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Description of molecular nanomagnets by the multiorbital Hubbard model with correlated hopping
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We present a microscopic description of molecular magnets by the multiorbital Hubbard model, which
includes the correlated hopping term, i.e., the dependence of the electron hopping amplitude between orbitals on
the degree of their occupancy. In the limit of large Coulomb on-site interaction, we derive the spin Hamiltonian
using the perturbation theory. We determine the magnetic coupling constant between two ions in two different
ways: (a) from the expression obtained in the perturbation calculus and (b) from the analysis of distances between
the lowest levels of the energy spectrum obtained by diagonalization of the multiorbital Hubbard model. The
procedure we use can be applied to various nanomagnets, but we perform the final calculations for the molecular
ring Cr8. We show that the correlated hopping can reduce the antiferromagnetic exchange between ions, which
is essential for a proper description of Cr8.
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I. INTRODUCTION

Molecular nanomagnets (MNMs) are molecules contain-
ing a core of a finite number of d or f ions whose spins
are magnetically coupled. These systems are becoming more
and more popular due to their potential use in the con-
struction of, among other things, quantum computers and
high-performance magnetic memory [1–3].

In the theoretical studies of MNMs, a key issue is the
calculation of the coupling parameters between magnetic ions.
This is quite a difficult task due to the presence of unfilled
d or f shells and dynamical electron correlations, which can
be described by Hubbard-type models. However, it turns out
that typical spectra of low-energy excitations of MNMs de-
termined experimentally correspond (approximately) to the
excitation spectra obtained for models of localized spins with
dominant isotropic Heisenberg-type coupling [4]. For this
reason, the efforts of many researchers have been directed
towards determining the exchange coupling constants in a
system-appropriate version of the Heisenberg model. The cal-
culations are usually performed with methods based on the
density functional theory (DFT), which enables determination
from first principles of various microscopic parameters for
specific materials [4–7]. In fact, there are many variants of
the DFT-based method, and the literature on this subject is ex-
tensive (see, for example, Refs. [5,8–13]). However, in some
cases the DFT-based methods do not give satisfactory results.
For example, in some chromium-based rings the excitation
energies derived from the DFT calculations substantially out-
weigh values measured in experiments [14,15].

In this case, the problem with finding the correct value
of the exchange parameter seems to arise from the diffi-
culty in determining the eigenstates of the Heisenberg model.
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Indeed, the presence of spin-flipping terms in the Heisen-
berg model ensures that the fixed spin configurations (except
the ferromagnetic one) are not eigenstates of the Heisenberg
Hamiltonian; therefore, their energies are not fixed. Con-
sequently, calculations in which the exchange parameter is
determined on the basis of the energy difference of states
with fixed spin configurations (e.g., the ferromagnetic and the
Néel-type antiferromagnetic configuration) do not lead to the
correct results. However, quite recently, it was reported that
the magnetic couplings calculated using the symmetry-broken
version of DFT [16] are close to those deduced from the
experimental data [17].

In general, the problem with obtaining correct magnetic
coupling values by DFT-based methods stems from the lack of
consideration of electron dynamics and the resulting electron
correlations in these methods. A possible remedy to this prob-
lem was proposed, e.g., in [8], where the LDA++ method
(a scheme for first-principles calculations of the electronic
structure with the local correlation effects being included),
which “deals with the thermodynamic potential as a functional
of Green function rather than electron density,” was presented.
An extension of this approach referred to as the DFT + Dy-
namical Mean Field Theory (DMFT) method is presented in
[18].

In fact, the problem of electron dynamics and correlation is
one of the central issues of condensed-matter theory, and we
will not discuss it further here. For more information on the
advantages and limitations of different variants of the DFT
method used in the calculation of the exchange constants of
different MNMs, see, e.g., Refs. [19,20]. The authors of those
papers also proposed describing MNMs using the multior-
bital Hubbard model (HM) combined with DFT calculations
[19,20]. In their approach, which they named the DFT + MB
method (where MB stands for many body), they first deter-
mined the microscopic parameters of the multiorbital HM,
and only then did they calculate the exchange constant using
the second-order perturbation theory.
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The DFT + MB method seems to be universal because,
starting from the multiorbital HM, it takes into account the
most important microscopic processes affecting the value of
the exchange constant in the effective spin model, including
the dynamical electron correlations [18]. The correctness of
this method seems to be confirmed by the results of the calcu-
lation of the exchange constants for several MNMs, which are
given in [19].

For example, for the Cr8 ring, the exchange constant � =
1.65 meV appeared to be substantially lower than 3.5 meV
obtained from previous DFT calculations. However, this value
is still clearly greater than predicted from the experiments � =
1.46 meV [17] and also greater than that obtained from the
DFT calculations reported in [16].

To explain this discrepancy, here we extend the description
of the system by including in the Hamiltonian the corre-
lated hopping (CH) term [21,22] (also known as correlated
hybridization [23]), in which the amplitudes of the electron
hopping between the orbitals depend on their occupancies.
More specifically, higher occupancies correspond to lower
amplitudes. The reduction of the amplitude results from the
fact that the hopping of an electron between two orbitals is
hindered by the presence of another electron with opposite
spin at the initial or final orbital. Obviously, it leads to a
reduction of the hopping amplitude between orbitals if the
sum of their occupancies is larger than 1 and, consequently,
to a reduction in the antiferromagnetic exchange constant. In
fact, CH has already been considered in the earlier works [24].

In real materials CH is always present, but its effect on
the physical properties of a given system are not always
known because it is rarely taken into account in theoret-
ical descriptions. The reason is that the magnitude of the
part of the Coulomb interaction associated with CH is usu-
ally much smaller than the main part, which corresponds to
the interaction between electrons located on the same or-
bital with opposite spins. At the same time, however, many
authors admit that in spite of its relatively small strength
it may play an essential role in the correct description of
some systems [21–30]. For example, Ref. [21] suggested that
CH “may be essential for the complete understanding of
the metal-insulator transition in V2−yO3 and Ca1−xSrxVO3,”
while Ref. [23] demonstrated that CH “may possibly provide
a means to significant spin polarization of currents through
transition-metal based molecular transistors in modest mag-
netic fields” and that matrix elements resulting from CH
“could significantly change the parameters in effective single-
band models for transition-metal oxides.”

In the case of 3d electrons in transition metals, Hub-
bard has already estimated the different contributions of the
Coulomb interaction [31]. Then other authors also estimated
these parameters for various materials [21,23,27–29]. These
estimates suggest that the correlated and direct hopping am-
plitudes have comparable magnitude, but typically, the ratio
of the former to the latter is less than 0.4.

In this contribution, we investigate the effect of CH on the
value of the magnetic coupling constant between Cr ions in
the molecular ring Cr8. Here we focus on Cr8 because for
this system we found data relevant to our calculations, but we
suppose our considerations can be applied to other molecular
nanomagnets as well.

Taking advantage of the fact that the hopping amplitudes
are much smaller than the on-site Coulomb couplings, we first
constructed the effective spin Hamiltonian using perturbation
theory. In this way we obtained the Heisenberg model with
the exchange constant equal to �. Then we diagonalized the
Hamiltonian (1) for the system of two Cr ions, and based
on the analysis of the obtained exact energy spectrum, we
deduced another value �∗ for the exchange constant, which
turned out to be slightly greater than �.

The perturbative calculus for the multiorbital HM was also
applied in Ref. [19], but CH was not considered there in con-
structing the effective Hamiltonian and was also not included
in our earlier comparative analysis of the multiorbital HM and
the Heisenberg model [32].

The remainder of this paper is organized as follows. In
Sec. II we present the model. In Sec. III we present the exact
solution for a single ion, and in Sec. IV we give our main
results regarding the interaction between two ions. Section V
contains a brief summary and conclusions.

II. MULTIORBITAL HM WITH CORRELATED HOPPING

The multiorbital HM with CH HHMcor that we use here has
the following form:

HHMcor = H0 + H1, (1)

with the single-ion part

H0 =U
∑

im

nim↓nim↑

+ 1

2

∑

i,m �=m′,σ

[U ′nimσ nim′σ̄ + U ′′nimσ nim′σ ]

+ 1

2

∑

i,m �=m′,σ

[Jc†
imσ c†

im′σ̄ cimσ̄ cim′σ + Jc†
imσ c†

imσ̄ cim′σ̄ cim′σ ]

and the intersite hopping term

H1 =
∑

i �= j
m, m′, σ

t i j
mm′ [1 − a(nim + n jm′ − 1)]c†

imσ c jm′σ .

In the above formulas i and j denote nearest-neighbor sites,
m, m′ label orbitals, σ, σ̄ label spins of electrons (σ̄ = −σ ),
c†

imσ (cimσ ) denotes the creation (annihilation) operator of an
electron, nimσ = c†

imσ cimσ is the occupation number, and nim =
nim↓ + nim↑. U , U ′, and U ′′ describe the Coulomb-type on-site
interactions between two electrons: U describes electrons on
the same orbital, and U ′ (U ′′) describes electrons on different
orbitals with opposite (parallel) spins. J represents the on-site
exchange coupling resulting from the first Hund’s rule. Here
we adopt the following relations between parameters of the
model: U ′ = U − 2J and U ′′ = U − 3J . They result from the
requirements of rotational symmetry [33]. The parameter t i j

mm′
is the hopping amplitude (i �= j) from orbital m′ at site j to
orbital m at site i or the energy εi

m ≡ t ii
mm of orbital m at site i

(i = j and m = m′), and a is the correlated hopping parameter.
The parameter a in (1) is a measure of the reduction of

the electron hopping amplitude between two orbitals when the
sum of their occupancies exceeds 1. In real systems the degree
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TABLE I. Eigenstates of H0 forming the ground state quartet S =
3/2 for a single ion with three electrons and three orbitals.

Sz State representation

3/2 (↑ | ↑ | ↑)
1/2 1√

3
[(↓ | ↑ | ↑) + (↑ | ↓ | ↑) + (↑ | ↑ | ↓)]

−1/2 1√
3
[(↓ | ↓ | ↑) + (↓ | ↑ | ↓) + (↑ | ↓ | ↓)]

−3/2 (↓ | ↓ | ↓)

of this reduction may be different for different pairs of or-
bitals. Consequently, the parameter a may acquire appropriate
indexes and may be replaced by the table of parameters aii′

mm′ .
However, since, currently, these quantities are not known from
independent calculations, to avoid introducing many new pa-
rameters aii′

mm′ , we assume here that for all relevant pairs of
orbitals they have the same value aii′

mm′ = a. In fact, in all the
studies that included CH we have noticed so far [21–23,25–
30], only systems of identical ions with one orbital per ion
were considered; thus, we have never seen in the scientific
literature the parameter a with indexes. But of course, the
value of a depends on the material we are dealing with, and
as we already mentioned, the most common estimates are
0 < a < 0.4 [21–23,25–30].

In our calculations a plays the role of an effective CH pa-
rameter which is the only adjustable quantity, while all other
parameters of the Hamiltonian (1) are taken from Ref. [19].
We take into account five orbitals per ion because Cr ions in
the molecular ring Cr8 have five d orbitals. Their energies split
due to the crystal field to form a lower-energy quasitriplet and
a higher-energy quasidoublet. The energy splitting of the qu-
asitriplet is about 0.1 eV, and that of the quasidoublet is about
0.05 eV, with the doublet energy being about 2 eV higher than
the triplet energy [19]. Since there are three d electrons per Cr
ion, it is obvious that at the lowest temperatures they occupy
orbitals belonging to the quasitriplet, whereas the states of the
quasidoublet are left unoccupied.

III. ATOMIC LIMIT: SINGLE-ION RESULTS

The Hilbert space dimension for three electrons occupying
three orbitals is equal to 20. Due to the intraion exchange
couplings, the diagonalization of the single-ion part H0 of the
Hamiltonian (1) within this space results in the formation of
two quartets and six doublets. One of these quartets, corre-
sponding to spin S = 3/2, is the ground state. Its energy E0 is
equal to

E0 = ε1 + ε2 + ε3 + 3U − 9J, (2)

where εm ≡ t ii
mm (here we used the same notation for energies

of orbitals m = 1, 2, 3 as given in Ref. [19]). The eigenstates
belonging to this quartet are displayed in Table I, where their
representations are given in the graphically intuitive basis
of the form (orbital 1|orbital 2|orbital 3). These states can be
used to build up the 4N times degenerate N-ion ground state
of N ions in the t ii′

mn = 0 limit. The full Hilbert space is then a
tensor product of N spaces, each of which is spanned by the
states given in Table I but corresponding to different ions.

IV. INTERACTION BETWEEN TWO IONS

In the model (1), the interaction between ions results from
electron jumps between orbitals belonging to adjacent ions. If
the amplitudes of these jumps are small enough with respect
to U, then we can use the perturbative calculus. In the case
of two ions the ground state of the unperturbed Hamiltonian
H0 is 16-fold degenerate, and its energy is equal to 2E0 =
2(ε1 + ε2 + ε3) + 6U − 18J . Electron jumps reduce this de-
generation because an effective exchange interaction (kinetic
exchange) between total spins S = 3/2 of the ions is then
formed.

In our case, electrons can jump either between quasitriplet
states or from a quasitriplet to an empty quasidoublet and back
to the quasitriplet. There are nine amplitudes t12

mm′ (m, m′ =
1, 2, 3) describing electron jumps from ion 2 to ion 1 and nine
amplitudes t21

mm′ describing jumps from ion 1 to ion 2. So there
are altogether 18 amplitudes describing electron hops between
the quasitriplet states, but due to the symmetry relationships
t i j
mm′ = t ji

m′m, only nine of them are independent. Since in the
ground state the orbitals belonging to the quasitriplets are
singly occupied, the electron hops are allowed only when their
spins are antiparallel, and the CH effect is present then. On
the other hand, there is no CH effect for electron hops from
the quasitriplet to unoccupied quasidoublet orbitals.

Taking into account the electron jumps in the second-rank
perturbative calculus applied to (1) in the limit of small t ii′

mn,
one gets an effective Heisenberg Hamiltonian of interacting
spins S = 3/2 with the antiferromagnetic superexchange cou-
pling �ii′

SE . If, following the discussion in [19], we take into
account a direct ferromagnetic Coulomb exchange term �ii′

CE
between the ions [not present in the Hamiltonian (1) but ob-
tained independently via the constrained LDA], the final form
of the effective Hamiltonian Heff is as follows:

Heff = 1

2

∑

i,i′
�ii′Si · Si′ , (3)

where �ii′ = �ii′
CE + �ii′

SE and the sum is over all pairs (not
ordered) of adjacent magnetic ions.

The superexchange coupling �ii′
SE resulting from electrons

kinetics can be expressed as the sum of the following two
contributions:

�ii′
SE = �ii′

0 + ��ii′ , (4)

where the main part, �ii′
0 , comes from jumps of electrons

between singly occupied states belonging to the quasitriplets,

�ii′
0 = 2

9

3∑

n=1

3∑

n′=1

∣∣t ii′
nn′

∣∣2 + ∣∣t i′i
nn′

∣∣2

U + 2J + εn − εn′
(1 − a)2, (5)

and the second part, ��ii′ , results from electron jumps be-
tween singly occupied states belonging to the quasitriplet and
unoccupied states belonging to the quasidoublet,

��ii′ = 2

9

3∑

n′=1

5∑

n=4

∣∣t ii′
nn′

∣∣2 + ∣∣t i′i
nn′

∣∣2

U + εn − εn′

− 2

9

3∑

n′=1

5∑

n=4

∣∣t ii′
nn′

∣∣2 + ∣∣t i′i
nn′

∣∣2

U − 3J + εn − εn′
. (6)
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The factor (1 − a)2 associated with the effect of CH occurs
only in the formula for �ii′

0 because only in this case does
an electron hop to the orbital which is already occupied by
another electron with an opposite spin. On the other hand,
��ii′ does not depend on the parameter a because then the
electron hops to an unoccupied orbital. As a result, only �ii′

0 ,
and not ��ii′ , is reduced due to the effect of CH. The simple
forms of the denominators in (5) and (6) result from the
simple expression for energy [see Eq. (2)] of the ground state
multiplet displayed in Table I.

Since we assume that the interactions between adjacent Cr
ions in Cr8 are the same, from now on we omit the upper
indexes i, i′ in the coupling constants �, �0, and ��. And
if we do not take into account the CH effect by assuming
that a = 0 and put into formula (5) the parameters taken from
Table I in Ref. [19], then it turns out that �0 is equal to
4.847 meV. Taking into account in the calculations the hop-
pings of electrons between states belonging to the quasitriplet
and quasidoublet on adjacent ions results in the formation of
a small ferromagnetic contribution of about −0.334 meV [re-
sulting from (6)], which slightly reduces the � value. Another
reduction in � is due to the direct ferromagnetic exchange
between ions [not included in the Hamiltonian (1)], whose
value estimated in Ref. [19] amounts to �CE = −0.34 meV.
After these reductions we get � = 4.17 meV, which is much
more than 1.46 meV, the value resulting from the experimen-
tal data.

Quite recently, it was found that the value of the electron
hopping amplitude t i j

11 given in Ref. [19] is overestimated,
and instead of t i j

11 = −0.231 eV, it should be t i j
11 = −0.131 eV

[34]. If we include in our calculations this new value of the
parameter t i j

11, then we get � = 1.7 meV, which is still too
large. Therefore, we expect that for the correct description of
this system, the effect of CH cannot be ignored.

There is no doubt that in real systems this effect occurs
and that in our case it will lead to a decrease in the value of
some t ii′

mm′ amplitudes and thus to a diminution in the � value.
However, we are not aware of any calculations made for Cr8

that would allow us to estimate the size of the CH parameter
a. Of course, such calculations would be appreciated, but as
long as they are not available to us, we fit the value of a in
such a way as to obtain � close to 1.46 meV. However, we
suggest performing ab initio calculations that would allow us
to verify whether the value of the parameter a that we got from
fitting to the experimental data can be obtained by an ab initio
method.

Let us add that when we derive the value of the mag-
netic coupling constant not from expressions (4)–(6) for �SE

but directly from the diagonalization of the multiorbital HM
Hamiltonian given in (1), then in order to meet the condi-
tion for �∗ = 1.46 meV we get a slightly higher value of
a ≈ 0.06. The reason is that the distances between energy
levels determined by the diagonalization of the multorbital
HM (1) are slightly larger than the distances obtained from
the diagonalization of Heff (3).

The procedure we used to determine �∗ by diagonalizing
the multiorbital HM (1) was as follows. First, we constructed
the Hilbert spaces of states for the system of two ions with five
orbitals per ion and fixed values of the z coordinate of the total

spin Sz. In our case, the dimensions of these spaces amount to
14 400, 9450, 2520, and 210 for Sz = 0,±1,±2,±3, respec-
tively.

If there is no electron hopping between ions, then all these
ground state multiplets (quartet for Sz = 0, triplet for Sz =
±1, doublet for Sz = ±2, and singlet for Sz = ±3) have the
same energies. When the hopping is switched on, the multi-
plets split, and for small hopping amplitudes the structure of
the split multiplets is close to that for the Heisenberg model.
Let us recall that for two spins S = 3/2 that are coupled
antiferromagnetically with the coupling constant � the energy
spectrum forms four levels: E = 0, �, 3�, and 6�.

The spectrum is similar in the case of the multiorbital
HM when the hopping amplitudes are small enough. Indeed,
for Sz = 0, the four lowest energy levels then approximately
have a distribution in the form of 0, �∗, 3�∗, 6�∗, but �∗ is
slightly larger than � (�∗ > �). Thus, the difference in energy
between the lowest two levels can be assigned the coupling
values �∗. In practice, it is more convenient to diagonalize
HM not in the configuration space Sz = 0, but in Sz = 2,
because then we are dealing with a number of states equal
to 2520 and not 14 400. However, then the difference between
the lowest two energy levels is approximately 3�∗.

In Fig. 1 we display the evolution of the total interionic
exchange couplings � and �∗ with an increase in the CH
coefficient a when the on-site coupling parameters U and
J , as well as the amplitudes t ii′

mm′ , take the values reported
in Ref. [19] (with the corrected value of t i j

11 = −0.131 eV).
After viewing Fig. 1 it is clear that a ≈ 0.05 meets the
condition � = 1.46 meV, whereas a slightly larger a ≈ 0.06
meets the condition �∗ = 1.46 meV. Indeed, we get �(a =
0) ≈ 1.7 meV and �∗(a = 0) ≈ 1.75 meV, whereas �(a =
0.05) ≈ �∗(a = 0.06) ≈ 1.46 meV.

The impact of CH can also be seen in Fig. 2, where curves
with a constant value of � = 1.46 meV for a few values of a

FIG. 1. The total exchange couplings: � derived from perturba-
tion theory (solid line) and �∗ derived from the exact diagonalization
calculations (dots) in Cr8 as a function of the CH parameter a for
U = 5.98 eV, J = 0.26 eV, and the set of t ii′

mm′ amplitudes reported
in Ref. [19] with the corrected value of t i j

11 = −0.131 eV. The in-
tersection points of the dashed lines indicate that the experimental
value � = 1.46 meV is attained for either a ≈ 0.05 or a ≈ 0.06, as
obtained with the perturbation or exact diagonalization calculations,
respectively.
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FIG. 2. The curves corresponding to the constant value of the
superexchange coupling �(U, J ) = 1.46 meV in Cr8 obtained from
the perturbation calculus as a function of the interacting couplings
U and J for the amplitudes t ii′

mm′ reported in Ref. [19] with the
corrected value of t i j

11 = −0.131 eV and for the following set of
the CH parameters: a = 0.0, 0.02, 0.04, 0.05 (top to bottom). The
intersection point of the dashed lines indicates that the experimental
value � = 1.46 meV is attained for U = 5.98 eV and J = 0.26 eV
(the values reported in [19]) when a ≈ 0.05.

are displayed. In Fig. 2 we can see that in order to get a low
enough � for fixed U and J , we should increase a to a value
of a ≈ 0.05.

A summary of the results of our calculation of the exchange
constant for Cr8 and compare them with the results obtained
in Ref. [19] and those deduced from experiment (Ref. [17]) is
given in Table II.

V. SUMMARY AND CONCLUSIONS

In this contribution, we included the CH effect in the mi-
croscopic description of MNMs and showed that it reduces

TABLE II. Exchange constants (in meV) related to the Heisen-
berg model: �exp is deduced from the experimental data, �Ref. [19]

is reported in Ref. [19], � is from perturbation theory without CH
(a = 0) and with CH (a = 0.05), and �∗ is from the exact diagonal-
ization without CH (a = 0) and with CH (a = 0.06). The results of
our calculations are given in the last four columns.

� �∗

�exp �Ref. [19] a = 0 a = 0.05 a = 0 a = 0.06

1.46 1.65 1.7 1.46 1.75 1.46

noticeably the value of the exchange constant between the
magnetic moments of the ions, thus bringing it closer to the
value deduced from experiments. We performed the final cal-
culations for Cr8 using the data reported in [19]. By changing
the parameter a we found that agreement between the value
of the exchange coupling � calculated from the perturbation
calculus and that deduced from the experiment is obtained
for a = 0.05. A slightly higher value of a ≈ 0.06 was needed
when we performed our calculations by diagonalizing the
Hamiltonian, but both these values are quite small, which
means that even a tiny CH effect is sufficient to reduce the
exchange coupling to the value deduced from the experiment.
This is why we believe that the explanation of the decrease in
the antiferromagnetic coupling constant by means of CH, as
proposed in this work, is justified.

There is no problem with extending these studies to other
MNMs with various substitutions. Indeed, both the model and
the method used are universal and can be applied to other
MNMs, but to obtain quantitative values for the magnetic
exchange constants, microscopic parameters such as the local
Coulomb coupling, the on-site exchange constant, the CH
amplitudes, and the correlated hopping parameters are needed
from independent calculations.
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