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Accurate modeling of FeSe with screened Fock exchange and Hund metal correlations
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We reproduce the electronic properties of FeSe in the high-temperature phase within an ab initio framework
that includes screened Fock exchange and local dynamical correlations. We robustly capture the experimental
band structure, as long as the system is in the Hund metal phase. In particular, we account for the shrinking of
the Fermi pockets and the sinking below the Fermi level of the hole pocket with xy orbital character. This entails
the elusive correct estimate of the Sommerfeld coefficient, and supports the interpretation of noncompensated
Fermi pockets seen in ARPES in terms of surface electron doping. More stringently, our modeling matches
well the experimental interband optical spectrum, and captures qualitatively the temperature dependence of the
thermoelectric power, extremely sensitive to the details of the bands around the Fermi level.
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More than ten years after their discovery [1], consensus
on the physics of iron-based superconductors (IBSC) is yet to
be reached. Albeit there are substantial indications pointing
towards a spin-fluctuation pairing mechanism for supercon-
ductivity induced by the proximity to magnetic instabilities
[2–4], many important features are still not understood, such
as the nature of the nematic symmetry breaking, occurring
in the normal state of many compounds, or the prediction
of material trends. In order to reach these goals, an accurate
material-specific description of their electronic structure is
essential.

Density-functional theory (DFT) in its standard imple-
mentations [the local-density approximation (LDA) or the
generalized gradient approximation (GGA)] qualitatively re-
produces the structure of the Fermi surface, i.e., that of a
semimetal (compensated in the parent compounds) with hole
pockets in the center of the Brillouin zone and electron pock-
ets at the corners [5]. Nonetheless, quantitative mismatches
are found when the calculated Fermi surfaces are compared
with angle-resolved photoemission spectroscopy (ARPES) or
quantum oscillation measurements throughout all the IBSC
families [6–10]. Moreover, the DFT electronic bands are at
least a factor 2 to 3 more dispersive than what found ex-
perimentally, with a simple rescaling of the DFT bandwidth
not being enough to reach agreement with the experimental
findings [11].

This bandwidth mismatch can be ascribed to the lack of
local dynamical correlations induced by local interactions
and in particular by the Hund coupling—the intra-atomic
exchange—within the DFT framework. These interactions
have been shown to induce a strongly correlated metallic
phase in IBSC, dominated by fluctuating local high-spin con-
figurations and therefore dubbed as Hund metal [12–14],
in which electronic correlations strongly renormalize the
bands in an orbitally differentiated, thus highly nontrivial,
way [12,15–19]. For this reason dynamical mean-field theory

(DMFT), and even the simpler Gutzwiller or slave-particle
methods, drastically improve the overall band structure, and
more generally electronic and magnetic properties, with re-
spect to a plain DFT description [12,20,21].

The combinations of these methods with LDA- or GGA-
derived models, however, are not able to explain or reproduce
some fundamental features, e.g., the size of electron and hole
pockets of the Fermi surface [12]. This issue is particularly
striking in tetragonal FeSe, whose experimentally measured
hole pocket is from five to six times smaller than the one
predicted by both standard DFT or DFT+DMFT calculations
[10,16,22,23]. Two main mechanisms have been proposed to
cure this inaccuracy, one mediated by dynamical fluctuations
[24,25], the other as a static effect of the intersite Coulomb
repulsion treated at the Hartree-Fock level [26,27]. Up to now,
the lack of a detailed comparison with experiments of an ab
initio description of FeSe’s normal phase has not allowed us
to clearly discriminate between the two scenarios.

In this work we tackle the ab initio modeling of FeSe and
we show that an accurate description of the Fermi surfaces can
be obtained by including screened Fock exchange effects in
the reference Hamiltonian via hybrid functional DFT [28,29].
Moreover, by including as well local dynamical correlations
due to the Hund metallicity, we obtain a quasiparticle band
structure matching quite accurately (both in dispersion and
orbital character) ARPES and transport experimental mea-
surements. Our result thus supports the static mechanism for
the shrinking of the Fermi pockets in this material, and more
in general the nontrivial disentanglement of the electronic
self-energy into a static nonlocal and a dynamical local com-
ponent, i.e.

�(k, ω) = �nonloc(k) + �dyn(ω), (1)

to a good level of approximation, in line with earlier GW
calculations on IBSC [30,31] and oxides [32], SEX+DMFT
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calculations on cobalt pnictides [33], and a more recent anal-
ysis of ARPES experimental data [34].

I. METHODS

We calculate a reference one-body DFT Hamiltonian us-
ing both the Perdew-Burke-Ernzerhof (PBE) GGA functional
[35] and the HSE hybrid functional [36,37], which admixes
a fraction of short-range Hartree-Fock exchange energy into
the PBE exchange energy. All the DFT calculations have
been carried out using the experimental lattice parameters
a = 3.7707 Å, c = 5.521 Å, and zSe = 0.2667 for the tetrag-
onal phase of FeSe [38,39], using the QUANTUM ESPRESSO

package [40–42].
As in all IBSC, the bands crossing the Fermi level in

FeSe are mainly of Fe-3d character, and in order to include
many-body effects through the explicit treatment of local
correlations, a parametrization of the one-body Hamiltonian
on a localized basis is necessary. We thus project the DFT
Kohn-Sham Hamiltonian over a set of five maximally local-
ized Wannier functions per Fe site, using the WANNIER90 code
[43]. This downfolding process yields the hopping and on-site
energies of the one-body part

Ĥ0 =
∑

i �= j, m, m′, σ

tmm′
i j d̂†

imσ d̂ jm′σ +
∑
i,m,σ

εimσ n̂imσ , (2)

where d̂†
imσ creates an electron in the Wannier spin-orbital

mσ centered at the lattice site i, and n̂imσ = d̂†
imσ d̂imσ is the

corresponding number operator.
A Hubbard-Kanamori Hamiltonian is used to include the

local interactions to be treated in a dynamical many-body
fashion:

Ĥ = Ĥ0 + U
∑
i,m

n̂im↑n̂im↓ + (U − 2J )
∑

i,m �=m′
n̂im↑n̂im′↓

+ (U − 3J )
∑

i,m<m′,σ

n̂imσ n̂im′σ , (3)

where U is the intraorbital Coulomb repulsion and J is the
Hund coupling [44]. In this framework the double counting
energy for these interactions is absorbed in the chemical po-
tential.

Here we solve the many-body Hamiltonian (3) within the
slave-spin mean-field theory (SSMF) [45,46], which treats
many-body effects in a simpler way than DMFT, yet providing
a �dyn(ω) which has proven to be a robust approximation
for IBSC by, e.g., successfully capturing their orbital-
differentiation signatures [19], or predicting the evolution of
the Sommerfeld coefficient upon doping in the 122 family
[47]. SSFM describes the Fermi-liquid low-temperature para-
magnetic metallic phase of (3) as a quasiparticle Hamiltonian

ĤQP =
∑

i �= j, m, m′, σ

√
ZmZm′ tmm′

i j f̂ †
imσ f̂ jm′σ

+
∑
i,m,σ

(εm − λ̃m)n̂ f
imσ , (4)

where the (orbital-dependent) quasiparticle renormalizations
Zm and on-site-energy shifts λ̃m are determined solving the

self-consistent slave-spin equations for given values of the
local interactions U and J [42,46].

When building the reference Hamiltonian H0 starting
from the PBE Kohn-Sham states (we label the final result
SSMF@PBE), we set U PBE = 4.2 eV and JPBE = 0.2U PBE,
based on constrained random-phase approximation calcula-
tions (cRPA) [48], and benchmarking on higher-level theories
[42]. In the HSE case (labeled SSMF@HSE), we keep the
same J/U ratio as for PBE, and we fix U HSE = 5.0 eV, the
value at which the t2g mass renormalization is closest to the
SSMF@PBE one. This choice is further validated by perform-
ing several scans in the (U, J ) space, showing that the main
improvements with respect to the SSMF@PBE case are robust
with respect to changes in the local interactions, as long as the
system is within the Hund metal phase. This is indeed a region
of strong and orbitally differentiated mass renormalization,
which is systematically found in these models at interaction
strengths beyond a crossover value [14,49–53] (see the blue-
shaded region in the bottom panels in Fig. 1).

II. QUASIPARTICLE DISPERSION AND
FERMI SURFACE

The itinerant-fermion description of FeSe yielded by the
PBE (or LDA) functional is known to predict an overall cor-
rect shape of the Fermi surface, but also to overestimate the
hole-pocket size of about a factor 5 and underestimate the ef-
fective masses up to 8 times [10,55]. For this reason, the PBE
bands shown in the upper panel of Fig. 1 are renormalized by
a constant factor Z = 1/6, so to ease the comparison of their
dispersion with the subsequent cases. It must be noted, how-
ever, that this simple rigid renormalization does not account
for the quasiparticle mass differentiation reported in experi-
ments, with values of m∗/mb = 1/Z ranging from 2–3 for the
xz/yz bands up to 8 for the xy bands, with mb being the PBE
masses [10]. The mass differentiation is naturally brought in
by the dynamical local correlations in the Hund metal region
along with the strong overall renormalization, as shown by our
SSMF@PBE calculations presented in the upper-middle panel
in Fig. 1. However, regardless of the methodology used, local
self-energies alone do not improve the PBE Fermi surface,
yielding Fermi pockets of roughly the same size as PBE and
an over-representation of the xy character [16,22,23], in stark
contrast with experimental evidence [10,54,56].

The main outcome of this work is reported in the lower-
middle panel of Fig. 1, displaying the band structure and
Fermi surface obtained with SSMF when using the HSE
reference Hamiltonian. When the HSE static screened Fock
exchange is included in the quasiparticle equations, the xy
band sinks below the Fermi level at the zone center, leaving
a smaller hole pocket of xz/yz character and explaining the
origin of the flat band seen in ARPES about 50 meV below
εF [10,57]. At the zone corner, a relevant xy weight remains
in the outermost part of elliptical pockets, in agreement with
recent polarized-ARPES data [54], and the xy and xz/yz bands
form together a double-hourglass shape with band bottoms at
60 and 30 meV below εF, consistently with their experimental
position of about 50–60 meV and 20–40 meV below εF,
respectively [10,25,56,58,59].

014507-2



ACCURATE MODELING OF FeSe WITH SCREENED FOCK … PHYSICAL REVIEW B 104, 014507 (2021)

FIG. 1. Calculated band dispersion along the MY -�-MX path
(solid lines) on top of the corresponding ARPES dispersions from
Ref. [54] (grayscale), and kz = 0 Fermi surface of FeSe, shown in the
2-Fe Brillouin zone. The xy orbital weight is represented in a color
scale going from blue (zero weight) to orange (maximum weight).
Upper panel: PBE case renormalized by a constant factor 1/Z =
6. Upper-middle panel: SSMF@PBE solution with local interac-
tion parameters U = 4.2 eV and J/U = 0.20. Lower-middle panel:
SSMF@HSE solution with local interaction parameters U = 5.0 eV
and J/U = 0.20. Only the latter reproduces correctly the shrinking of
the Fermi pockets, the sinking of the xy band at �, and the band dis-
persions. In the two bottom panels, the SSMF mass renormalizations
for fixed J/U = 0.20 are reported for both reference Hamiltonians
considered. The Hund metal region is shaded in blue.

A crucial consequence of this band rearrangement is the net
reduction of the size of the Fermi pockets, pointing towards
static nonlocal Coulomb effects as the most likely pocket-
shrinking mechanism in FeSe. Furthermore, the competing
dynamical nonlocal scenario has been recently shown to be
quite ineffective in FeSe, even when accounting for realistic
nonlocal dynamical fluctuations [60]. We remark that the ob-
served Fermi surface shrinking is a multiband effect, with the
xz/yz pockets being more sensitive to local dynamical corre-
lations and the xy pockets more affected by nonlocal static

effects, as long as the local correlations are strong enough to
place FeSe in the Hund metal phase [42].

Finally, a relevant point that has never been explicitly
addressed in the literature to our knowledge is the lack of
compensation (between the volumes of the hole and elec-
tron pockets, due to the Luttinger theorem for Fermi liquids)
inferred from ARPES measurements (see Table 1 in the
Supplemental Material [42]). The experimentally reported
volumes of the xz/yz electron and hole pockets tend to com-
pensate one another, therefore the volume of the xy electron
pocket is expected to be compensated by a corresponding
hole pocket, which however has always escaped detection.
The general difficulty in resolving the xy bands in ARPES
[25], together with the prediction of a high xy scattering rate
[16], may lead to the conjecture that a faint, undetected xy
hole pocket is indeed present at the zone center. However, the
stark improvement in our calculated band structure produced
by the xy hole pocket sinking below the Fermi level, together
with the clear experimental detection of an xy band in the
same energy range in the low temperature phase [10], lead us
to discard the occurrence of an xy hole pocket in FeSe, and to
propose surface electron doping as the most likely explanation
to the lack of compensation in ARPES experiments. A precise
quantification of this doping would necessitate us to account
for finer energy scale effects such as spin-orbit coupling and
is beyond the scope of this study, we thus limit ourselves
to estimate that a rigid shift of the chemical potential in
the SSMF@HSE band structure reproduces the experimental
pocket sizes for an electron doping of about 0.1e− per Fe.

III. SPECIFIC HEAT

We now turn to the Sommerfeld coefficient γn, i.e., the
linear coefficient in the electronic specific heat as a function
of temperature. The Sommerfeld coefficient is proportional to
the bulk density of states (DoS) at the Fermi level, which is
ultimately a sensitive probe of the renormalized band struc-
ture and thus of electronic correlations [61]. Even though the
FeSe tetragonal phase is not stable below 90 K, hampering a
precise extrapolation of the specific heat to zero temperature,
a rough estimate of its Sommerfeld coefficient can be inferred
based on the low-temperature phase measurements, leading
to a value of about γn ≈ 12 mJ mol−1 K−2 [62,63]. Compar-
ing with the ones predicted theoretically within the different
schemes, SSMF@HSE yields γn = 9.0 mJ mol−1 K−2, in
much closer agreement with the experimental estimate than
the SSMF@PBE value of γn = 36.6 mJ mol−1 K−2, or than
the (unrenormalized) PBE value of γn = 4.0 mJ mol−1 K−2.
The difference between the two correlated cases can again be
traced back to the xy band, whose positioning below the Fermi
level is further supported by this estimation.

IV. TRANSPORT PROPERTIES

In order to assess the quality of our band structure over
a broader energy range, we compute the optical conductivity
of tetragonal FeSe. Neglecting vertex corrections, its real part
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FIG. 2. In-plane interband contribution to the optical conduc-
tivity (upper panels) and thermopower (lower panels) of FeSe,
computed in the renormalized-PBE, SSMF@PBE, and SSMF@HSE
cases. Optical conductivity calculations (solid lines, upper panels)
are compared with the experimental data for 205-nm-FeSe@CaF2

at T = 100 K [64] (open circles), and for a FeSe monocrystal al
T = 120 K [65] (open squares), both subtracted of their coherent
Drude peak. A Lorentzian broadening η = 0.06 eV has been used in
the computation of the theoretical spectra. Thermopower calculations
(solid lines, lower panels) are compared with experimental data of
FeSe polycrystals (open circles from [66], full circles from [67]), for
the temperature range above the nematic transition, occurring around
T = 90 K at ambient pressure [68].

reads as

Re[σαβ (ω)] = 2πe2h̄

V

BZ∑
k

∫ +∞

−∞
dω′ f (ω′) − f (ω + ω′)

ω

× Tr[vkαAk(ω′)vkβAk(ω + ω′)], (5)

where f (ω) is the Fermi function, Ak(ω) is the spectral
function matrix, and vmm′

kα are the velocity matrix elements
computed within the Peierls approximation [69,70]. Within
SSMF quasiparticles have infinite lifetime, which implies an
unbroadened Drude peak in optics, an artificial feature in this
context. We thus examine only the interband contributions to
the optical conductivity [71], so to avoid empirical fittings
of the Drude width. In the upper panels of Fig. 2 we report
the interband contribution to the in-plane optical conductiv-
ity (i.e., in the Fe-Fe plane, along the Fe-Se direction) in
the renormalized-PBE, SSMF@PBE, and SSMF@HSE case.
Optical conductivity data in IBSC are usually interpreted by
means of two different Drude peaks, describing, respectively,
the coherent and incoherent electron dynamics. We choose to
subtract only the coherent Drude peak to the experimental
data, since the experimentally fitted incoherent one, with a
broadening of h̄/τ ≈ 0.2 eV [64], might include portions of

interband transitions. From the upper panels of Fig. 2 one
can see that SSMF@HSE better reproduces the experimen-
tal trends, predicting a main absorption around 0.6 eV and
a secondary one around 0.3 eV. The higher-energy transi-
tion is detected both in the FeSe monocrystal [65], around
h̄ω0 ≈ 0.55 eV at T = 120 K, and in 205-nm-FeSe@CaF2

[64], around h̄ω0 ≈ 0.62 eV at T = 100 K, whereas a less in-
tense interband transition is reported in 205-nm-FeSe@CaF2

around h̄ω0 ≈ 0.25 eV at T = 100 K. On the contrary,
both the renormalized-PBE and SSMF@PBE optics yield an
excessively intense absorption peak between 0.3–0.4 eV, high-
lighting the crucial role played by screened Fock exchange in
reproducing not only the band structure in detail but also the
bands orbital character, which shapes—through the velocity
matrix elements—the interband optical conductivity. We fi-
nally notice that in the SSMF@HSE case a fainter interband
absorption around 0.1 eV is present and not reported by either
experiment. Its intensity and position suggest that it might
have been incorporated into the empirically-fitted incoherent
Drude peak, with a consequent overestimation of its intensity.

The Seebeck effect, i.e., the induction of a charge cur-
rent due to a thermal gradient, is a phenomenon sensitive
to the details of the electronic structure within the ther-
mal energy windows, making thermopower measurements a
standard probe for Fermi surface reconstructions and related
low-energy properties [72]. For the same reason, it provides
a very challenging playground for theoretical predictions,
where even the qualitative agreement has not to be taken
for granted [73]. In a system showing no transverse current
response, the thermopower is a diagonal tensor reading as

Sαα (T ) = − 1

eT

∫
dε(ε − μ)

(
−∂ f

∂ε

)
�αα (ε)

∫
dε

(
−∂ f

∂ε

)
�αα (ε)

, (6)

where e is the absolute value of the electron charge, and both
the chemical potential μ and the derivative of the Fermi func-
tion f (ε) are meant at their temperature-T value. The integrals
in Eq. (6) involve the transport distribution function �αβ (ε) =
2π h̄
V

∑
k Tr[vkαAk(ε)vkβAk(ε)] that we evaluate within SSMF.

This is a quite rough approximation, since it implies a con-
stant relaxation time that simplifies between numerator and
denominator in Eq. (6). Furthermore, we neglect phonon-drag
effects. The in-plane thermopower as a function of tempera-
ture is shown in the lower panels of Fig. 2, compared with
experimental data on polycrystalline samples. Local correla-
tions alone are unable to predict the correct trend and sign
over the whole temperature range, whereas the inclusion of
screened Fock exchange (SSMF@HSE) restores the correct
behavior below room temperature, where the agreement with
experiments is closer, and predicts a change of sign within the
tetragonal phase when lowering the temperature. The agree-
ment with the experimental data deteriorates as T decreases,
which can be partially explained by the lack of spin-orbit
coupling (SOC) in our calculations. Indeed, band splittings up
to 20 meV have been related to SOC in FeSe [10,25,57,74,75],
enough to affect the low-temperature behavior of the Seebeck
coefficient (see dashed line in the last panel of Fig. 2 and
Supplementary Material [42]).
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V. CONCLUSIONS

In summary, we have shown that the inclusion of screened
Fock exchange in DFT, through the HSE hybrid functional,
and of local Hund metal correlations within the slave-spin
mean field theory, yields a remarkably accurate description
of the band structure of FeSe. Compared to the standard PBE
approximation, using the HSE reference Hamiltonian induces
a shrinking of the Fermi pockets, bringing their size closer to
the experimental values, and generally improves the descrip-
tion of the renormalized quasiparticle bands and of transport
properties. We remark that our SSMF@HSE approach is ar-
guably the numerically cheapest way to incorporate all the
main physical effects necessary for an accurate description of
FeSe, with respect to the more complete but computationally
heavier GW +DMFT [30] or SEX+DMFT [33].

Our results suggest that the lack of compensation in
ARPES data may be due to surface electron doping, and point
towards static short-range Coulomb effects to be the most

likely mechanism for pocket shrinking in FeSe. Finally, our
findings support the conjecture that nonlocal and dynamical
effects can be disentangled in the self-energy of IBSC to a
good level of approximation [30,31,34].
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