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General theory of robustness against disorder in multiband superconductors
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We investigate the influence of general forms of disorder on the robustness of superconductivity in multiband
materials. Specifically, we consider a general two-band system where the bands arise from an orbital degree
of freedom of the electrons. Within the Born approximation, we show that the interplay of the spin-orbital
structure of the normal-state Hamiltonian, disorder scattering, and superconducting pairing potentials can lead to
significant deviations from the expected robustness of the superconductivity. This can be conveniently formulated
in terms of the so-called “superconducting fitness.” In particular, we verify a key role for unconventional s-wave
states, permitted by the spin-orbital structure and which may pair electrons that are not time-reversed partners. To
exemplify the role of Fermi-surface topology and spin-orbital texture, we apply our formalism to the candidate
topological superconductor CuxBi2Se3, for which only a single band crosses the Fermi energy, as well as models
of the iron pnictides, which possess multiple Fermi pockets.
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I. INTRODUCTION

The influence of disorder on superconductivity is a signif-
icant, and frequently utilized, probe of the superconducting
order parameter [1]. When pairing occurs between time-
reversed partners, Anderson’s theorem [2] states that disorder
can depair electrons only when the superconducting gap is
anisotropic or the disorder breaks time-reversal symmetry.
The behavior of the critical temperature Tc in the presence
of disorder is, as a result, one of the key indicators of
unconventional superconductivity in single band materials.
Conventional (fully gapped) superconductivity is only sensi-
tive to time-reversal symmetry breaking (TRSB), or magnetic
disorder, while unconventional superconductors are equally
susceptible to both time-reversal symmetric (TRS) disorder
and TRSB disorder.

In many superconductors of recent interest, the low-energy
electronic states are conveniently labeled by discrete quantum
numbers additional to spin, e.g., the atomic orbital or sublat-
tice site from which the electrons originate. The existence of
these novel “orbital” degrees of freedom has been proposed
to play an important role in both the normal state and super-
conducting properties [3–8]. In such superconductors, pairing
may be isotropic in momentum without pairing time-reversed
states [9–17], and there has hence been much recent interest in
generalizing Anderson’s theorem to account for such systems
[18–26]. The effect of disorder in such systems is consider-
ably more complicated due to the interplay of the internal
spin-orbital structure of the superconducting states with the
spin-orbital texture of the electronic system.
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Previously, we developed a framework to illustrate the sig-
nificant role played by the spin-orbital texture in determining
the robustness of various superconducting states, even those
with momentum-dependent pairing functions, against scalar
TRS disorder with no dependence on the internal degrees
of freedom [20]. In this work, we extend this framework
to consider both TRS and TRSB disorder with a nontrivial
dependence on the internal degrees of freedom. Additionally,
we highlight the increased robustness of anisotropic pairing
states due to the existence of the unconventional s-wave states
and demonstrate how the number of bands at the Fermi level
influences the robustness.

As a demonstration of the utility of our framework, we
apply it to two families of materials proposed to realize uncon-
ventional s-wave states: superconducting Dirac systems (such
as the apparently nematic and fully gapped superconductor
CuxBi2Se3 [9,27–31]) and the iron pnictide superconductors
[10,32]. The orbital degree of freedom has a significant influ-
ence on the superconductivity in the Dirac materials, although
only a single band crosses the Fermi level [9,19,24–27,31].
We demonstrate for CuxBi2Se3 the key role played by the
spin-orbital structure of the disorder potential in determining
the robustness of various superconducting states.

In the iron-based pnictide superconductors, multiple bands
cross the Fermi level, leading to a Fermi surface with multiple
sheets. The consensus view of experiment and theory is that
an s±-wave state is realized in the majority of these materials,
where each Fermi sheet has a largely isotropic gap but with
opposite sign between the electron- and hole-like Fermi sur-
faces [33–36]. There is an extensive literature on the effect
of impurities on this pairing state, see e.g., Refs. [37–43].
Nevertheless, a variety of more exotic superconducting states
have been proposed that exploit the striking orbital texture of
the Fermi surfaces [10,16,44]. Motivated by these works and
to emphasize the important role of Fermi-surface spin-orbital
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polarization and topology, we examine a number of supercon-
ducting states which are possible in a well-known two-orbital
model [45] for these materials.

Our paper is organized as follows: In Sec. II, we develop
the generalization of our theoretical framework, based on the
self-consistent Born approximation, to account for the influ-
ence of nonscalar disorder on superconductivity in two-band
systems. In Sec. III, we apply this framework to models of
superconducting Dirac materials and highlight that the time-
reversal symmetry, or lack thereof, of the disorder scattering
is not the dominant factor responsible for determining the
robustness of a given superconducting state. We consider, in
Sec. IV, the additional influence of multiple Fermi-surface
pockets in more detail by applying our framework to the
iron pnictide superconductors. In Sec. V, we discuss some
general insights, in particular the important role played by the
superconducting fitness [6,20,46], and reconcile discrepancies
between some recent results and our own.

II. THEORY

Our general framework is developed for a generic two-
band system with both inversion and time-reversal symmetry.
States in such a system are typically defined by the elec-
tron spin and a quantum number associated with electron
orbital, sublattice, or some other additional degree of freedom.
In general, we refer to the four degrees of freedom as a
“spin-orbital” basis, regardless of the origin of the additional
degree of freedom.

A. Normal-state properties

We consider systems with the normal-state Hamiltonian
H = ∑

k c†
kHkck, where ck is a four-component spinor en-

coding the internal degrees of freedom. The most general
form of the matrix Hk which preserves both time-reversal and
inversion symmetry is [47]

Hk = εk,0 14 + �εk · �γ , (1)

where 14 is the 4×4 unit matrix and �γ = (γ 1, γ 2, γ 3, γ 4, γ 5)
are the five mutually anticommuting Euclidean Dirac ma-
trices. The presence of both time-reversal and inversion
symmetries implies that the eigenstates are doubly degenerate.
This constrains the form of the Hamiltonian for a two-band
system, so that, of the sixteen possible 4×4 matrices, only six
are allowed [48]. The specific form of the γ matrices depends
carefully on the details of the model (see Ref. [49] for a more
complete discussion of the possible forms for the γ matrices
in different systems). The coefficients of these matrices, εk,0

and �εk = (εk,1, εk,2, εk,3, εk,4, εk,5), are all real functions. The
eigenvalues of Eq. (1) are the band energies

Ek,± = εk,0 ± |�εk|. (2)

The anticommutation of the γ matrices among themselves
ensures that these eigenvalues are doubly degenerate, reflect-
ing the presence of inversion and time-reversal symmetry.
Time-reversal is given by the operator T = UTK, where K
is complex conjugation and the unitary part of the time-
reversal operator can be chosen as UT = γ 3γ 5 without loss
of generality, constraining the definition of the γ matrices.

Inversion symmetry either affects the internal degrees of free-
dom trivially (I = 14) or nontrivially (in which case we define
I = γ 1).

As an illustrative example of the γ -matrix formalism, we
consider a model for Dirac superconductors (explored in de-
tail in Sec. III) possessing an additional sublattice degree of
freedom which is interchanged by inversion but unchanged by
time reversal [9,50]. The γ matrices are defined as the product
σa ⊗ ηb of Pauli matrices in the spin σ and sublattice η spaces.
We define the inversion operator UI = ηx ⊗ σ0 = γ 1, and,
after identifying the form of the remaining γ matrices, assign
labels to γ 3 and γ 5 such that UT = iσy ⊗ η0.

Due to the presence of time-reversal and inversion sym-
metry, it is generally possible to label the twofold-degenerate
eigenstates of the Hamiltonian in terms of a pseudospin index,
which behaves like a spin- 1

2 under these two symmetries,
although it need not transform as a spin- 1

2 under other opera-
tions of the point group [51,52]. Several authors have analyzed
the impurity problem in terms a band-pseudospin or similar
basis [26,31]. Although this has the advantage of casting the
pairing potentials in a more familiar form, we do not pursue
this approach because it obscures the important role of the
orbital-spin degree of freedom. Moreover, it is unclear how
these results may change if the pseudospin does not transform
as a spin- 1

2 under all operations of the point group. Since
we work in the original spin-orbital basis, our framework is
unaffected by these complications.

We consider isotropic scattering off potential impurities
of different types α distributed randomly at positions r jα ,
described by the Hamiltonian

Himp = 1

�

∑
α

∑
jα

∑
k,k′

ei(k′−k)·r jα c†
kṼαck′ , (3)

where � is the volume and Ṽα = Vα (i)θ (αx )θ (αy )γ αx γ αy , is the
impurity potential with θ (αx ) = 1 − δ0,αx . In our multi-orbital
model the impurity can have several distinct effects, e.g., it
may modulate potential at an atomic site randomly, hybridize
two orbital states, and if magnetically active also hybridize
two spin states in an orbital. The impurity Hamiltonian (3)
separates the various possible contributions into different scat-
tering channels Ṽα . The choice αx = αy = 0 corresponds to
the scalar disorder considered in Ref. [20]. Note that our
theory allows both for distinct impurities of different types
(i.e., r jα �= r jα̃ for α �= α̃), or for the impurities to have mul-
tiple distinct scattering potentials at each impurity site (i.e.,
r jα = r jα̃ with α �= α̃ and therefore multiple distinct scattering
channels Ṽα , see Ref. [25] for an example of such a case).
Within the Born approximation, the effect of the impurities
is accounted for via a self-energy 
1(iωn), so that the full
Green’s function satisfies the Dyson equation

Ḡ−1(k, iωn) = G−1
0 (k, iωn) − 
1(iωn), (4)

where G0(k, iωn) is the Green’s function of the clean system
and the self-energy is determined self-consistently


1(iωn) =
∑

α

nimp,αṼα

∫
d3k

(2π )3 Ḡ(k, iωn)Ṽα, (5)
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where nimp,α is the concentration of α-type impurities. This
approximation is valid when disorder scattering is weak rel-
ative to the chemical potential, h̄τ−1 � μ, where τ−1 is the
disorder scattering rate. If we further require that the disorder
scattering is small compared with the band separation |�εk|
at the Fermi surface, then to leading order in h̄τ−1/|�εk| the
Green’s functions of the disordered system is

Ḡ(k, iωn) =
∑
j=±

1

iω̃n, j − Ek, j
Pk, j, (6)

where Pk,± = 1
2 (14 ± ε̂k · �γ ) projects into the ± band at mo-

mentum k and ε̂k = �εk/|�εk|. The effect of impurities on the
normal state is accounted for within the Born approximation
by the renormalized Matsubara frequencies

ω̃n, j = ωn − 1

2τk, j
sgn(ωn), (7)

where the scattering rate (SR) in band j is given by

1

τk, j
=

∑
α

πnimp,α|Vα|2

×
∑
m=±

Nm

(
1 + jm

5∑
i=1

φ(i)
α ε̂k,i〈ε̂k,i〉m

)
, (8)

with Nm the density of states of band m = ± at the Fermi
surface, and 〈. . .〉m denotes the average over the Fermi sur-
face of this band. The second term in the parentheses of
Eq. (8) arises from a net average polarization in the internal
degrees of freedom on the Fermi surface of the mth band
[20]. The factor φ(i)

α = +1(−1) if the scattering potential Ṽα

commutes (anticommutes) with the term εk,iγ
i in the normal-

state Hamiltonian (1). This contribution can have important
effects on the overall scattering rate, enhancing or reducing
the relative magnitude of interband to intraband scattering. In
the following we assume a weak momentum dependence of
the SR and replace τ−1

k, j by its Fermi-surface average τ−1
j in

Eq. (6).

B. Superconducting properties

In the orbital-spin basis, the pairing potential for a general
superconducting state is �k = �0�̃k where �0 is the magni-
tude and

�̃k = fkγ
αγ βUT . (9)

Here fk is a normalized form factor, which must be cho-
sen such that fermionic antisymmetry is satisfied, i.e., �̃k =
−�̃T

−k. The pairing potential �̃k is a 4×4 matrix, and so
there are only six matrices defined by Eq. (9) for which an
even-parity form factor (i.e., fk = f−k) is permitted, while the
other ten matrices must have an odd-parity form factor (i.e.,
fk = − f−k).

The pairing states which have s-wave form factor ( fk = 1)
are of central importance to our theory. One such state is
always given by α = β = 0 (where γ 0 = 14), which describes
the pairing of electrons in time-reversed-partner states and
is hence the generalization of the single-band conventional
s-wave spin-singlet state. The remaining five s-wave channels
depend nontrivially on the orbital degrees of freedom, i.e.,

α �= β. The pairing potentials are determined by the form of
the inversion operator: for a trivial inversion operator we have

(α, β ) = (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (10)

whereas for a nontrivial inversion operator I = γ 1 the five
potentials are

(α, β ) = (0, 1), (1, 2), (1, 3), (1, 4), (1, 5). (11)

These additional s-wave channels may belong to nontrivial
irreps, and in general involve both intraband and interband
pairing. When projected onto the Fermi surface, these states
will typically have nontrivial momentum dependence and gap
nodes may be present [20,24].

The degree to which the s-wave states involve interband
pairing can be quantified by the “superconducting fitness”
and here we review some key results of this theory [6,46].
For convenience, we define the normalized superconducting
fitness on the jth band as

F̃ ( j)
C = 〈F̃C,k〉 j =

〈
Tr

{|Hk�̃k − �̃kHT
−k|2

}
4|�εk|2Tr

{
�̃k�̃

†
k

}
〉

j

. (12)

By definition, we have 0 � F̃C,k � 1; this quantity is related
to the magnitude of the gap in the quasiparticle dispersion on
the Fermi surface by [20,46]

|�k, j | = �0

√
1 − F̃C,k. (13)

When the pairing is purely intraband, the fitness F̃C,k is vanish-
ing and the gap takes a maximal value. Conversely, we see that
gap nodes correspond to lines or points on the Fermi surface
where the gap is maximally unfit, i.e., the pairing is purely
interband.

The fitness for the conventional s-wave state is equal
to zero, consistent with Anderson’s theorem. The fitness,
Eq. (12), for the unconventional s-wave states in a system with
trivial inversion symmetry Eq. (10) evaluates as [20]

F̃ ( j)
C = 1 − 〈

ε̂2
k,β

〉
j, (14)

whereas, in the system with nontrivial inversion Eq. (11), the
fitness for the unconventional s-wave states is

F̃ ( j)
C =

{
1 − 〈

ε̂2
k,1

〉
j

(α, β ) = (0, 1)〈
ε̂2

k,1 + ε̂2
k,n

〉
j

(α, β ) = (1, n).
(15)

Note that the odd-parity s-wave states typically have smaller
values of F̃ ( j)

C than the even-parity s-wave states.
Expressed in a band-pseudospin basis, a pairing poten-

tial will typically have both inter- and intraband compo-
nents. In particular, the intraband components will either be
pseudospin-singlets or triplets according to whether they have
even or odd parity. Although the intraband pairing potential
in the latter case is dependent upon the pseudospin basis,
projecting the former into the pseudospin basis we find

�0γ
βUT →±

{
�0isy β = 0
±�0ε̂k,β isy β �= 0,

(16)

where sy is the Pauli matrix in the pseudospin degree of
freedom. In particular, we note that for the unconventional
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(β �= 0) states the sign of the intraband potential reverses
between the two bands.

C. The anomalous self-energy

We now apply the Born approximation to the supercon-
ducting state, specifically to determine the effect of disorder
on the critical temperature. We distinguish between two cases:
where pairing occurs in only a single channel, and where
multiple distinct pairing channels are present.

Single channel

The pairing potential is determined self-consistently from
the equation

�0 = gν

2β

∑
iωn

∫
d3k

(2π )3 Tr
{
�̃

†
kF̄ (k, iωn)

}
, (17)

where gν < 0 is the attractive interaction in a particular super-
conducting channel ν and F̄ (k, iωn) is the impurity-averaged
anomalous Green’s function. To determine the critical tem-
perature, we expand the anomalous Green’s function to linear
order in the pairing potential,

F̄ (k, iωn) ≈ Ḡ(k, iωn)(�k + 
2)Ḡh(k, iωn), (18)

where Ḡh(k, iωn) = −ḠT (−k,−iωn) is the impurity-
averaged normal-state Green’s function for the holes and 
2

is the anomalous self-energy due to the impurity scattering.
Inserting this into Eq. (17), we obtain the linearized gap
equation

�0 = gν

2β

∑
iωn

∫
d3k

(2π )3 Tr{�̃†
kḠ(k, iωn)

× (�k + 
2)Ḡh(k, iωn)}. (19)

The influence of disorder on the superconductivity is cap-
tured by the anomalous self-energy, which obeys the self-
consistency condition


2 = −
∑

α

nimp,αṼα

∫
d3k

(2π )3 Ḡ(k, iωn)

× (�k + 
2)Ḡh(k, iωn)Ṽ T
α . (20)

Importantly, the anomalous self-energy vanishes unless the
lowest-order contribution is nonzero:



(0)
2 = −

∑
α

nimp,αṼα

∫
d3k

(2π )3 Ḡ(k, iωn)�kḠh(k, iωn)Ṽ T
α

= π
∑

α

nimp,αṼα

∑
j=±

N j

|ω̃n, j |
〈
Pk, j�kPT

−k, j

〉
jṼ

T
α . (21)

In the final line of Eq. (21), we have neglected contributions
to the self-energy due to interband pairing, on the assumption
that the energy separation of the bands at each point in the
Brillouin zone is much larger than the characteristic energy
scales of the superconductivity and the impurity scattering.

For the two-band system considered here, the lowest-order
contribution to the anomalous self-energy for the general pair-

ing state (9) is



(0)
2 =

∑
α

πnimp,αṼα

∑
j=±

N j

4|ω̃n, j |�0

×
[
〈 fk〉 jγ

αγ β + j
5∑

l=1

〈 fkε̂k,l〉 j{γ αγ β, γ l}

+
5∑

l,m=1

〈 fkε̂k,l ε̂k,m〉 jγ
lγ αγ βγ m

]
UT Ṽ T

α . (22)

Since 

(0)
2 is an anomalous self-energy, it must satisfy the

fermionic antisymmetry condition



(0)
2 (iωn) = −


(0) T
2 (−iωn). (23)

As seen from Eq. (22), the self-energy is even in frequency
and thus the only nonvanishing terms allowed in 


(0)
2 (and

therefore also 
2) are those proportional to the unconven-
tional s-wave potentials [20].

As was the case for the normal scattering rate, account-
ing for the nontrivial structure of the disorder potentials
necessitates the inclusion of an additional parameter, λα =
+1(−1) if the gap is fit (unfit) with respect to the scattering
potential, i.e., Ṽα�̃k − �̃kṼ T

α = 0 ( �= 0). For a conventional
s-wave gap, �̃ = UT , this condition is exactly equivalent
to whether the disorder potential preserves or breaks time-
reversal symmetry. In analogy with the conventional case,
for unconventional s-wave states we refer to scattering poten-
tials as “nonmagnetic-like” or “magnetic-like,” according to
whether they are fit with respect to the pairing potential.

The lowest-order contribution to the anomalous self-
energy for the s-wave state ν can be expressed as



(0)
2 =

∑
α

πnimp,α|Vα|2λασ2,0�̃ν, (24)

where the form of σ2,0 depends on the fitness functions

σ2,0 = 1

2

[
N+

1 − F̃ (+)
C

|ωn| + τ−1
+

+ N−
1 − F̃ (−)

C

|ωn| + τ−1
−

]
. (25)

In particular, we observe that 

(0)
2 is only vanishing if the

fitness functions evaluate to 1, i.e., the state corresponds to
purely interband pairing. Since such a situation is not ther-
modynamically stable in the weak-coupling regime [46], it
will be generally true that an unconventional s-wave state
with a nonzero critical temperature has a nonzero anomalous
self-energy.

In a single-orbital system, the anomalous self-energy is
always vanishing for an unconventional superconducting state
and the superconductivity is therefore fragile to disorder. We
find, however, that unconventional s-wave states in multi-
orbital materials allow a nonzero anomalous self-energy. As
a result, the unconventional s-wave states are characterized
by an effective SR which differs from the normal-state SR.
When the effective SR is smaller than the normal-state SR, the
state is more robust than the prediction of standard Abrikosov-
Gor’kov theory [1].
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D. Multiple channels

We consider a general pairing state

�k =
∑

μ

�
(μ)
0 �̃μ,k, (26)

where each channel μ belongs to the same irrep. The pair-
ing amplitudes �

(μ)
0 are fixed by solving the self-consistency

equations

�
(μ)
0 =

∑
ν

gμ,ν

2β

∑
iωn

∫
d3k

(2π )3
Tr{�̃†

ν,kF̄ (k, iωn)}, (27)

where gμ,ν = g∗
ν,μ is the pairing interaction which scatters a

Cooper pair from channel μ into channel ν, i.e., the pair-
ing interaction couples different channels in the same irrep.
To determine the critical temperature we again linearize the
anomalous Green’s function to obtain the linearized gap equa-
tion

�
(μ)
0 =

∑
ν

gμ,ν

2β

∑
iωn

∫
d3k

(2π )3 Tr{�̃†
ν,kḠ(k, iωn)

× (�k + 
2)Ḡh(k, iωn)}, (28)

where we have introduced the anomalous self-energy 
2

which is determined self-consistently according to Eq. (20).
The anomalous self-energy will generally couple the vari-

ous superconducting channels to the s-wave states in the same

irrep; we see this explicitly in the lowest-order contribution



(0)
2 = π

∑
μ

∑
α

nimp,αṼα

∑
j=±

N j

|ω̃n, j |
〈
Pk, j�

(μ)
0 �̃μPT

−k, j

〉
jṼ

T
α

=
∑

μ

∑
ν∈s-wave

�
(μ)
0 σ

(μ,ν)
2,0 �̃ν, (29)

where the index μ (ν) runs over the components of the order
parameter in all the (only the s-wave) channels. The contribu-
tion to the self-energy in the ν s-wave channel due to the gap
in the μ channel is explicitly

σ
(μ,ν)
2,0 =

∑
α

πnimp,α|Vα|2λ(ν)
α

×
∑
j=±

N j

4|ω̃n, j |Tr
{(〈

Pk, j�̃μ,kPT
−k, j

〉
j

)
�̃†

ν

}
, (30)

where λ(ν)
α = +1(−1) has the same meaning as in the single-

channel case, for each individual channel ν. The trace in this
expression can be understood as a measure of the overlap of
the pairing state μ with the s-wave channel ν on the Fermi
surface j. The full anomalous self-energy is


2 =
∑
μ,ν

�
(μ)
0 σ

(μ,ν)
2 �̃ν, (31)

with σ2 given by the matrix equation

σ2 = (1 − σ2,0)−1σ2,0, (32)

where σ2,0 has matrix elements σ
(μ,ν)
2,0 , which we take to be

zero if ν does not correspond to an s-wave channel. Inserting
the self-energy into the linearized gap equation (28), the crit-
ical temperature is determined by the solution det{M} = 0,
with

Mi, j = δi, j −
∑

ν

gi,ν

2β

∑
iωn

∫
d3k

(2π )3 Tr
{
�̃

†
ν,kḠ(k, iωn)

[
(1 − σ2,0)−1

](i, j)
�̃ j,kḠh(k, iωn)

}
. (33)

Note that in the following we will only consider the case
where the pairing interaction is diagonal, i.e., gν,μ = gνδν,μ.
As shown above, however, our formalism can also account
for cases with a pairing interaction that acts between different
channels within a single irrep.

III. APPLICATION TO DIRAC SYSTEMS

We first consider the application of our formalism to Dirac-
like systems, as an example of the case where only a single
band crosses the Fermi energy. For concreteness, we focus on
the potential topological superconductor CuxBi2Se3, making
contact with previous work [19,20,24–26].

The low-energy electronic states in Bi2Se3 originate from
the outermost Se sites of the Bi2Se3 quintuple layers. These
Se sites are interchanged by inversion and so give rise to a
sublattice structure. To lowest order in k in each coefficient in

Eq. (1), the Hamiltonian is given by [50]

H = − μσ0 ⊗ η0 + mσ0 ⊗ ηx + vzkzσ0 ⊗ ηy

+ v(kxσy − kyσx ) ⊗ ηz + λkx
(
k2

x − 3k2
y

)
σz ⊗ ηz, (34)

where σν (ην) are Pauli matrices in spin (sub-
lattice) space. The γ matrices are defined
�γ=(σ0 ⊗ ηx, σ0⊗ηy, σx⊗ηz, σy ⊗ ηz, σz ⊗ ηz ). The inversion
symmetry operator is I = σ0 ⊗ ηx; this term also appears
in the Hamiltonian as the mass term mσ0 ⊗ ηx, which gaps
out the Dirac point at the Brillouin zone center. The copper
intercalation only very weakly alters the band structure of
the topological insulator Bi2Se3 but dopes electrons into the
system so that only the upper band crosses the Fermi energy.
For this system, there are four unconventional s-wave states
belonging to odd-parity irreps of the D3d point group, and
an additional unconventional s-wave state belonging to the
trivial A1g representation [9]. We tabulate the relevant signs
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TABLE I. The value of λα , the fitness of the superconducting state with respect to the disorder potential, which enters Eqs. (36) and (42), for
the sixteen possible momentum-independent disorder potentials, for each of the six possible unconventional s-wave states, for CuxBi2Se3. This
overall sign is calculated from Ṽα�̃UT Ṽ T

α = λα�̃UT . Disorder potentials with λα = −1 for the conventional A1g gap (γ 0) break time-reversal
symmetry. The “⊗” in the orbital-spin form of the pairing and impurity potentials is omitted for clarity.

of λα for the s-wave states for all possible impurity potentials
in Table I.

A. Odd-parity states

Solving the linearized gap equation (19), the critical tem-
perature of the odd-parity s-wave pairing states in the presence
of disorder is given by the solution of

log

(
Tc

Tc0

)
= ψ

(
1

2

)
− ψ

(
1

2
+ 1

4πkBTcτ̃ν

)
, (35)

with the effective scattering rate given by

τ̃−1
ν = τ−1 −

∑
α

πλαnimp,α|Vα|2N (1 − F̃C ), (36)

and the normal-state scattering rate is

τ−1 =
∑

α

πnimp,α|Vα|2N (1 + φα〈m̂〉2). (37)

Note that the mass term mσ0 ⊗ ηx generates a nonvanishing
net spin-orbital polarization of the states at the Fermi surface
[19,20]. Since only the + band crosses the Fermi energy, we
drop the + subscript on the density of states in these formulas.

As can be readily seen in Table I, for each s-wave state
there exists six potentials (always including scalar disorder
Ṽα = 14) for which λα = +1 (“nonmagnetic-like”), and the
other ten potentials have λα = −1 (“magnetic-like”). If the
disorder potential has λα = +1, the effective SR is reduced
by an amount proportional to the degree of fitness of the
pairing potential: the fitter the gap (and therefore the smaller
F̃C), the larger the reduction in the scattering rate. In con-
trast, when λα = −1, the SR is instead enhanced, and the
enhancement increases with increasing fitness. Even if only
nonmagnetic-like disorder is present, however, fine-tuning of
the normal-state Hamiltonian is nevertheless required for an
odd-parity superconducting state to be perfectly immune to
disorder, since in general the superconducting gap must be

perfectly fit and the orbital-spin polarization of the Fermi
surface must be vanishing.

An example of this fine-tuning has recently been provided
in Ref. [26], which considers a purely Dirac system with m =
0, vz = v, and λ = 0 in Eq. (34). By projecting the impurity
potentials onto the band basis, it was found that odd-parity
superconducting states may be completely robust against cer-
tain forms of disorder. This result emerges straightforwardly
within our framework, where the complete robustness is pos-
sible for the A1u gap since it commutes with the remaining
elements of the Hamiltonian (proportional to the γ 2, γ 3, and
γ 4 matrices) and is therefore completely fit. For a general
pairing potential, the effective scattering rate is

τ̃−1
ν =

∑
α

πnimp,α|Vα|2N [1 − λα (1 − F̃C )], (38)

where the superconducting fitness is easily evaluated since the
three nonzero components of �εk have equal magnitude on the
(spherical) Fermi surface:

F̃C =
{

0 A1u

1/3 other odd parity.
(39)

From this the magnitude of the effective scattering rates given
in Table III of Ref. [26] follows immediately.

B. Even-parity states

To conclude this section, we note that the analysis for the
s-wave A1g states is somewhat more complicated since the
anomalous self-energy will generally always contain terms
proportional to the conventional and unconventional pairing
potentials. The general form for the A1g gap is

� = [
�

(0)
0 γ 0 + �

(1)
0 γ 1

]
UT , (40)

and the corresponding lowest-order contribution to the
anomalous self-energy is given by



(0)
2 =

∑
α

πnimp,α|Ṽα|2 N
2|ω̃n|

(
�

(0)
0

�
(1)
0

)T[
λ(0)

α λ(1)
α 〈m̂〉

λ(0)
α 〈m̂〉 λ(1)

α 〈m̂2〉
](

γ 0

γ 1

)
UT . (41)
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Because there is only a single band at the Fermi level, the
effective scattering rate has the form

τ̃−1
ν = τ−1 −

∑
α

πnimp,α|Vα|2N (
λ(0)

α + λ(1)
α 〈m̂〉2

)
, (42)

where λ(0)
α and λ(1)

α are the λα factors given in Table I for
the conventional (γ 0) and unconventional (γ 1) states, respec-
tively. We observe that φα = λ(0)

α λ(1)
α , from which it follows

that the effective scattering rate is vanishing for λ(0)
α = +1,

i.e., the s-wave A1g state is insensitive to disorder which pre-
serves time-reversal symmetry, as required by Anderson’s the-
orem. The complete robustness of the unconventional s-wave
state is due to the fact that the two gaps are indistinguishable
on the single Fermi surface. As we will demonstrate in the
following section, when both bands cross the Fermi energy
the general gap becomes sensitive to time-reversal symmetry-
preserving disorder due to the unconventional component.
This does not, however, violate Anderson’s theorem as the un-
conventional component does not pair time-reversed partners.

IV. APPLICATION TO THE IRON PNICTIDES

The framework we have presented can be applied in a
straightforward way to systems with considerably more com-
plicated Fermi surfaces than the single sheet Fermi surfaces
of Dirac-like materials. To highlight this generality, we apply
our method to a model for the iron pnictide superconductors
for which two bands cross the Fermi level, each contributing
two sheets to the Fermi surface.

We use a tight-binding model of the iron oxypnictides
proposed by Raghu et al. [45], which includes only the con-
tribution from the iron dxz and dyz orbitals. More sophisticated
models, including up to five or more orbitals [53–55], better
reproduce the electronic structure, but our focus here is in
understanding the influence of the multiple Fermi surfaces,
for which Raghu’s model is sufficient. The Hamiltonian for
Raghu’s model is written

Hk = ε0(k)σ0 ⊗ τ0 + εz(k)σ0 ⊗ τz + εx(k)σ0 ⊗ τx

+ λσz ⊗ τy

= ε0(k)γ 0 + εz(k)γ 1 + εx(k)γ 2 + λγ 5, (43)

with the coefficients ε0 =−μ − (t1+t2)[cos(kx ) + cos(ky)] −
4t3 cos(kx ) cos(ky), εx = −2t4 sin(kx ) sin(ky), and εz =
−(t1 − t2)[cos(kx ) − cos(ky)]. The Pauli matrices τν encode
the iron dxz and dyz orbital degree of freedom, which
transform trivially under inversion (I = 1) and time reversal.
The additional γ matrices γ 3 = σx ⊗ τy and γ 4 = σy ⊗ τy

have vanishing contribution to the normal-state Hamiltonian
in the kz = 0 plane, and so they do not appear in our model.
We extend the original model of Ref. [45] by including
an additional spin-orbit coupling, in keeping with more
general proposals [10,32]. Throughout, we use the parameters
{t1, t2, t3, t4, μ} = {−1, 1.3,−0.85,−0.85, 1.45}|t1| [45] and
examine a variety of magnitudes of the spin-orbit coupling λ.

The normal-state scattering rates on the two bands are in
general different and given by

τ−1
± =

∑
α

πnimp,α|Vα|2
2

[N±(1 + φα〈λ̂〉2
±)

+ N∓(1 − φα〈λ̂〉±〈λ̂〉∓)], (44)

with λ̂ = λ/(ε2
z + ε2

x + λ2)1/2, φα = ±1 is defined as in
Eq. (8) by the commutation of the disorder potential and σz ⊗
τz, and 〈. . .〉 j again defines an average over the j-band Fermi
surface. The second term in the brackets is the contribution
from interband scattering. The nonzero Fermi-surface average
of the spin-orbit coupling gives a nontrivial dependence on the
impurity potential. Specifically, for φα = +1, the spin-orbit
coupling enhances intraband scattering and suppresses inter-
band scattering, whereas φα = −1 gives the opposite effect.
This result can be easily understood in the extreme limit
λ̂ → 1 where the two bands become eigenstates of the spin-
orbit coupling operator γ 5. Scattering off a disorder potential
which commutes with γ 5 (and therefore has φα = +1) does
not change the γ 5 eigenstate of the electron and hence cannot
scatter between the two bands. Similarly, disorder that anti-
commutes with the spin-orbit coupling operator is incapable
of intraband scattering in this extreme limit. On the other
hand, when λ = 0 there is no net spin-orbital polarization of
either band, and the scattering rates in the two bands become
indistinguishable.

Due to the trivial inversion symmetry, the unconventional
s-wave states have even parity. As tabulated in Table II, the un-
conventional s-wave states belong to the A1g, B1g, B2g, and Eg

irreps of the D4h point group. From Eq. (14) we observe that
the Eg gaps are completely unfit since the two-dimensional
Hamiltonian does not contain any terms proportional to γ 3

and γ 4, and so we will not consider the Eg states in the
following. Since the s-wave pairing states are all even-parity,
from Eq. (16) their projections into a pseudospin basis for the
± bands are given by

�0γ
0UT → �± = �0isy, (45)

�0γ
1UT → �± = ±ε̂z�0isy, (46)

�0γ
2UT → �± = ±ε̂x�0isy, (47)

�0γ
5UT → �± = ±λ̂�0isy. (48)

The magnitude of the superconducting fitness for each of the
unconventional s-wave gaps are shown in Fig. 1. Note that the
unconventional A1g state, �̃ = �0γ

5UT , has an s± form, with
a full gap with opposite signs on the electron- and hole-like
Fermi surfaces. This is widely accepted as the sign structure of
the pairing state in the iron pnictides, although it is important
to emphasize that this can be achieved with an orbitally trivial
pairing potential, as we discuss below.

A. The B1g and B2g irreps

We begin by considering the B1g and B2g irreps, which both
have a single unconventional s-wave pairing potential. We first
examine the robustness of the unconventional s-wave state,
and then compare this against orbitally-trivial d-wave spin-
singlet pairing states in the same irrep.

1. s-wave gaps

The usual Abrikosov-Gor’kov result for the suppression of
an unconventional pairing state in a two-band system is

log

(
Tc

Tc0

)
=

∑
j=±

Rj

[
ψ

(
1

2

)
− ψ

(
1

2
+ 1

4πkBTcτ j

)]
, (49)
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TABLE II. The value of λα , the fitness of the superconducting state with respect to the disorder potential, which enters Eqs. (52) and (63),
for the sixteen possible momentum-independent disorder potentials, for each of the six possible unconventional s-wave states for the model of
iron pnictide superconductors proposed by Raghu et al. [45]. Disorder potentials with λα = −1 for the first A1g gap, proportional to the identity
matrix, break time-reversal symmetry.

where the contribution of the jth band is weighted according
to its contribution to the condensation energy

Rj = N j〈|�̃k|2〉 j

N+〈|�̃k|2〉+ + N−〈|�̃k|2〉−
. (50)

This result naturally reduces to the single-band case in the
limit where one of the densities of states vanishes. Moreover,
in the absence of the spin-orbit coupling the normal-state scat-

FIG. 1. Fermi surface for the two-orbital model for iron pnic-
tides, with λ = 0.1|t1|, and superconducting fitness for the four
s-wave states considered. The coloring of the contours denotes the
magnitude of the superconducting fitness. For the conventional A1g

state (γ 0), the fitness is zero everywhere, while for the unconven-
tional state (γ 5) it varies between the bands. The B1g state also has
vanishing averaged fitness on the + band Fermi surface, while the
B2g fitness is finite everywhere on the Fermi surface.

tering rates are independent of the band index, i.e. τ−1
± = τ−1,

and we recover the usual universal result.
Accounting for the nontrivial orbital-spin structure of the

unconventional s-wave pairing state in channel ν, the expres-
sion Eq. (49) is modified as τ−1

j → τ̄−1
ν, j and Rj → R̄ j . The

effective scattering rate τ̄−1
ν, j is given by

τ̄−1
ν,± = τ̃−1

ν,+ + τ̃−1
ν,−

2

±
√[

τ̃−1
ν,+ − τ̃−1

ν,−
2

]2

+ (
τ̃−1
ν,+ − τ−1

+
)(

τ̃−1
ν,− − τ−1

−
)
, (51)

with

τ̃−1
ν, j = τ−1

j −
∑

α

πλαnimp,α|Vα|2N j
(
1 − F̃ ( j)

C

)
. (52)

We recognize the τ̃−1
ν, j as the generalization of Eq. (36) to

the multiband case, assuming that we can treat each band
independently. However, the unconventional s-wave pairing
potentials couple the two bands, and we therefore cannot
readily associate the scattering rates in Eq. (51) with one
band or the other. The weighting of the contribution from the
two effective scattering rates also deviates from the expected
form Eq. (50), and depends on the normal-state and effective
scattering rates

R̄± =R± ± N+〈|�̃k|2〉+
(
τ̄−1
ν,− − τ−1

−
) + N−〈|�̃k|2〉−

(
τ̄−1
ν,+ − τ−1

+
)

[
N+〈|�̃k|2〉+ + N−〈|�̃k|2〉−

](
τ̄−1
ν,+ − τ̄−1

ν,−
) .

(53)

Using these expressions, we plot the critical temperature
of the B1g and B2g s-wave gaps as a function of the strength of
nonmagnetic-like and magnetic-like disorder in Figs. 2 and 3,
respectively. Notably, the B1g state is extremely robust against
nonmagnetic-like disorder, with superconductivity persisting
to a disorder strength more than ten times that expected from
Eq. (49); in contrast, the B2g state closely follows the predic-
tions of the Abrikosov-Gor’kov theory.

The pronounced robustness of the B1g state is due to the
almost-perfect fitness on the Fermi surface of the + band.
For realistic values of the spin-orbit coupling, on this Fermi
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FIG. 2. Robustness against nonmagnetic-like (λα = +1) disor-
der for the B1g (top) and B2g (bottom) s-wave gaps in the two-orbital
model of the iron pnictides, for various values of the spin-orbit
coupling λ.

surface we have εz � εx, λ, and so F̃ (+)
C = 1 − 〈ε̂2

z 〉+ ≈ 0; on
the other hand, the average fitness on the Fermi surfaces of the
− band is much smaller, with the gap displaying nodes along
the Brillouin-zone diagonals where the potential is completely
unfit. In the limit where the spin-orbit coupling is vanishing,
we find that the effective scattering rates are

τ̄−1
ν,± = π

4

∑
j

∑
α

nimp,α|Vα|2N j
(
2 ± [1 ∓ λα]

[
1 − F̃ ( j)

C

])
.

(54)

Taking F̃ (+)
C ≈ 0 and restricting to nonmagnetic-like

disorder (λα = +1), we find that τ̄−1
ν,+ ≈ τ−1 and

τ̄−1
ν,− ≈ π

∑
α nimp,α|Vα|2N−F̃ (−)

C . Since N+ � N− in
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FIG. 3. Robustness against magnetic-like (λα = −1) disorder for
the s-wave B1g and B2g gaps, as well as the d-wave B1g gap, in
the two-orbital model of the iron pnictides, with spin-orbit coupling
λ = 0.1|t1|.

Raghu’s model, we expect that τ̄−1
ν,− � τ−1. Inserting these

expressions into Eq. (53) we find that R̄+ ≈ 0 and R̄− ≈ 1.
We thus see that critical temperature is controlled by one
effective SR τ̄−1

ν,−, which can be much smaller than the
normal-state SR. Note that due to the almost-perfect fitness
of the superconductivity on the Fermi surfaces of the + band,
the disorder-response is completely controlled by the fitness
on the Fermi surfaces of the − band, which ensures the
vanishing of superconductivity at a finite disorder strength.

The comparable fragility of the B2g gap can also be under-
stood using these arguments. The B2g gap is much less fit than
the B1g gap on the Fermi surface of the + band, but has com-
parable fitness on the Fermi surfaces of the − band. Repeating
the analysis above, but now taking F̃ (+)

C ≈ 1, we find that
τ̄−1
ν,+ ≈ τ−1 and τ̄−1

ν,− ≈τ−1 − π
∑

α nimp,α|Vα|2N−[1−F̃ (−)
C ].

For the parameters of Raghu’s model, the two effective scat-
tering rates are similar, and the suppression of the pairing
by disorder is therefore well approximated by the Abrikosov-
Gor’kov result.

2. d-wave gaps

The B1g and B2g s-wave states have d-wave form-factors
when projected onto the states at the Fermi surface. We
have previously demonstrated [20] that momentum-dependent
pairing states that belong to an irrep with an unconventional
s-wave state will generally inherit some of the robustness of
that s-wave state again disorder, due to overlap of the two
gaps at the Fermi surface. Solving the linearized gap equation
for a multicomponent gap, the generalization of Eq. (49) for
momentum-dependent gaps is

log

(
Tc

Tc0

)
=

∑
j=±

R̄ j

[
ψ

(
1

2

)
− ψ

(
1

2
+ 1

4πkBTcτ̄ν, j

)]

+
∑
j=±

Rj

[
ψ

(
1

2

)
− ψ

(
1

2
+ 1

4πkBTcτ j

)]
,

(55)

where the first line accounts for the overlap with the uncon-
ventional s-wave states. The parameters R̄ j in this expression
are reduced compared with those of the purely s-wave case, as
they satisfy

∑
j=± Rj + R̄ j = 1.

Equation (55) is distinguished by the presence of more than
one effective scattering rate, which can significantly alter the
shape of the disorder curve. This can be understood more con-
cretely by considering the limiting behavior of Eq. (55) at both
strong and weak disorder, where the curve is characterized by
a single effective scattering rate. A Taylor expansion in the
weak disorder limit for Eq. (55) gives Tc ≈ Tc,0 − π/8kBτWD,
dependent on a single average effective scattering rate

τ−1
WD =

∑
i=±

R̄iτ̄
−1
i + Riτ

−1
i , (56)

while for strong disorder the critical temperature can be shown
to vanish at a disorder strength given by the usual expression
[1,56] log(2πkBTc,0τSD) = −ψ (1/2) with an effective scatter-
ing rate

τ−1
SD =

∏
i=±

(
τ̄−1

i

)R̄i
(
τ−1

i

)Ri
. (57)
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FIG. 4. Robustness against nonmagnetic-like (λα = +1) disor-
der for B1g d-wave gaps in the two-orbital model of the iron pnictides,
for various values of the spin-orbit coupling λ.

In general for a multiband system τWD �= τSD, except when
only a single scattering rate is present, such as for an uncon-
ventional s-wave state with a single band at the Fermi level.

To illustrate, we consider an orbitally trivial d-wave
B1g state in the two-band iron pnictide model with � =
�0(cos kx − cos ky)γ 0UT /2. The lowest-order contribution to
the anomalous self-energy for this gap is proportional to the
corresponding unconventional s-wave potential



(0)
2 = �0

∑
α

πnimp,α|Ṽα|2λ(1)
α

×
∑
j=±

jN j

4|ω̃n, j | 〈(cos kx − cos ky)εz〉 jγ
1UT . (58)

Since εz also belongs to B1g, the Fermi-surface average in
this expression—the overlap between the d-wave and s-wave
states—is generally nonzero. We plot the critical temperature
against the nonmagnetic-like (with respect to the s-wave B1g

state) disorder strength for this state in Fig. 4. The d-wave
state is considerably less robust against nonmagnetic-like dis-
order than the s-wave state, but still much more robust than
predicted by the Abrikosov-Gor’kov result (solid line). The
shape of the curve also differs noticeably from the typical
Abrikosov-Gor’kov curve, in particular for weak spin-orbit
coupling: while the critical temperature is initially suppressed
linearly with disorder, the gradient decreases with increasing
disorder, and clearly τ−1

WD > τ−1
SD . The robustness of the d-

wave state against magnetic-like disorder, included in Fig. 3
is again influenced by the overlap with the unconventional
s-wave state, which in this case reduces the robustness relative
to a single-band d-wave gap.

B. The A1g irrep

As was the case for the Dirac system considered above,
the behavior of the two-channel A1g state is more complicated
than that of the single-channel superconducting states. The
general pairing potential in this state is given by

� = [
�

(0)
0 γ 0 + �

(5)
0 γ 5

]
UT , (59)

where any combination of the two s-wave channels is allowed.
Projected into the band-pseudospin basis, we have

� → �± = (
�

(0)
0 ± λ̂�

(5)
0

)
isy. (60)

This state is typically fully gapped, and in the presence of
spin-orbit coupling it will change sign between the + and −
bands when the ratio �

(0)
0 /�

(5)
0 is sufficiently small.

In general we can have attractive interactions in both the
conventional and unconventional channels, which we label
g0 and g5, respectively. The critical temperature Tc,0 of the
mixed pairing state has a complicated form, but for realistic
parameters we find that the actual Tc,0 is very close to the
greater of T (0)

c,0 and T (5)
c,0 , which are the critical temperatures

of each channel in the absence of the other. These have the
explicit form

T (0)
c,0 = 2eγ

π
� exp

(
1

g0[N+ + N−]

)
, (61)

T (5)
c,0 = 2eγ

π
� exp

(
1

g5
[〈λ̂2〉+N+ + 〈λ̂2〉−N−

])
, (62)

where � is a cutoff and γ is Euler’s constant.
The lowest-order contribution to the anomalous self-

energy is



(0)
2 =

∑
α

πnimp,α|Ṽα|2
∑
j=±

N j

2|ω̃n, j |

(
�

(0)
0

�
(5)
0

)T

×
[

λ(0)
α λ(5)

α j〈λ̂〉 j

λ(0)
α j〈λ̂〉 j λ(5)

α 〈λ̂2〉 j

](
γ 0

γ 5

)
UT , (63)

where λ(0)
α and λ(5)

α are the factors given in Table II for the con-
ventional (γ 0) and unconventional (γ 5) states, respectively.
We see that the disorder only couples the two channels if
the spin-orbit coupling is nonzero. This expression is similar
to the self-energy for the A1g states in CuxBi2Se3 Eq. (41),
where the conventional and unconventional s-wave A1g states
are only coupled when the mass m is nonzero. In contrast
with the case of CuxBi2Se3, however, the general A1g state is
not completely robust against nonmagnetic-like disorder. This
is a direct consequence of the presence of both bands at the
Fermi energy and the changing sign of the unconventional gap
component between the two bands. The general expression for
the critical temperature is lengthy and will not be presented
here; numerical solutions of the linearized gap equation are
plotted in Figs. 5 and 6.

1. Purely unconventional pairing

In the limit that the pairing potential vanishes in the con-
ventional s-wave channel, g0 = 0, the superconducting gap
is purely unconventional, with equal magnitude and opposite
sign on the two Fermi surfaces. The critical temperature for
the purely unconventional state is given by Eq. (49), with one
of the two effective scattering rates vanishing in the presence
of TRS disorder, τ̄−1

− = 0,

log

(
Tc

Tc0

)
= R̄+

[
ψ

(
1

2

)
− ψ

(
1

2
+ 1

4πkBTcτ̄+

)]
. (64)

Significantly, despite the absence of a contribution due to
τ̄−, the parameter R̄−, which characterizes the overlap of the
unconventional s-wave state with the conventional, is nonva-
nishing, and as such R̄+ < 1. Specifically, for TRS disorder
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FIG. 5. Robustness of the multichannel s-wave A1g gap against
against TRS (top) and TRSB (bottom) disorder, in the two-orbital
model for iron oxypnictides with weak spin-orbit coupling λ =
0.1|t1|. λ(0)

α is defined for the conventional s-wave state, and we find
that the influence of λ(5)

α for the unconventional gap is minimal.
The states with pairing in both channels are labeled by the relative
critical temperatures in the clean limit for the conventional (T (c)

c,0 ) and
unconventional (T (u)

c,0 ) channels.

(λ(0)
α = +1),

R̄+ = N+N−(〈λ〉+ + 〈λ〉−)2

(N+ + N−)(N+〈λ2〉+ + N−〈λ2〉−)
,

τ̄−1
+ = π

∑
α nimp,α|Vα|2

2
(N+ + N−)

(
1 − λ(5)

α 〈λ〉+〈λ〉−
)
,

(65)

and the effective scattering rate is simply the total interband
scattering rate.

For weak disorder, the suppression of Tc is linear in τ̄−1
+ ,

but in the strong-disorder limit, we find

Tc ∝ τ

(
1−R̄−

R̄−

)
0 ∼ |V |2

(
R̄−−1

R̄−

)
, (66)

and Tc is exponentially suppressed for 0 < R̄− < 1. In-
terestingly, we find that, even in the complete absence
of conventional pairing, the superconductivity retains some
residual robustness against TRS disorder, due to the overlap
with the conventional state. This effect is evident in the small
exponential tail in the strong-disorder limit for the purely un-
conventional curve in Fig. 5 close to Tc = 0. For the particular
model parameters adopted here we find that R̃− � 1, and so
for strong disorder Tc is nearly indistinguishable from zero for
the purely unconventional pairing state.

In contrast, for TRSB disorder, τ̄−1
± �= 0, and the super-

conductivity is completely suppressed for strong disorder. In
fact, the influence of the conventional s-wave state is slightly
detrimental to the purely unconventional s-wave state (see

0.00 0.02 0.04 0.06 0.08 0.10

0.00

0.02

0.04

0.06

0.08

0.10

λ
(0)
α = λ

(5)
α = +1

0.00 0.01 0.02 0.03 0.04

0.00

0.02

0.04

0.06

0.08

0.10

λ
(0)
α = λ

(5)
α = −1

FIG. 6. Robustness of the multichannel s-wave A1g gap against
against “nonmagnetic-like” (λ(0)

α = λ(5)
α = +1, top) and “magnetic-

like” (λ(0)
α = λ(5)

α = −1, bottom) disorder, in the two-orbital model
for iron oxypnictides with weak spin-orbit coupling λ = 0.1|t1|. Un-
like Fig. 5, both critical temperature and disorder strength are scaled
by �, rather than Tc,0 (with T (c)

c,0 = 0.1� and T (u)
c,0 = 0.05�).

Fig. 5), due to the greater sensitivity of the conventional gap
to TRSB disorder.

2. Coexisting conventional and unconventional pairing

In the presence of time-reversal symmetry preserving dis-
order (with λ(0)

α = +1 for the conventional gap component),
any general mixture of the two channels with T (5)

c,0 < T (0)
c,0 is

completely robust, whereas a state with T (5)
c,0 > T (0)

c,0 is sen-
sitive to disorder. In the latter case, the critical temperature
follows closely the curve of the purely unconventional state
at weak disorder, but saturates at the critical temperature T (0)

c,0
of the purely conventional state in the strong-disorder limit.
As seen in Fig. 6, this crossover occurs when the critical tem-
perature for the purely unconventional state falls below that
of the purely conventional state, with the critical temperature
of the mixed state closely tracking the higher of the two. This
can hence be interpreted as a disorder-induced crossover from
a state where the unconventional pairing dominates to a state
where the conventional pairing is dominant. This crossover
between s±-wave and conventional s-wave states has been
extensively studied in models where the orbital degree of
freedom is not explicitly included [38,39,42,57].

For time-reversal symmetry breaking disorder potentials
(λ(0)

α = −1) there may alternatively exist a crossover in the
intermediate disorder strength regime when T (5)

c,0 < T (0)
c,0 . As

shown in Fig. 6, this crossover is less general than that for
TRS disorder, since it requires that the unconventional state
is sufficiently competitive with the conventional and has suf-
ficiently small effective scattering rate, so that the termination
point of the purely unconventional state is at stronger disorder
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strength. If the unconventional state dominates in the clean
limit (i.e., T (5)

c,0 > T (0)
c,0 ), the critical temperature closely tracks

the curve for purely unconventional pairing, and no crossover
is observed. These contrasting crossover effects could be used
to evidence the dominant component in the clean limit of a
mixed pairing state.

3. The momentum-dependent s±-wave A1g gap

Finally, we turn our attention to a momentum-dependent
s±-wave singlet state,

� = �0 cos (kx ) cos (ky)UT . (67)

The form factor ensures that the gap on the + and − Fermi
surfaces has opposite sign, similar to the unconventional s-
wave state. In this case, the robustness depends on the overlap
of the momentum-dependent state, with fk = cos(kx ) cos(ky),
and both A1g s-wave states, as well as the robustness of those
states and the effect of the normal-state scattering rate. The
lowest-order contribution to the anomalous self-energy is de-
fined by the overlap of the s±-wave state with the conventional
and unconventional s-wave states,



(0)
2 = π

∑
α

nimp,α|Ṽα|2
2

×
∑
j=±

[
λ(0)

α

N j〈 fk〉 j

|ω̃n, j | γ 0 + jλ(5)
α

N j〈 fkλ̂〉 j

|ω̃n, j | γ 5

]
UT ,

(68)

and the overlap with the unconventional s-wave state depends
on the spin-orbit coupling magnitude λ. Ultimately, the crit-
ical temperature is given by an expression of the form (55),
with one effective scattering rate vanishing τ̄−1

− = 0 for TRS
disorder.

As in the case of the purely unconventional s-wave state,
Tc is exponentially suppressed, as described by Eq. (66), for
strong TRS disorder, but the much greater overlap of the s±-
wave gap with the conventional s-wave enhances this effect.

Spin-orbital effects play a significant role in determining
the robustness of the s±-wave state. Increasing the spin-orbit
coupling λ increases both the interband scattering and, more
significantly, the overlap with the unconventional s-wave
state. Unlike the momentum-dependent B1g d-wave state, the
existence of the unconventional s-wave state is detrimental
to the robustness of the momentum dependent A1g s±-wave
gap against disorder, and increasing the overlap between the
states reduces the overall robustness. For TRSB disorder, the
overlap with the conventional s-wave state is detrimental, and
increasing the overlap with the unconventional s-wave state
by increasing the spin-orbit coupling increases the robustness.

The results of this calculation are presented in Fig. 7, for
TRS and TRSB disorder, under the assumption that there is
pairing only in the momentum-dependent channel.

V. DISCUSSION

The existence of unconventional s-wave pairing states in
systems with additional internal degrees of freedom has sig-
nificant consequences for the robustness of superconductivity
against disorder. The general framework we have presented
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FIG. 7. Robustness of the momentum-dependent s±-wave A1g

gap against against TRS (top) and TRSB (bottom) disorder, in
the two-orbital model for iron oxypnictides with various spin-orbit
coupling strengths. The influence of λ(5)

α , the factor for the uncon-
ventional s-wave state has only a minor influence on the robustness
and so we consider only λ(5)

α = +1 here.

provides a straightforward, analytically tractable method to
predict the robustness of a particular superconducting state in
a given system and also easily accounts for known results in
systems of interest [19,20,23,26]. The superconducting fitness
is of critical importance in determining the robustness, as
evinced clearly in the robustness of the B1g gap in the iron-
pnictide model (see Fig. 2), which has a nearly perfect fitness
on one band at the Fermi surface.

Interestingly, the fitness of the superconducting gap with
respect to the disorder potential plays perhaps an even more
significant role. In our framework, the parameter λα = ±1 en-
capsulates the fitness with respect to disorder, and determines
whether the spin-orbital texture acts to enhance (if λα = +1,
which requires Ṽα�̃ν − �̃νṼ T

α = 0) or reduce (if λα = −1,
Ṽα�̃ν − �̃νṼ T

α �= 0) the robustness. This is consistent with
Anderson’s theorem: for the conventional s-wave singlet state
of single-band systems, TRS disorder potentials are perfectly
fit and TRSB potentials perfectly unfit. As we have demon-
strated, when additional degrees of freedom are present, there
will exist TRSB disorder potentials for which a given uncon-
ventional s-wave state is fit, and as a result the superconductor
will be more robust against certain forms of TRSB disorder
than TRS disorder potentials. The fitness with respect to the
disorder potential is therefore a more versatile definition when
considering the influence of disorder, as opposed to whether
the disorder preserves or breaks time-reversal symmetry.

The important role played by the superconducting fit-
ness in determining the robustness against scalar disorder
can be understood via a canonical transformation, ck →
exp(i π

4 �̃νU †
T )ck, that maps the unconventional s-wave state
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to a conventional s-wave state [9,20,26]. Under such a trans-
formation, components of the Hamiltonian for which the gap
is perfectly fit (i.e., εk,iγ

i�̃ν − �̃ν[εk,iγ
i]T = 0) are mapped

onto TRS terms, whereas the unfit components are trans-
formed into TRSB terms. The superconductivity is therefore
robust against the former terms, but is destabilized by the
latter. Similarly, this transformation also maps disorder po-
tentials with λα = +1 onto TRS disorder potentials, whereas
the disorder potentials with λα = −1 are mapped onto TRSB
potentials. The pairing consequently has enhanced robustness
against disorder potentials with λα = +1, but the mapping of
the unfit elements of the Hamiltonian to TRSB terms violates
Anderson’s theorem, preventing perfect robustness. On the
other hand, the unfit terms of the Hamiltonian reduce the
magnitude of the effective scattering rate due to the disorder
potentials with λα = −1 relative to the value for a conven-
tional s wave and thereby lead to an enhanced robustness.

We have additionally demonstrated the significant role
played by the number of bands that cross the Fermi level. As a
clear example, consider the unconventional s-wave A1g pairing
state in the two models we consider: in the Dirac system a
single band crosses the Fermi surface and the unconventional
state is indistinguishable from the conventional s wave, while
for the iron pnictide model the unconventional gap component
changes sign between the two bands’ Fermi surfaces. In the
first case, the general A1g pairing state is always completely
robust against TRS disorder, while in the second the uncon-
ventional state is sensitive (to a degree determined by the
superconducting fitness) to all disorder as is the unconven-
tional component of a general pairing state.

Relationship to other work

As we have noted previously, our framework readily ac-
counts for and significantly generalizes recent results for
Dirac superconductors in the presence of trivial and nontrivial
disorder potentials [19,26]. More generally, our results are
consistent with recent proposals for generalizations of Ander-
son’s theorem [21,23]. The generalized Anderson’s theorem
proposed in Ref. [23] is of particular interest, being com-
pletely consistent with our own framework and demonstrating
that our results can be straightforwardly generalized to sys-
tems with more than two bands. A key point of difference
between our result and the generalized theorem of Ref. [23],
is our explicit treatment of the spin and orbital degrees of
freedom.

Briefly, we wish to compare our results for Dirac systems
with recent findings which are apparently inconsistent with
our results. Sato and Asano [25] found an even-orbital-parity
spin-singlet s-wave state in CuxBi2Se3 (belonging to the A2u

irrep) to be robust against disorder. In the weak-disorder limit
our results are consistent, but for strong disorder a gradual

exponential suppression is seen in Ref. [25], while our frame-
work predicts that superconductivity is completely suppressed
for sufficiently strong disorder.

In calculating the anomalous part of the self-energy, we
have made use of the self-consistent Born approximation,
while the authors of Ref. [25] consider only the lowest-order
Born approximation. While the distinction between the two
is not significant in single-band materials, when considering
multi-orbital superconductors the lowest-order approximation
fails in the strong-disorder limit. The result of Ref. [25] is,
predictably, consistent with our own for weak disorder, but the
two diverge for larger disorder strengths, with Sato and Asano
predicting an exponential suppression of Tc whereas we find a
vanishing critical temperature for strong disorder.

Andersen et al. [24] recently demonstrated a complete ro-
bustness of superconductivity against a fit disorder potential in
a Bi2Se3-based superconductor. As we have noted previously
[20], however, this complete robustness additionally relies
on an implicit assumption that the superconducting state is
perfectly fit. Including this additional assumption brings their
conclusion into agreement with our own framework as well as
other recent results [19,23].

VI. CONCLUSIONS

We have presented a general framework, based on the
self-consistent Born approximation, to consider the robust-
ness of superconductivity against various forms of disorder in
systems with additional internal degrees of freedom and have
highlighted the important role played by the superconducting
fitness. Disorder potentials Ṽα can generally be classified by
the fitness of the superconducting state with respect to the
disorder potential. The superconducting fitness with regard to
the normal-state Hamiltonian then defines the degree to which
the state is robust against disorder. The spin-orbital texture, as
encapsulated by the superconducting fitness, acts to enhance
the robustness against disorder for which the gap is fit, but
reduces the robustness against unfit forms of disorder. We
have also demonstrated how the robustness is influenced by
the presence of multiple Fermi surfaces, where the presence of
multiple effective scattering rates can significantly alter the ro-
bustness, most noticeably for orbitally trivial unconventional
gaps.
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