Floquet ba-
sis �(ω) = [. . . , ��t (ω + �), ��t (ω), ��t (ω − �), . . . ]t and

�̄(ω) = [. . . , �̄�(ω + �), �̄�(ω), �̄�(ω − �), . . . ]. In the sec-
ond equality, we keep terms up to the second order in κ ,
and then truncate D̂ to a 3 × 3 Floquet matrix (note that
each matrix element of a Floquet matrix here is also a 4 × 4
matrix in the Keldysh⊗Nambu space). As we will see in the
following content, the transition temperature will be modified
in this case, but not in the O(κ ) case discussed in Sec. III. The
retarded part of one matrix element of the Floquet matrix D̂,
defined as

D̂cl,q(n, ω) = −i〈�cl (ω + n�)�̄q(ω)〉 (19)

following from Eq. (18), is enough for the following dis-
cussion. The (n, ω) component of the Floquet matrix D̂ has
the following physical meaning: a bosonic excitation �(ω)
originally has energy ω; due to the external driven field, it will
absorb n parts of energy (n�), and then becomes a bosonic
mode with energy ω + n�. If D̂cl,q(n, ω) has a pole, then
this process is inevitable, as poles of Green’s functions cor-
respond to quasiparticle excitations. Owing to structures of
the distribution function and Green’s functions Q̆k(t, t ′), no
poles exist when ω �= 0. At ω = 0, this bosonic excitation is
similar to the equilibrium counterpart. But, due to the periodic
driving, two pairing electrons can form bosonic modes with
energy n�, and generate the SC order parameter at higher
harmonics. Then, the order parameter becomes periodic in
time and has higher harmonics �q(t ) = ∑

n �
q
nein�t (i.e., the

ansatz we made in Sec. III). In order to confirm this structure,
we still need to check that if the bosonic modes at different
harmonics occur at the same phase transition.

We first consider the n = 0 component D̂cl,q(0, 0), which
will result in zero-energy modes as the equilibrium case. The
pole equation for the bosonic Green’s function (see Appendix
C) can be written as

1 − g
∑

k

�̂
cl,q
k (0, 0) = 0, (20)

one will find the solution at zero temperature

γ = γc ≡ ω

1

1− κ2
2

D e
− 1+ κ2

2 gρF ln �

gρF (1− κ2
2 ) , (21)

which holds for γ � � � ωD and terms are kept up to O(κ2)
for deriving this. This result reduces to the SC transition tem-
perature in equilibrium case for κ → 0. For finite temperature,
we numerically plot the phase diagram in Fig. 2. Note that
D̂cl,q(0, 0) can also be interpreted as the normalized attractive
interaction constant, and thus the divergence suggests that
two electrons with opposite momenta and spins will form a

FIG. 2. Phase diagram for (γ , T ). We choose ωD/� = 10, � =
100 K, gρF = 0.2, and κ = 0.4. T and γ are rescaled by being
divided by �.

bound state, known as Cooper pair. Therefore, we can see
that our dissipative Floquet system could still develop a clear
fermion-to-boson phase transition with a modification in the
transition temperature due to the driving field.

We now analyze Green’s functions D̂cl,q(±n, 0) for n > 0,
which involves at most n order transition processes between
different Floquet bands. For example, after absorbing m parts
of energies (m�), the bosonic mode will transit from a� to
(a + m)� with |m| � n. In that sense, we require perturbation
calculations to keep terms up to O(κn).

Here, we develop diagram rules to facilitate this analysis.
For simplicity, we will introduce diagram rules through an
example. When we study Cooper instability in the equilib-
rium case, the most important factor is the vertex of the
two-electron correlation function, and under the random phase
approximation (RPA), there is just one kind of vertices [64].
However, in our Floquet system, there will be more kinds of
vertices, as particles can absorb or emit energies.

Comparing to the equilibrium case, one can observe that
−D̂cl,q(n, ω) is the so-called vertex. As for −D̂cl,q(0, 0)
shown in Appendix C, it has three terms and they represent
different kinds of vertices. Briefly, all vertices can be classified
into two classes. One represents the direct process without
emitting or absorbing energies, known as the direct vertex,
and the other describes the indirect process containing energy
exchanges, known as the indirect vertex. For example, in
−D̂cl,q(0, 0), the first term represents the direct vertex, and
the last two terms give indirect vertices.

As for direct vertices, they are just the same with those
in the equilibrium case [64]. However, for indirect vertices,
we should take absorbing and emitting processes into consid-
eration, which only appear in the periodically driven system.
They are described by �̂cl,q(m, ω) and we call them the energy
exchange vertices. The index m denotes the number of ener-
gies absorbed or emitted by particles (the energy unit is �),
and they absorb energy if m > 0 and emit energy if m < 0.
ω denotes the sum of initial energies of the two scattering
electrons. Through the analytical expression, one can find
that indirect vertices are constructed from direct vertices and
energy exchange vertices. As it should be, the total number of
energy exchanges should be consistent with n in −D̂cl,q(n, ω).
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FIG. 3. Diagrams for different vertices. (a) Direct vertex. (b) Energy exchange vertex. (c) Indirect vertex. (d) Diagram for −D̂cl,q(0, ω).

Following the above descriptions, we now write diagram
rules for different vertices, which will significantly facilitate
the calculation of D̂cl,q(n, ω):

(1) Attach g/[1 − g�̂cl,q(0, ω)] to a direct vertex shown in
Fig. 3(a).

(2) Attach �̂cl,q(m, ω)[∼ κ |m| + O(κ |m|+2)] to an energy
exchange vertex shown in Fig. 3(b).

(3) The indirect vertex shown in Fig. 3(c) is constructed
from direct vertices and indirect vertices, thus, one should
attach

g

1 − g�̂cl,q(0, ω)
�̂cl,q(m1, ω)

g

1 − g�̂cl,q(0, ω + m1�)

× �̂cl,q(m1, ω + m2�)
g

1 − g�̂cl,q(0, ω + (m1 + m2)�)

to an indirect vertex. Read from the left to the right.
(4) As for the diagram of one complete process, we just

need to sum up those relative direct vertices and indirect
vertices. As an example, −D̂cl,q(0, 0) can be expressed as
Fig. 3(d) with ω = 0, when we keep terms up to O(κ2).

Having shown the diagram rules for Floquet vertices or the
bosonic Green’s functions (in Appendix C, we also summa-
rize the diagram rules and show more examples for clarity),
one can now turn to analyze D̂cl,q(n, 0) used for demonstrating
the periodicity of the bosonic condensation.

As we now want to study the general case, that is n can be
arbitrary nonzero integers, terms should be kept up to O(κn).
Therefore, suppose that we keep terms up to O(g2κn) for sim-
plicity. According to diagram rules discussed previously, we
can observe that the number of direct vertices are no more than
2, as one direct vertex will contribute a factor g. Thus, there
is one energy exchange vertex at most. For D̂cl,q(±n, 0) with
n �= 0, there must be energy exchange vertices. Therefore,
there is one energy exchange vertex and two direct vertices
for the diagram of −D̂cl,q(±n, 0) in O(g2κn) case. Thus, it is
easy to obtain

D̂cl,q(±n, 0) = −g2�̂cl,q(±n, 0)[
1 − g�̂cl,q(0,±n�)

][
1 − g�̂cl,q(0, 0)

] ,

(22)
where we have �̂cl,q(±n, ω) ≡ ∑

k �̂
cl,q
k (±n, ω). Since

�̂cl,q(±n, ω) ∼ κn + O(κn+2), D̂cl,q(±n, 0) ∼ g2κn. In the
O(κn) case, terms that is proportional to κ |m| with |m| < n
are still under our consideration, and one can derive sim-

ilar expressions for D̂cl,q(m, 0) from the same procedure.
Note that the pole of D̂cl,q(±n, 0) is the same as that of
D̂cl,q(0, 0) shown in Eq. (20). We also note that the term
1 − g�̂cl,q(0,±n�) in the denominator is always nonzero. For
arbitrary higher-order corrections of interaction constant g, the
term 1 − g�̂cl,q(0, 0) always appears in their denominator as
D̂cl,q(±n, 0). Thus, all Green’s functions D̂cl,q(±n, 0) exhibit
the same pole structure (effective transition temperature γc)
for all different n’s. The discussion above suggests that the
bosonic excitation is periodic in the time domain, and can
be expanded as �(t ) = ∑

n �(n�)ein�t . Due to the presence
of the pole structure, the bosonic modes in the condensation
are propagating and dissipationless even with system-bath
coupling. This result also confirms the ansatz we made in
Sec. III.

V. DISCUSSION AND SUMMARY

The DOS of quasiparticles in Fig. 1(b) shows that in the
finite γ , there still exist energy levels in the gap. Actually,
this comes from the fact that the lifetimes of quasiparticles are
now finite and they are diffusive, which can be derived from
the Green’s function of quasiparticles Q̆R

k,�(0, ω) [Eq. (B6)],
just like the broadening of the peak in the DOS of dissipative
Floquet Majorana zero modes shown in Ref. [58]. One can
think this is because in the presence of the bath, the fermionic
degrees of freedom or electrons before the SC phase transition
are diffusive, which can be found from the Green’s functions
(B5). However, the surprising thing is the bosonic mode or
condensation resulting from the superconducting phase tran-
sition is still a propagating mode in spite of the existence of
dissipations, as the Green’s functions of these bosonic modes
D̂cl,q(±n, 0), do not contain imaginary parts in the denomina-
tor.

In summary, based on the functional Keldysh field theory
with a self-consistent treatment of all building blocks of our
system, we demonstrate that the BCS mean-field treatment
in the dissipative Floquet case is equivalent to the stationary
point analysis in the functional or path-integral formalism,
where one can always implement the stationary point analysis.
Moreover, based on the Gaussian fluctuation approximation,
which is beyond the mean-field theory, we also consolidate
the validity of the BCS mean-field theory in the dissipative
Floquet scenario. Note that this system possesses a more
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FIG. 4. (a) The closed-time contour formalism is needed for a time-dependent system. (b) Discretize the closed-time contour to develop
the functional formalism.

structured gauge U(1) symmetry, which could be an interest-
ing point to be discussed in the future.
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APPENDIX A: OBTAINING THE BOSONIC EFFECTIVE ACTION

In this Appendix, we show some key steps that lead to the effective action (6). We start from the total Hamiltonian in the
rotating frame, shown in Eq. (2):

HF (t ) =
∑
kσ

(εk − μ0)c†
kσ ckσ + Hint + W

∑
kqσ

(ei f (t )c†
kσ aqσ + H.c.) + HB, (A1)

where expressions of Hint and HB can be found in the main text, below Eq. (1).
The next step is to write the action from this Hamiltonian, and the procedure is quite standard. For completeness, we start

from the construction of the functional Keldysh field theory (see Ref. [62] for details). In the rotating frame, our system is
governed by the Hamiltonian HF (t ). The evolution of the density matrix can expressed as ρ(t ) = Ut,−∞ρ(−∞)(Ut,−∞)†, where
Ut,t ′ = T exp(−i

∫ t
t ′ dt ĤF (t )) is the evolution operator, and T is the time-ordering operator. The expectation value of some

observable can be calculated through the generating function, defined as

Z[V ] ≡ Tr [UC[V ]ρ(−∞)]

Tr[ρ(−∞)]
, (A2)

where UC[V ] ≡ U−∞,+∞[V ]U+∞,−∞[V ], and U...[V ] is generated by Ĥ±
V (t ) ≡ ĤF (t ) ± OV (t ), where the plus (minus) sign

refers to the forward (backward) part of the contour [Fig. 4(a)]. V (t ) is an auxiliary field, and will be set to zero after taking the
derivative of Z[V ] with respect to V (t ). Equation (A2) implies that calculating the generating function is the key for deal with a
many-body problem. The functional formalism (path-integral formalism) is a useful method to rewrite the generating function.
The standard procedure, which can be found in any quantum field theory textbook, is as follows:

(i) Divide the closed-time contour into (2N − 2) intervals with length δt [Fig. 4(b)].
(ii) Insert the revolution of unity in the coherent state basis (for fermions, we need the Grassmann number, denoted as ψ in

the following, for help).
(iii) Take the limit δt → 0, and then one will get the generating function Z = ∫

D[�̄,�] exp(iS) in the continuum limit. For
our system, we have

S =
∫

c
dt

∫
c

dt ′ ∑
k

��†
sk(t )Q̂−1

s0k(t − t ′) ��sk(t ′) + Sint

+
∫

c
dt

∫
c

dt ′ ∑
q

��†
bq(t )Q̂−1

b0q(t − t ′) ��bq(t ′)

+
∫

c
dt

∑
kq

[ ��†
sk(t )M̂(t ) ��bq(t ) + H.c.

]
. (A3)

The definition of those quantities can be found in the main text. Here, we do not include V (t ), as we will not use it.
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Integrating out the degrees of freedom of the bath using Gaussian integrals, one can obtain the equivalent fermionic action

S′ =
∫

c
dt

∫
c

dt ′ ∑
k

��†
sk(t )Q̂−1

k (t, t ′) ��sk(t ′) + Sint, (A4)

where

Q̂k(t, t ′) = Q̂s0k(t − t ′) +
∫ +∞

−∞
dt1dt2Q̂s0k(t − t1)
̂k(t1, t2)Q̂k(t2, t ′), (A5)

with the self-energy from the bath being 
̂k(t1, t2) = ∑
q M̂(t1)Q̂b0q(t1 − t2)M̂†(t2), and

M̂(t ) =
[
Wei f (t ) 0

0 −We−i f (t )

]
,

where f (t ) = (K/�) sin(�t ). We now turn to discuss how to calculate the dressed Green’s function Q̂k(t, t ′) through the
perturbative expansion with respect to κ = K/�.

Using the Fourier transformation (7), Eq. (A5) can be rewritten as

Q̂k(n, ω) = δn0Q̂s0k +
∑

n1

Q̂s0k(ω + n�)
̂k[n1, ω + (n − n1)�]Q̂k(n − n1, ω), (A6)

where 
̂k(n, ω) = ∑
q

∑
n2

M̂n+n2 Q̂b0q(ω − n2�)M̂†
n2

, and

M̂n =
[
W Jn

(
K
�

)
0

0 −W (−1)nJn
(

K
�

)], (A7)

where Jn(x) is the Bessel function of the first kind. For weak driving amplitude case, i.e., κ � 1, one can expand the Bessel
function to the lowest order in κ . Up to O(κ2), we have

M̂0 =
[
W 0
0 −W

]
, M̂1 =

[
W
2 κ 0
0 W

2 κ

]
, M̂−1 =

[−W
2 κ 0
0 −W

2 κ

]
. (A8)

Then, according to the Dyson equation (A6), we can derive the dressed Green’s function in the frequency space.
Next, we need to deal with the interaction action Sint, which is four-fermion interaction. One can treat this term through the

Hubbard-Stratonovich transformation [62]. The idea of this transformation is that we multiply the generating function Z by the
unity

1 =
∫

D[�̄,�] exp

[
i
∫

c
dt

(
−1

g

)
�̄(t )�(t )

]
, (A9)

where � is a complex bosonic field. Thus, we have

eiSint =
∫

D[�̄,�] exp

[
i
∫

c
dt g

∑
kk′

ψ̄k↑ψ̄−k↓ψ−k′↓ψk′↑ − 1

g
�̄�

]
, (A10)

then we make a variable shift

�̄ → �̄ − g
∑

k

ψ̄k↑ψ̄−k↓,

� → � − g
∑

k′
ψ−k′↓ψk′↑,

(A11)

and eiSint becomes

eiSint =
∫

D[�̄,�] exp

{
−i

∫
c

dt

[
1

g
�̄� − �̄

∑
k′

ψ−k′↓ψk′↑ − �
∑

k

ψ̄k↑ψ̄−k↓

]}
. (A12)

One can find that the generating function Z = ∫
D[�̄,�, �̄,�] exp[iS(�̄,�, �̄,�)] now is in a quadratic form with respect to

the fermionic field, which means we can also integrate them out using Gaussian integrals. Finally, one will obtain the effective
bosonic action (6).

APPENDIX B: SOLVING THE STATIONARY POINT EQUATION

The key to solve the stationary point equation is to derive Q̆k,�(n, ω). Since Q̆−1
k = Q̆−1

s0k − 
̆k [derived from the Dyson

equation (5)], where Q̆−1
s0k is the free-fermionic Green function and 
̆k is the self-energy provided by the normal metal bath in
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the Keldysh⊗Nambu space. Note that Q̆k,� = (Q̆−1
k,�)−1, we have the following expansion:

Q̆k,� =
{

Q̆−1(0)
k,� −

[

̆

(1)
k + 1√

2

(
�α(1) ⊗ (γ̂ ᾱ ⊗ τ̂+) + �̄α(1) ⊗ (γ̂ ᾱ ⊗ τ̂−)

)] + O(κ2)

}−1

≡ Q̆(0)
k,�

+ Q̆(1)
k,�

+ O
(
κ2

)
,

(B1)

where the superscript (i)(i = 0, 1) also stands for the ith order in κ ,

Q̆−1(0)
k,�

≡ Q̆−1
s0k − 
̆

(0)
k − 1√

2
[�α(0) ⊗ (γ̂ ᾱ ⊗ τ̂+) + �α(0) ⊗ (γ̂ ᾱ ⊗ τ̂−)] (B2)

and

Q̆(1)
k,� ≡ Q̆(0)

k,�

[

̆

(1)
k + 1√

2

(
�α(1)(γ̂ ᾱ ⊗ τ̂+) + �̄α(1)(γ̂ ᾱ ⊗ τ̂−)

)]
Q̆(0)

k,�. (B3)

Due to the feature of Floquet matrices, Q̆(0)
k,�

is a diagonal matrix, and Q̆(1)
k,�

is a secondary diagonal matrix, etc.

For �
q
0, we have

�
q
0 = i

g√
2

∫
dω

2π
Tr

[
(γ̂ q ⊗ τ̂−)

∑
k

Q̆k,�(0, ω)

]

= i
g√
2

∫
dω

2π

∑
k

[
Q̆K

k,�(0, ω)
]12

, (B4)

where the superscript “12” stands for the matrix element in the first row and second column. When we keep terms up to O(κ ),
normal fermionic Green’s functions with dissipations are

Q̆R/A
k,p (0, ω) = 1

ω − εk ± iγ
, Q̆R/A

k,h (0, ω) = 1

ω + εk ± iγ
, Q̆K

k,p/h(0, ω) = −2iγ
tanh( ω

2T )

(ω ∓ εk )2 + γ 2
. (B5)

From Q̆K
k,p/h(0, ω), we find that when we keep terms up to O(κ ), the fermionic distribution function is still the Fermi-Dirac

distribution, which is different from that in O(κ2) case [57]. Then, Eq. (B2) leads to the Green’s functions of quasiparticles,
dressed by the bosonic field �:

Q̆R/A
k,�

(0, ω) = 1

(ω ± iγ )2 − ε2
k − �2

[
ω + εk ± iγ �

� ω − εk ± iγ

]
(B6)

and

Q̆K
k,�(0, ω) = Q̆R

k,�(0, ω) · F (ω) − F (ω) · Q̆A
k,�(0, ω), (B7)

where we have assumed � to be real, F (ω) = [1 − 2nF (ω)]1N with 1N being the identity in the Nambu space, and nF (ω) =
1/(eβω + 1) is the Fermi-Dirac distribution.

Substituting
∑

k with
∫

dεkρF , one will get the quasiclassical Green’s function [57,66,68] defined as Q̆K
� = ∑

k Q̆K
k,�:

[
Q̆K

�(0, ω)
]12 = iπρF

[
� tanh ω

2T√
(ω − iγ )2 − �2

− � tanh ω
2T√

(ω + iγ )2 − �2

]
. (B8)

Then, according to Eq. (B4), one will get the gap equation in the main text.
Now we turn to consider �

q
±1. Seeing as Q̆(1)

k,�
is not a diagonal matrix, for convenience, we truncate the Floquet matrix to a

3 × 3 one. Then, one can solve the matrix equation (B3) to get

Q̆k,�(±1, ω) = Q̆(0)
k,�(0, ω ± �)

{

̆k(±1, ω) + 1√

2

[
�α

±1(γ̂ ᾱ ⊗ τ̂+) + �̄α
±1(γ̂ ᾱ ⊗ τ̂−)

]}
Q̆(0)

k,�(0, ω). (B9)

Solving this equation, one can derive Q̆K
k,�(±1, ω), then one can get equations that decide �

q
±1. Since it is difficult to analytically

solve them, we resort to numerical calculations.

APPENDIX C: BOSONIC GREEN’S FUNCTIONS AND THE DIAGRAM RULES

In this Appendix, we briefly discuss the derivation of the bosonic Green’s functions. Here, we will keep terms up to the
second order in κ . As shown in the main text, the transition temperature will be modified in this case, but not in the O(κ ) case.
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The second-order approximation in �α (�̄α) with α ∈ {cl, q} of the effective bosonic action Seff has been derived and shown in
Eq. (16). Then, according to the feature of Gaussian integrals, one can get

D̂ = −i

˝⎡
⎣ ��(ω + �)

��(ω)
��(ω − �)

⎤
⎦[ �̄�(ω + �) �̄�(ω) �̄�(ω − �)

]˛

=

⎡
⎢⎣

− 1
g σ̂1 + �̂(0, ω + �) �̂(1, ω) �̂(2, ω − �)
�̂(−1, ω + �) − 1

g σ̂1 + �̂(0, ω) �̂(1, ω − �)
�̂(−2, ω + �) �̂(−1, ω) − 1

g σ̂1 + �̂(0, ω − �)

⎤
⎥⎦

−1

= − g
(
1 − g�̂(0) ⊗ σ̂1 − g�̂(1) ⊗ σ̂1 − g�̂(2) ⊗ σ̂1

)−1 ⊗ σ̂1, (C1)

where we have truncated the Floquet matrix to a 3 × 3 one, �̂ ≡ ∑
k �̂k, the superscript (i) denotes terms kept up to the ith order

in κ ,

1 − g�̂(0) ⊗ σ̂1 =
⎡
⎣1K − g�̂(0, ω + �)σ̂1 0 0

0 1K − g�̂(0, ω)σ̂1 0
0 0 1K − g�̂(0, ω − �)σ̂1

⎤
⎦, (C2)

g�̂(1) ⊗ σ̂1 =
⎡
⎣ 0 g�̂(1, ω)σ̂1 0

g�̂(−1, ω + �)σ̂1 0 g�̂(1, ω − �)σ̂1

0 g�̂(−1, ω)σ̂1 0

⎤
⎦, (C3)

and

g�̂(2) ⊗ σ̂1 =
⎡
⎣ 0 0 g�̂(2, ω − �)σ̂1

0 0 0
g�̂(−2, ω + �)σ̂1 0 0

⎤
⎦, (C4)

where 1K is the identity matrix in the Keldysh space. Expanding (1 − g�̂ ⊗ σ̂1)−1 up to κ2, one will get

(1 − g�̂ ⊗ σ̂1)−1

∼= (1 − g�̂(0) ⊗ σ̂1)−1 + (1 − g�̂(0) ⊗ σ̂1)−1 · g�̂(1) ⊗ σ̂1 · (1 − g�̂(0) ⊗ σ̂1)−1

+(1 − g�̂(0) ⊗ σ̂1)−1 · g�̂(2) ⊗ σ̂1 · (1 − g�̂(0) ⊗ σ̂1)−1

+(1 − g�̂(0) ⊗ σ̂1)−1 · g�̂(1) ⊗ σ̂1 · (1 − g�̂(0) ⊗ σ̂1)−1 · g�̂(1) ⊗ σ̂1 · (1 − g�̂(0) ⊗ σ̂1)−1 + O(κ3). (C5)

Then one can get matrix elements of D̂cl,q(n, ω) up to the second order in κ:

D̂cl,q(0, ω) = − g

1 − g�̂cl,q(0, ω)

− g3�̂cl,q(1, ω − �)�̂cl,q(−1, ω)

[1 − g�̂cl,q(0, ω)][1 − g�̂cl,q(0, ω − �)][1 − g�̂cl,q(0, ω)]

− g3�̂cl,q[−1, ω + �)�̂cl,q(1, ω]

[1 − g�̂cl,q(0, ω)][1 − g�̂cl,q(0, ω + �)][1 − g�̂cl,q(0, ω)]
,

(C6)

D̂cl,q(±1, ω) = − g2�̂cl,q(±1, ω)

[1 − g�̂cl,q(0, ω ± �)][1 − g�̂cl,q(0, ω)]
, (C7)

D̂cl,q(±2, ω) = − g2�̂cl,q(±2, ω)

[1 − g�̂cl,q(0, ω)][1 − g�̂cl,q(0, ω ± 2�)]

− g3�̂cl,q(±1, ω)�̂cl,q(±1, ω ± �)

[1 − g�̂cl,q(0, ω)][1 − g�̂cl,q(0, ω ± �)][1 − g�̂cl,q(0, ω ± 2�)]
.

(C8)

In order to make the diagram rules we show in the main text clearer, we summarize them again and give one more example.
The diagram rules read as follows:
(1) Attach g/[1 − g�̂cl,q(0, ω)] to a direct vertex shown in Fig. 3(a).
(2) Attach �̂cl,q(m, ω)[∼ κ |m| + O(κ |m|+2)[ to an energy exchange vertex shown in Fig. 3(b).
(3) The indirect vertex shown in Fig. 3(c) is constructed from direct vertices and indirect vertices, thus one should attach

g

1 − g�̂cl,q(0, ω)
�̂cl,q(m1, ω)

g

1 − g�̂cl,q(0, ω + m1�)
�̂cl,q(m1, ω + m2�)

g

1 − g�̂cl,q(0, ω + (m1 + m2)�)

to an indirect vertex. Read from the left to the right.
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FIG. 5. Diagrams for D̂cl,q(±2, ω). (a) One particle absorbs (emits) two parts of energies (±2�). (b) One particle first absorbs (emits) one
part of energy (±�), then absorbs (emits) one part of energy as well.

(4) As for the diagram of one complete process, we just need to sum up those relative direct vertices and indirect vertices.
In the main text, we use the example of D̂cl,q(0, 0) to introduce the diagram rules, and in the following, we will use the

diagram rules to derive D̂cl,q(±2, ω), and compare it to Eq. (C8) to show the correctness of the diagram rules. Here, we also
keep terms up to the second order in κ .

For D̂cl,q(±2, ω), since there exist energy exchange processes (n = ±2), thus, in the diagram, the energy exchange vertex
must exist.

(i) The simplest process is that there is only one energy exchange vertex, which stands for one particle absorbing or emitting
two parts of energies (±2�), and two direct vertices. The diagram is shown in Fig. 5(a).

(ii) One may find that a process that contains two energy exchange vertices, which stands for one particle first absorbing
(emitting) one part of energy (±�), then absorbing (emitting) one part of energy as well, can also contribute to D̂cl,q(±2,�). It
indeed does, and the diagram is shown in Fig. 5(b).

(iii) Since the leading-order term of the process, in which one particle absorbs (emits) n parts of energies, is proportional to κn

[that is �̂cl,q(±n, ω) ∼ κn + O(κn+2)], in the O(κ2) case, there are only the above two diagrams that contribute to D̂cl,q(±2, ω).
The diagram for D̂cl,q(±2, ω) is just the sum of Figs. 5(a) and 5(b).

(iv) Use the diagram rules shown previously, one can easily derive the expression of D̂cl,q(±2, ω):

−D̂cl,q(±2, ω) = g2�̂cl,q(±2, ω)

[1 − g�̂cl,q(0, ω)][1 − g�̂cl,q(0, ω ± 2�)]

+ g3�̂cl,q(±1, ω)�̂cl,q(±1, ω ± �)

[1 − g�̂cl,q(0, ω)]
[
1 − g�̂cl,q(0, ω ± �)

]
[1 − g�̂cl,q(0, ω ± 2�)]

, (C9)

which is exactly the same with Eq. (C8).
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