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This work investigates the effects of further neighbor exchange and cubic anisotropy on the magnetic
excitations of the fcc kagome antiferromagnet IrMn3. Spin wave frequencies are calculated using the torque
equation and the dynamical structure factor S(Q, ω) is determined by a Green’s function method as an extension
of our previous work [LeBlanc et al. Phys. Rev. B 90, 144403 (2014)]. These spin wave calculations are compared
with inelastic neutron scattering data of polycrystalline IrMn3, where magnetic Mn ions occupy lattice sites of
ABC-stacked kagome planes. The data are best explained by a spin wave model including exchange interactions
up to fourth nearest neighbor and strong cubic anisotropy, as previously predicted by density functional theory
calculations.
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I. INTRODUCTION

IrMn3 provides an important example of a truly three-
dimensional (3D) kagome lattice giving rise to geometrical
magnetic frustration from eight nearest neighbor (NN) an-
tiferromagnetic exchange interactions between Mn ions [1].
ABC stacking of kagome planes of Mn ions in the cu-
bic 〈111〉 directions gives an overall L12, AuCu3-type, fcc
structure with four NNs within each plane and two NNs
connecting each adjacent plane (see Fig. 1). Interest in the
magnetic properties of the corresponding two-dimensional
(2D) kagome NN Heisenberg antiferromagnet spans 25 years
due to the macroscopic spin degeneracy of the basic 120◦

spin structure associated with corner-sharing triangles [2].
The zero energy dispersionless (flat) spin wave mode at all
wave vectors predicted from classical theory acquires disper-
sion in the presence of further-neighbor exchange interactions
[3,4]. Inelastic neutron scattering (INS) data on a system
with weakly-coupled kagome planes appear consistent with
this scenario where the flat mode observed is gapped due to
additional Dzyaloshinskii-Moriya interactions [5].

Interest in IrMnx alloys over the past 15 years has mainly
arisen due to applications in spin-valve technology, where
they have been widely used as the antiferromagnetic thin
film of choice that pins the magnetic moments of an adja-
cent ferromagnet in the phenomenon known as exchange bias
[6–9]. Although there is no universally accepted microscopic
mechanism for exchange bias (pinning), magnetic frustration
is believed to be important as the pinning effect arises from
a field-cooling protocol where a desired metastable state,
among many nearly degenerate states, is stabilized. Stoichio-
metric IrMn3 appears to optimize the desired pinning [7].

Monte Carlo simulations of the NN Heisenberg fcc kagome
lattice have shown that the basic co-planar 120◦ q = 0 mag-
netic structure observed in 2D persists in the 3D case, with
the inter-spin angle being 120◦ between all eight NNs (shown
in Fig. 1) [1]. The spin degeneracy is reduced in 3D and
exists in the form of sublattice magnetization switching in
the stacked kagome planes. This persistent degeneracy is be-
lieved to be responsible for the first-order nature of the phase
transition at TN . Inspired by earlier electronic structure calcu-
lations [10], subsequent simulations of the 3D lattice with an
effective local cubic anisotropy included provided evidence
that anisotropy removes the basic kagome degeneracy and the
structure becomes non coplanar with a finite magnetization
(spin vectors are lifted out of the [111] plane), believed to
be important for the pinning of an adjacent ferromagnetic
layer in the spin-valve structure. This release of frustration
drives the transition to be continuous [11]. This scenario was
supported by spin wave calculations of the NN Heisenberg
model with and without anisotropy which demonstrated that
in the absence of anisotropy, the zero energy flat mode exists
only in certain high symmetry directions in reciprocal space
and that the addition of anisotropy induces a gap (Ref. [12],
hereafter referred to as I). Monte Carlo studies of [111] thin
films confirmed that the q = 0 magnetic order remains in
these geometries and the impact of surface axial anisotropy
was also considered [13].

Early neutron scattering experiments on sister compounds
RhMn3 and PtMn3 revealed the 120◦ magnetic order [14]
which was subsequently established in single crystal neutron
scattering studies on IrMn3 by Tomeno et al. [15] and referred
to as “T1” magnetic order, with no mention of the underlying
kagome lattice structure of magnetic ions or any indication of
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FIG. 1. ABC-stacked kagome planes forming the fcc kagome
lattice with magnetic ions occupying the face-centered cubic sites.
Illustrated are spin vectors forming the 120◦ q = 0 [111] planar spin
structure (zero anisotropy) and the exchange interactions J1, J2, J3,
and J4.

a finite magnetization. More recently, single crystal [111] thin
films of IrMn3 showed the same magnetic order as in the bulk
where exchange bias was also studied [8]. To our knowledge,
there have been no neutron scattering experiments reporting
on spin excitations in these magnetic fcc kagome systems. It
is of interest to note another class of Mn-based compounds
with the generic formula Mn3AX also exhibits fcc kagome
magnetism [16].

The high Néel temperature in IrMn3, TN � 960 K (with
large values also reported in the sister compounds), attrac-
tive for device applications, can be associated with large
exchange interactions. For example, an antiferromagnetic NN
S2J1 = 20.6 meV (J1 = 11.6 meV) has been estimated for
IrMn3 from the density functional theory (DFT) calculations
by Szunyogh et al. [10], where an effective spin S = 1.33
has been folded into the reported exchange constant val-
ues [10,17]. This and related work also reported substantial
longer-range exchange interactions of an oscillatory nature,
with S2J2 = −2.6 meV (J2 = −1.5 meV), S2J3 = 5.6 meV
(J3 = 3.2 meV), S2J4 = −2.5 meV (J4 = −1.4 meV), as well
as a large effective cubic anisotropy [18] S2Keff � 7.67 meV
(see Table I). The DFT results indicate that longer-range
exchange interactions beyond fourth neighbor are negligibly
small [10]. Analysis shows that these longer-range alternating
antiferromagnetic and ferromagnetic exchange interactions
are consistent with the 3D q = 0 spin structure and do not
introduce additional frustration. A first-principles molecular
spin dynamics study of PtMn3 and RhMn3 also reports en-
hanced second-neighbor exchange interactions [19].

In the present work, the nearest neighbor spin wave calcu-
lations reported in I are expanded to include further-neighbor
exchange J2, J3, and J4. As in the 2D case, these additional
interactions remove any flat modes and dispersion appears in
all cases. The impact of cubic anisotropy K is again exam-
ined in the presence of the additional exchange interactions.
The dynamical structure factor, S(Q, ω), is calculated for
both single crystal and powder sample scenarios. Results are
compared with inelastic neutron scattering data on powder

TABLE I. Exchange parameters for the fcc kagome lattice IrMn3

(see Fig. 1) where J > 0 implies antiferromagnetic coupling. DFT
values are taken from Ref. [10] and the factor of two reduction
here arises from the difference in the Hamiltonian definitions of
the previous and current work. Distances are relative to the lattice
constant a = 3.76 Å [15].

Exchange Interactions in IrMn3

nth Near Neighbor S2J1 S2J2 S2J3 S2J4

Value from DFT (meV) 20.6 −2.6 5.6 −2.5
Neighbors in plane 4 0 4 6
Neighbors first adjacent planes 4 6 8 0
Neighbors second adjacent planes 0 0 4 6
Total 8 6 16 12
Vector [ 1

2
1
2 0] [1 0 0] [1 1

2
1
2 ] [1 1 0]

Distance (a) 0.707 1 1.225 1.414

samples of IrMn3 with the ordered AuCu3 structure. The
effects of further-order exchange are demonstrated to be im-
portant. Furthermore, the observation of a large spin gap in the
INS data is important experimental evidence for strong cubic
anisotropy in this material and suggests that the coplanar mag-
netic structure previously reported [15] should be revisited.

II. MODEL RESULTS

Modifications to our previous analysis in I to include
further-neighbor exchange interactions are described here,
with details given in Appendix A. In that work, J represented
the NN exchange in kagome planes and J ′ denoted NN inter-
plane exchange. Here, we set J1 = J = J ′. The 120◦ q = 0
spin structure is characterized by three magnetic sublattice
magnetization vectors labeled as A, B, and C, and we consider
the following Hamiltonian:

H =
∑
i, j

J (|ri − r j |)Si · S j − K
∑

γ

∑
l⊂γ

(Sl · nγ )2. (1)

Note that [11] K = 1
2 Keff � 0 has a different easy direction

for each of the three sublattices. Here, γ represents sublattice
A, B, and C and l is summed over the N

3 spins of sublattice
γ , Si are unit classical Heisenberg spin vectors at each site
and nγ are unit vectors in the cubic axes directions, nA = x̂,
nB = ŷ, and nC = ẑ. The lattice constant of ordered IrMn3 has
been determined at room temperature to be a = 3.76 Å [15].
The Mn ions occupy face-centered-cubic sites, with γ = A at
[0, 1

2 , 1
2 ], γ = B at [ 1

2 , 0, 1
2 ], and γ = C at [ 1

2 , 1
2 , 0], separated

by a distance a/
√

2 = 2.67 Å as depicted in Fig. 1. The model
results presented below include magnetic anisotropy and ex-
change constants up to fourth nearest-neighbor, with values
used for the latter given in Table I. In order to demonstrate
the impact of these further-neighbor exchange interactions, as
well as anisotropy, we also consider model results with some
of the exchange constants or the magnetic anisotropy set to
zero.

Figure 2 shows the spin wave frequencies ω along the
�X(100), �M(110) and �R(111) directions with only NN
exchange J1 included and also with further-neighbor J2, J3,
and J4 added, with and without cubic anisotropy K (also
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FIG. 2. Spin wave modes along the �X, �M and �R directions, illustrating the impact of anisotropy and further-neighbor exchange
interactions, for (a) NN exchange only and K = 0, (b) NN exchange only and K = 2.2 meV, (c) exchange interactions up to 4NN and K = 0,
and (d) exchange interactions up to 4NN and K = 2.2 meV. As shown in (a), there is a zero energy mode along �X (blue line) and the
remaining two modes (orange and green lines) are degenerate. Exchange constant values from the DFT calculation listed in Table I were used
to generate these dispersion curves.

see I). The effect of further-neighbor interactions is to lift
the degeneracy that gives rise to the flat zero energy mode
(blue line) that occurs along �X with only NN interactions, as
shown in Figs. 2(a) and 2(c). The resulting dispersion of this
mode is now nearly the same as the other two branches. Note
as well that the degeneracy of the other two modes (orange
and green lines) occurring around the X point in the case
of only NN exchange is split with longer-range interactions
included. As before, the impact of anisotropy K > 0 is to
introduce a gap at the zone center as shown in Figs. 2(b) and
2(d). Also note that two of the modes along the �–M line are
degenerate with further-neighbor exchange added [blue and
orange lines in Figs. 2(c) and 2(d)] that were well separated
with only NN interactions [Figs. 2(a) and 2(b)]. In contrast,
the near-degeneracy of these modes around the R point is
hardly impacted by including further-neighbor exchange. At
the zone center q = 0, the frequencies of the modes for the
extended neighbor exchange model with cubic anisotropy are
given by

ω1 � ω2 � 2S
√

(J1 + 2J3)K,

ω3 � 4S
√

(J1 + 2J3)K . (2)

The DFT values described above therefore lead to spin gap
predictions of about 17 and 33 meV, respectively, for IrMn3.

The Green’s function method [20] used in I was applied
here to calculate the part of the dynamical structure factor that

contributes to the inelastic neutron scattering cross section

S(Q, ω) =
∑

m,n=x,y,z

Smn(Q, ω)(δmn − Q̂mQ̂n) (3)

where Smn(Q, ω) is the double Fourier transform of the cor-
relation function < Sm

i (0)Sn
j (t ) >, to provide an indication of

the inelastic neutron scattering response for IrMn3 with all
four NN exchange interactions and anisotropy included.

Figure 3 shows S(Q, ω) assuming a single magnetic (111)
domain for Q along the three principal cubic directions with
further-neighbor exchange as well as anisotropy included.
Corresponding results with only NN exchange and K included
for Q along [100] may be found in I. Of particular note is that
for the cases with Q along [100] and [110], the intensity is
expected to be relatively small in the first Brillouin zone but
is substantially larger in the second zone. This is not the case
for Q along [111] but the overall intensity is much weaker for
the wave vector in this direction.

Figure 3 can be compared with Fig. 2(d), illustrating the
removal of the low-frequency mode along �X with the ad-
dition of extra neighbors and the splitting of the degeneracy
of the higher frequency modes. Noticeably, along the [111]
direction there is a mode not seen in Fig. 3 that is present in
Fig. 2(d). This is not an added degeneracy, but is rather due
to a perfect cancellation in intensity when applying Eq. (3).
A similar effect is observed in the elastic scattering results of
Fig. 3 of I where there is no peak at [111] unless anisotropy is
added.
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FIG. 3. Dynamical structure factor S(Q, ω) for IrMn3 assuming
a single magnetic (111) domain along the three principal cubic di-
rections. Indicated wave vectors show the symmetric points in the
dispersion. Exchange constant values given in Table I and a magnetic
anisotropy of K = 2.2 meV were used to generate this plot.

III. INELASTIC NEUTRON SCATTERING

A. Motivation and sample preparation

We performed inelastic neutron scattering (INS) on poly-
crystalline IrMn3 to test the validity of the magnetic Hamil-
tonian determined by DFT calculations previously [10,18].
To prepare polycrystalline IrMn3, Mn, and Ir powders in the
molar ratio of 3:1 were first mixed well and pelletized. The
pellets were then sealed inside of a quartz tube under approxi-
mately 1/3 atmosphere of argon gas. The sealed ampoule was
heated to 1050 ◦C in 10 hours and kept at this temperature for
48 hours before cooling to 600 ◦C in 6 hours. After dwelling
at 600 ◦C for 7 days, the ampoule was quenched into ice
water and then cut into 1 mm thick slabs. X-ray diffraction
confirmed that these pellets were nearly single phase IrMn3

with ordered Ir and Mn ions in the AuCu3 structure (Pm3m
space group), with no preferred crystal orientation and a ∼8
wt% MnO impurity fraction. Careful visual inspection of the
pellets revealed that the MnO impurity was predominantly
contained in a 0.1-mm-thick surface layer, corresponding to
a 2 wt% MnO fraction in the bulk. While the MnO surface
layer could be removed by carefully polishing the samples,
this process also introduced significant Mn/Ir site disorder
and therefore was abandoned.

B. Experimental details

INS experiments were performed on the direct-geometry
time-of-flight (TOF) chopper spectrometer SEQUOIA [21,22]
at Oak Ridge National Laboratory’s Spallation Neutron
Source. The 1-mm-thick IrMn3 slabs were laid in a closed
packed array in a 1 mm thick flat plate Al cell. This arrange-
ment minimizes Ir neutron absorption in the INS experiment.
Spectra were collected with incident energies Ei = 50, 100,
200, 300, and 500 meV in coarse energy resolution mode
(elastic resolution of ∼4% Ei) at T = 5 K to investigate the
spin wave excitations in the magnetically ordered phase. The
incident energy for the measurements was selected by op-
erating a Fermi chopper at various frequencies (240 Hz for
Ei = 50 or 100 meV, 420 Hz for Ei = 200 meV, 480 Hz

for Ei = 300 meV or 600 Hz for Ei = 500 meV), and the
background from the prompt pulse was removed with a T o

chopper operating at 60 Hz (Ei = 50 or 100 meV), 120 Hz
(Ei = 200 or 300 meV) or 150 Hz (Ei = 500 meV) [22].
An empty Al cell was measured in identical experimental
conditions for the Ei = 50, 100, 200, and 500 meV cases.
These resulting background spectra were subtracted from the
corresponding sample spectra after applying the self-shielding
correction (i.e., scale factor) required due to the strong neutron
absorption of Ir. The scale factor was chosen by matching the
Al Bragg peak intensities in the IrMn3 and empty cell spectra
as closely as possible. No empty Al cell measurement was
performed for Ei = 300 meV since the corresponding IrMn3

data were only used to investigate magnetic excitations above
the Al phonon density-of-states cutoff in this case.

C. Experimental results

The INS results are reduced from TOF and pixel position to
Q and E using MANTID [23]. Various plots of the INS intensity
were generated from these reduced data using DAVE [24].
The intensity is plotted as ki

k f

∂2σ
∂�∂E , where ki and k f are the in-

cident and final neutron momenta respectively and ∂2σ
∂�∂E is the

double differential cross-section for all scattering processes
in the material. The magnetic scattering contribution to the
intensity is proportional to the powder-averaged (magnetic)
dynamical structure factor times the magnetic form factor
squared.

The plots in Fig. 4 summarize some key results from the
SEQUOIA experiment. Panels (a) and (b) depict the IrMn3

spectra collected with Ei = 100 and 500 meV, respectively.
Several prominent features are visible in this data. Most
importantly, there are three nearly-vertical columns of scat-
tering indicated by the arrows in Fig. 4(a). We attribute these
columns of scattering to the signal of interest, the IrMn3 spin
wave excitations, for several reasons: (i) they are centered
above Q = 1.67, 2.36, and 3.75/4.10 Å−1, which correspond
to the (100), (110), and (210)/(211) magnetic Bragg peak
positions, (ii) their steeply-dispersive nature at low energies
suggests a large excitation bandwidth, which is compatible
with the high magnetic transition temperature, and (iii) the
intensity of these columns of scattering decreases with in-
creasing Q. The Ei = 500 meV data allowed us to determine
the magnetic excitation bandwidth for IrMn3, which is essen-
tial information required to determine the exchange constants.
The data presented in Fig. 4(b), combined with the Ei = 200
and 300 meV data shown in Figs. 6(a) and 6(b), establish
a value of E ∼ 190 meV for the top of the magnon band.
Finally, we find that the spin wave excitations are charac-
terized by a sizable energy gap, which is best illustrated by
the Ei = 50 meV color contour plot shown in Fig. 4(c) and
the corresponding (100) constant-Q cut presented in Fig. 4(d).
There are also some notable background features in this data.
Firstly, there is a strong phonon contribution between energy
transfers E ∼ 10 − 35 meV. Secondly, there is a weakly dis-
persive magnetic mode between 10 and 18 meV covering a Q
range of 0.7–2.5 Å−1 that is consistent with a spin wave band
from the small amount of MnO in our sample. Unfortunately,
the presence of the MnO magnon mode precludes a precise
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FIG. 4. (a) Ei = 100 meV color contour plot from SEQUOIA.
Three nearly vertical columns of scattering are visible in this
spectrum and these features correspond to the IrMn3 spin wave
excitations. (b) Ei = 500 meV color contour plot that illustrates the
magnetic excitation band extends up to E ∼ 190 meV. (c) Ei =
50 meV color contour plot. The vertical columns of scattering are
also visible in these data, although they are difficult to detect due to
the strong phonon background. Notably, the vertical columns of scat-
tering do not extend down to the elastic line, which is indicative of a
significant spin wave gap 	 � 13 meV. The precise value is difficult
to determine due to the overlapping spin wave mode from the MnO
impurity. (d) A constant-Q cut centered about the (100) magnetic
Bragg peak position (integration range of Q = [1.5, 1.9] Å−1) also
shows strong evidence for a significant spin wave gap.

experimental determination of the spin gap for IrMn3 and only
allows us to place a lower bound of 13 meV on this value.
Nevertheless, the observed gap is consistent with the DFT
prediction of 17 meV.

D. Comparison with linear spin wave theory

To provide a quantitative comparison with the experimental
data, the powder-averaged dynamical structure factor S(Q, ω)
times the magnetic form factor squared was calculated for var-
ious candidate spin wave models. More details of the S(Q, ω)
powder-averaging procedure are presented in Appendix B.
The magnetic form factor, in the usual dipole or spherical,
approximation, is given by [25,26]:

f (s) = 〈 j0〉 = Ae−as2 + Be−bs2 + Ce−cs2 + D, (4)

where s = Q/4π . In principle, the values of the dimension-
less constants depend on the oxidation state of Mn. Since an
effective spin value of S = 1.33 was incorporated in the DFT
calculations, we used the A, a, B, b,C, c, and D parameters
for the Mn4+ form factor [26] throughout most of this work.
Modifications from the Mn4+ form factor were then consid-
ered in the INS data fitting process discussed later.

Figure 5 shows the calculated powder-averaged spin wave
spectra for four candidate models. More specifically, the
following scenarios were considered: (a) nearest neighbor
exchange J1 only; (b) nonzero J1, and J2; (c) nonzero J1,
J2, and J3; and (d) nonzero J1, J2, J3, and J4. Note that the
last model uses the DFT values for the exchange constants
reported in Ref. [10], while the exchange constants for the
other three models were scaled to produce the E ∼ 150 meV
excitation bandwidth that matches the J1-J2-J3-J4 model, with
the J2/J1 and J3/J1 ratios fixed to the DFT values. All of the
models include magnetic anisotropy K , which was also fixed
to the value obtained from DFT calculations [18]. Notably,
the vertical columns of magnetic scattering observed in the
INS data shown in Fig. 4(a) can be used to help determine
the most appropriate spin wave model for IrMn3. Figure 5
shows that these features are not well-defined in the NN
only model and become more apparent as extended neighbor
exchange interactions are added. Furthermore, the intensities
of the Q = 1.67 and 2.36 Å−1 vertical columns of scattering
become much more comparable in the J1-J2-J3 and J1-J2-J3-J4

models, which agrees well with the INS data. Consequently,
the J1 only and J1-J2 models can be discarded. J3 and/or J4

seem to play an important role in producing the observed
magnetic excitation spectrum.

Although the J1-J2-J3-J4 model is also supported by previ-
ous DFT work [10], it is clear that the experimental magnon
bandwidth of 190 meV is much larger than the calculated
value of 150 meV. Consequently, it is important to fit the
INS data to the J1-J2-J3-J4 model to extract refined values
for the exchange constants. We focused on the Ei = 200
and 300 meV data with E � 80 meV due to the significant
phonon background at lower energy transfers and employed
a three-step procedure using a χ2 minimization routine with
the cubic anisotropy K held fixed to the DFT value of 2.2 meV.
We first found appropriate starting values for all four exchange
constants by performing a fit of the constant-Q cut (integration
range [6.75, 7.25] Å−1) extracted from the Ei = 200 meV
dataset shown in Fig. 6(a), as this helped to establish an ac-
curate magnon bandwidth. One defining feature of the IrMn3

magnon spectrum is the double-peak structure near the top
of the band, which is captured well by this fit. We have also
overplotted a constant-Q cut (integration range [4.75, 5.25]
Å−1) of the Ei = 300 meV data to illustrate that its intensity
profile looks similar, but the double-peak structure is not as
well-defined due to the coarser instrument energy resolution.

The next two steps involved fitting the intensity of the
Ei = 300 meV dataset as a function of both Q and E . First,
we fixed the exchange constants to the values determined from
the constant-Q cut and considered modifications to the Mn4+

form factor. The best fit was obtained by using the expression
[27,28]:

f (s) = 〈 j0〉 +
(

1 − 2

g

)
〈 j2〉, (5)

with g = 1.22(5). The values for < j0 > and < j2 > were
obtained from the tabulated values for Mn4+ [26]. Although
our model used for the form factor includes terms that typi-
cally signify the importance of spin-orbit coupling and may
have some merit for IrMn3 [29], our current data can also
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FIG. 5. Calculated, powder-averaged inelastic neutron scattering spectrum with magnetic anisotropy and (a) with nearest neighbor
exchange J1 only, (b) with J1 and J2 only, (c) with J1, J2, and J3 only, and (d) with the four exchange constants J1, J2, J3, and J4 determined
previously by DFT. The exchange constants for the three models shown in (a)–(c) were scaled to produce the ∼150 meV excitation bandwidth
that matches the J1-J2-J3-J4 model, with the J2/J1 and J3/J1 ratios fixed to the DFT values. K was also fixed to the DFT value.

FIG. 6. (a) Constant-Q cut of the Ei = 200 meV data with an integration range [6.75, 7.25] Å−1. The best fit to the J1-J2-J3-J4 model
described in the text is superimposed on the data. A constant-Q cut of the Ei = 300 meV data with an integration range [4.75, 5.25] Å−1 are
also shown to illustrate that its intensity profile is similar, but the double-peak structure near the top of the magnon band is not as well-resolved
due to the coarser instrument energy resolution. (b) Color contour plot of the Ei = 300 meV SEQUOIA data that illustrates a spin wave
spectrum extending up to E ∼ 190 meV. (c) Color contour plot of the calculated powder-averaged magnetic excitation spectrum for IrMn3

with Ei = 300 meV using the fitted Hamiltonian parameters described in the main text. The agreement with the data is excellent, which suggests
that the J1-J2-J3-J4 model with cubic anisotropy is appropriate for IrMn3.
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be explained by small deviations from a completely localized
model.

For the last step, we first fixed the parameters in the mag-
netic form factor expression to the values obtained just above
and attempted to fit the 2D data by varying all four exchange
constants simultaneously. Unfortunately, we found that this fit
did not converge. The same problem was encountered when
we let any three of the exchange constants vary and left the
fourth parameter fixed. This may be due to the limited energy
range available for fitting the data due to the strong phonon
contributions below 80 meV. On the other hand, we found
that the exchange parameters could be varied in pairs while
the other two were held fixed. Therefore, we attempted to
fit the data with all exchange parameter combinations that
satisfied these convergence criteria. We found the greatest
improvement in fit quality (i.e., smallest χ2) when J1 and J3

were allowed to vary and J2 and J4 were held fixed to the
values obtained in step 1 described above. This final fitting
result yielded values of J1 = 10.1(5) meV, J2 = −3.3(2) meV,
J3 = 4.7(2) meV, and J4 = −2.6(2) meV. Note that the uncer-
tainty in each fit parameter is given by the difference in the
best fit value and the value required to increase χ2 by one for
the 2D fit when the other parameters are held fixed.

A color contour plot of the calculated powder-averaged
magnetic excitation spectrum for IrMn3 using the fitted
Hamiltonian parameters is presented in Fig. 6(c). We did not
include scattering contributions from IrMn3 phonons or the
MnO impurity phase in this simulation as they contribute min-
imal scattering intensity above 80 meV, as shown in Fig. 6(b).
Furthermore, the observed features from the spectrum are
broader than the energy resolution of the instrument, as deter-
mined by both analytical calculations [22] and Monte Carlo
ray tracing simulations with McVine [30], so this effect was
not included in the simulation. Instrumental Q resolution was
not considered here.

The simulation presented in Fig. 6(c) describes the data
above energy transfers of 80 meV remarkably well. While this
J1-J2-J3-J4 model itself has been proposed previously on the
basis of DFT work [10] with values of J1 = 11.6 meV, J2 =
−1.5 meV, J3 = 3.2 meV, and J4 = −1.4 meV, the exchange
parameters found here are somewhat different. A comparison
to the DFT results indicates that the best fit to the INS data
yields a slightly smaller J1 and much larger values for the
extended neighbor interactions; the latter are responsible for
the increased experimental magnon bandwidth. This discrep-
ancy between the experimental bandwidth and the calculated
bandwidth from DFT is not well understood and should be
investigated further in future work. Furthermore, the experi-
mental intensity near the top of the magnon band extends out
farther in Q than can be explained by the current model. This
may arise from magnetovibrational coupling, but the precise
origin of this behavior is beyond the scope of the present work.

IV. SUMMARY AND CONCLUSIONS

The geometry of ABC-stacked kagome planes in IrMn3

offers a rare example to study a truly 3D frustrated kagome
antiferromagnet. This material is also interesting for practical
reasons, as it is a conductor that has been widely used as the
exchange-pinning antiferromagnetic thin film in spin valve

technology. The so-called q = 0 triangular spin structure is
preserved in this 3D system along with some of the degenera-
cies of the NN Heisenberg model which stimulated previous
work in the 2D case. A focus of the present results is to quan-
tify the role of further-neighbor exchange interactions within
a local-moment model of spin wave excitations in IrMn3,
extending our earlier work that involved only NN exchange
[12].

Inelastic neutron scattering data on a powder sample are
also presented here. The observation of a large spin gap pro-
vides experimental evidence that magnetic anisotropy plays
an important role in this material and provides strong motiva-
tion for revisiting the co-planar magnetic structure determined
previously. Model calculations and inelastic neutron scatter-
ing data fitting show that the bandwidth, spectral weight,
and spin gap of the magnetic excitation spectrum are best
explained by a Hamiltonian including exchange interactions
up to fourth nearest neighbor and strong cubic anisotropy, as
originally determined by DFT.

The experimental verification of the large spin gap is an
important result as our earlier work demonstrated that mag-
netic anisotropy induces a uniform magnetic moment along
the [111] directions [11], which likely indicates an important
mechanism for exchange coupling to adjacent ferromagnetic
thin films. Such a uniform moment could also be employed to
induce a single magnetic domain in field-cooled single crystal
samples. Furthermore, the experimental verification of strong
further-neighbor exchange interactions in IrMn3, which serve
to further stabilize the q = 0 spin structure, suggest that this
state should be robust to thermal fluctuations and applied
uniform magnetic fields. Such considerations are important
in the design of magnetic information technology with ever
diminishing dimensions and may provide some insight into
the widespread utility of this compound in spin valves.
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APPENDIX A: ADDITIONAL DETAILS FOR MODEL
RESULTS

As described in I, in the absence of anisotropy, spins are
coplanar with zero net magnetization. Anisotropy serves to lift
the spin vectors out of the plane and induce a finite magneti-
zation in a 〈111〉 direction [11]. This effect is characterized by
α, the angle between each sublattice spin and its anisotropy
axis [α = cos(Si · ni ), i = A, B,C], and β, the angle with
respect to the other two anisotropy axes [β = cos(Si · n j ),
i 
= j], where α2 + 2β2 = 1. The modified ground state
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energy per spin that includes further-neighbor exchange is
given by [compare Eqs. (2) and (3) in I] where S = 1 is used
for convenience as in I

E/N = 4(J1 + 2J3)(β2 − 2αβ ) − Kα2 + 3J2 + 6J4 (A1)

and is minimized when α has the value

α =
√

1/2 + 1/2
√

1 − 1/[1 + (K̃ + 1)2/8], (A2)

where K̃ = K/(2J1 + 4J3) and β =
√

1−α2

2 using the positive
values of the square roots to give physical solutions. Note that
there are eight degenerate ground states corresponding to the
eight 〈111〉 axes [11]. The analysis of spin excitations in this
section correspond to a single domain [111] crystal.

The basic structure of the linearized spin wave theory pre-
sented in I remains the same with further-neighbor exchange
added. The 6 × 6 matrix characterizing dynamic fluctuations
of the transverse spin components in a local coordinate system
is again given by

−iω

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S̃x
A

S̃x
B

S̃x
C

S̃y
A

S̃y
B

S̃y
C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0 YAB −YAC X ZAB ZAC

−YAB 0 YBC ZAB X ZBC

YAC −YBC 0 ZAC ZBC X
W TAB TAC 0 YAB −YAC

TAB W TBC −YAB 0 YBC

TAC TBC W YAC −YBC 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S̃x
A

S̃x
B

S̃x
C

S̃y
A

S̃y
B

S̃y
C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

where Y , T , and Z are defined in I and with the following
modifications:

X = [8(J1 + 2J3)(β − 2α)β − 2Kα2

+ 6J2 − 2J2(cos Qxa + cos Qya + cos Qza)

+ 12J4 − 4J4(cos Qxa cos Qya + cos Qxa cos Qza

+ cos Qya cos Qza)],

W = [8(J1 + 2J3)(2α − β )β + 2K (α2 − 2β2)

− 6J2 + 2J2(cos Qxa + cos Qya + cos Qza)

− 12J4 + 4J4(cos Qxa cos Qya + cos Qxa cos Qza

+ cos Qya cos Qza)], (A4)

and

λAB = 4[J1 + 2J3 cos Qza] cos
(

1
2 Qxa

)
cos

(
1
2 Qya

)
,

λBC = 4[J1 + 2J3 cos Qya] cos
(

1
2 Qxa

)
cos

(
1
2 Qza

)
,

λAC = 4[J1 + 2J3 cos Qxa] cos
(

1
2 Qya

)
cos

(
1
2 Qza

)
,

(A5)

where coordinates are in terms of cube axes with lattice
constant a. Note that for the spin-wave frequency, the bare
exchange and anisotropy constants are divided by S.

In the absence of anisotropy, the case K = 0, the eigen-
value problem involves the 3 × 3 symmetric matrix Eq. (7) in
I with elements now given by

A1 = X 2 − (
λ2

AB + λ2
AC

)
/2,

A2 = X 2 − (
λ2

AB + λ2
BC

)
/2,

A3 = X 2 − (
λ2

AC + λ2
BC

)
/2,

B1 = −XλAB/2 − λACλBC/2,

B2 = −XλAC/2 − λABλBC/2,

B3 = −XλBC/2 − λABλAC/2. (A6)

The special case Qx = Qy = Qz again yields eigenvalues of
the general form given by Eq. (11) in I but further reduction in
terms of the Ji is not illuminating. However, for the case where
the wave vector is directed along a cube axis, Qy = Qz = 0,

for example, it can be shown that one of the three modes takes
the form

ω2
1 = (2J2 + 8J4 − 8J3)[(6J1 + 12J3)(cos Qxa − 1)

+ (2J2 + 8J4 + 4J3)(cos Qxa − 1)2]. (A7)

This yields the zero energy mode [see Eq. (13) of I] in
the absence of further-neighbor exchange. It is also zero if
2J2 + 8J4 = 8J3, which is not possible in the case of IrMn3

with J3 > 0 and J2, J4 < 0. Thus, as in the 2D case, further-
neighbor exchange removes the flat mode.

APPENDIX B: ADDITIONAL DETAILS FOR INELASTIC
NEUTRON SCATTERING

For comparison of the calculated dynamical structure fac-
tor with the experimental INS data, S(Q, ω) is averaged over
all crystallographic directions, yielding

S(Q, ω) =
∫ 2π

φ=0

∫ π

θ=0
S(Q, ω) sin θ dθ dφ, (B1)

where θ and φ are the azimuthal and polar angles de-
scribing the orientation of Q. This integral can be approxi-
mated through Monte Carlo integration using the following
expression:

S(Q, ω) = 1

n

n∑
i=1

S(Q, arccos(2ai − 1), 2πbi, ω). (B2)

In the equation above, a and b represent two random numbers
from 0 to 1 and n is the number of iterations. Typically, 1000
random directions are chosen for each Q.
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