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Restoring isotropy in a three-dimensional lattice model: The Ising universality class
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We study a generalized Blume-Capel model on the simple cubic lattice. In addition to the nearest-neighbor
coupling there is a next-to-next-to-nearest-neighbor coupling. In order to quantify spatial anisotropy, we deter-
mine the correlation length in the high-temperature phase of the model for three different spatial directions.
It turns out that the spatial anisotropy depends very little on the dilution or crystal-field parameter D of the
model and is essentially determined by the ratio of the nearest-neighbor and the next-to-next-to-nearest-neighbor
coupling. This ratio is tuned such that the leading contribution to the spatial anisotropy is eliminated. Next we
perform a finite-size scaling (FSS) study to tune D such that also the leading correction to scaling is eliminated.
Based on this FSS study, we determine the critical exponents ν = 0.629 98(5) and η = 0.0362 84(40), which are
in nice agreement with the more accurate results obtained by using the conformal bootstrap method. Furthermore,
we provide accurate results for fixed-point values of dimensionless quantities such as the Binder cumulant and
for the critical couplings. These results provide the groundwork for broader studies of universal properties of the
three-dimensional Ising universality class.
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I. INTRODUCTION

Studying spin models in the neighborhood of the criti-
cal temperature numerically, the presence of corrections to
scaling hampers the extraction of universal quantities. The
straightforward approach to reduce the effect of corrections
to scaling is to simulate larger and larger lattices. It is more
economic to study a family of models, and tune one or more
parameters of the family such that the amplitude of the leading
correction vanishes. This idea dates back to [1,2], where it
is implemented by using high-temperature series expansions.
The idea had been picked up in finite-size scaling (FSS) [3]
studies using Monte Carlo simulations in Refs. [4–6], where
the universality class of the three-dimensional Ising model
had been studied. The idea has been applied successfully to
the XY [7–10], the Heisenberg [11–13], and the disordered
Ising [14] universality classes in three dimensions, resulting in
accurate estimates of critical exponents. Note that the related
improvement program initiated by Symanzik [15] is an indis-
pensable building block in today’s lattice QCD simulations.
An open question is whether this program can be extended
successfully to subleading corrections. Here we do not answer
this question in general but consider one particular case. We
study a lattice model with a second-order phase transition in
the universality class of the three-dimensional Ising model.
We extend the idea of eliminating corrections to scaling to
subleading corrections that are caused by spatial anisotropy.

In the last years, the conformal bootstrap (CB) method
brought enormous progress in the study of critical phenomena
in three dimensions. In contrast to previous methods, the start-
ing point is not a Hamiltonian. Instead, conformal invariance
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and qualitative features of the fixed point are the basis of the
analysis. The program has provided highly accurate results for
critical exponents and for operator product expansion coef-
ficients. For a recent review see, for example, Ref. [16]. In
particular, in the case of the three-dimensional Ising univer-
sality class, detailed information on correction exponents is
provided. See Table 2 of Ref. [17].

In a finite-size scaling study, the spatial anisotropy of the
system leads to corrections that vanish like L−ωNR , where
ωNR = 2.0208(12) [18,19] and L is the linear size of the
system. The scaling field method [20] predicts a subleading
correction with the correction exponent ω′ = 1.67(11) < ωNR

for the three-dimensional Ising universality class. Based on
this result, it seemed of little use in the numerical study to
eliminate the spatial anisotropy by tuning the parameters of
the reduced Hamiltonian. However, the CB method, consistent
with the functional renormalization group (FRG) (see, for
example, Ref. [21]) indicates that ω′ = 1.67(11) is an artifact
of the scaling field method. For a more detailed discussion,
see Sec. III below.

Based on this observation it seems promising to study
reduced Hamiltonians, where in addition to the leading cor-
rection to scaling, the spatial anisotropy is eliminated to
leading order. To this end, we study the Blume-Capel model
on the simple cubic lattice, where in addition to the nearest-
neighbor coupling, there is a third-nearest-neighbor coupling.
This model has two parameters that can be tuned to remove
corrections to scaling: the ratio of the two coupling constants
and the parameter D that controls the density of vacancies.
The definition of the model is given below in Sec. II.

The leading correction to scaling is eliminated by us-
ing a finite-size scaling study similar to our previous work
(see [13] and references therein). In order to quantify the
spatial anisotropy, we study the correlation length in the
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high-temperature phase in different spatial directions. Finite-
size scaling is less practical since the rotational invariance is
not only broken at the microscopic scale by the lattice, but
also at large length scales by the torus geometry of the lattice
with periodic boundary conditions. This can be seen in two-
point correlation functions even at rather small distances (see,
for example, [22]). Instead, we study the correlation length
in the high-temperature phase, where the parameters of the
reduced Hamiltonian are chosen such that L � ξ . This way,
the correlation functions at scales ∼ξ are very little affected
by the global torus geometry. In the high-temperature phase of
the Ising model and related models, the correlation length can
be determined very accurately by using a variance-reduced es-
timator of the two-point correlation function that is associated
with the cluster algorithm [23,24].

Based on the FSS analysis, we get very accurate estimates
of the critical exponents ν and η that are fully consistent with
the CB estimates. Furthermore, we get very accurate results
for the inverse critical temperature, which is valuable input for
future studies of the model discussed here. Reduced spatial
anisotropy should be, for example, helpful in the study of
interfaces in the low-temperature phase or the thermodynamic
Casimir effect with nontrivial geometries. Here we mostly
delve into specifics of critical phenomena. For general reviews
on critical phenomena and the renormalization group (RG)
theory see, for example, [25–28].

The outline of the paper is the following: In Sec. II we de-
fine the model. In Sec. III follows a more detailed discussion
on corrections to scaling. In Sec. IV we determine the ratio of
nearest- and next-to-next-to-nearest-neighbor couplings that
restores isotropy to leading order. To this end we study the cor-
relation length in different directions in the high-temperature
phase of the model. In Sec. V, by using FSS, we determine the
value D∗ of the dilution parameter, where leading corrections
to scaling are eliminated. Based on this FSS study we obtain
accurate estimates of critical exponents. Finally, we summa-
rize and conclude.

II. THE MODEL

We study a generalized Blume-Capel model on the simple
cubic lattice, where in addition to the nearest-neighbor cou-
pling, there is a nonvanishing third-nearest-neighbor coupling.
This model has been discussed, for example, in Ref. [4]. See
in particular Eq. (2) of Ref. [4]. For a vanishing external field,
it is defined by the reduced Hamiltonian

H = −K1

∑
〈xy〉

sxsy − K3

∑
[xy]

sxsy + D
∑

x

s2
x , (1)

where the spin sx might assume the values sx ∈ {−1, 0, 1}.
x = (x(0), x(1), x(2) ) denotes a site on the simple cubic lattice,
where x(i) ∈ {0, 1, . . . , Li − 1}. Furthermore, 〈xy〉 denotes a
pair of nearest-neighbor and [xy] a pair of next-to-next-to-
nearest-neighbor, or third-nearest neighbor on the lattice.
In this study we consider L0 = L1 = L2 = L and periodic
boundary conditions throughout. Here we refer to D as di-
lution parameter. In the literature, D is also denoted as
crystal-field parameter. The partition function is given by
Z = ∑

{s} exp(−H ), where the sum runs over all spin con-
figurations. In the following we denote the ratio of coupling

constants as

q3 = K3/K1. (2)

For q3 = 0, the model has been thoroughly studied in the
literature. See [29] and references therein. In the limit D →
−∞, the vacancies sx = 0 are completely suppressed, and
the Ising model is recovered. For D < Dtri, the model un-
dergoes a second-order phase transition in the universality
class of the three-dimensional Ising model. For D > Dtri, there
is a first-order phase transition. Along the line of second-
order transitions, the amplitude of leading corrections depends
on the parameter D. It has been demonstrated numerically that
there is a value D∗ of the parameter, where leading corrections
to scaling vanish. In Ref. [29] we find D∗ = 0.656(20), which
is clearly smaller than Dtri = 2.0313(4) [30]. For a more de-
tailed discussion see Ref. [29].

For the model, Eq. (1), for q3 � 0, we expect that there
is a critical plane given by K1,c(D, q3) that is bounded by
a line of tricritical transitions Dtri(q3). On the critical plane,
there should be a line D∗(q3), where leading corrections to
scaling vanish. There should be also a line, where the isotropy
is restored to leading order. It is best represented by qiso

3 (D)
since we expect that qiso

3 (D) depends only little on D, which
is confirmed by our numerical results discussed below. These
two lines might have a crossing, where both corrections to
scaling vanish.

In Ref. [4] as well as in the more recent papers [31,32], the
Ising model, corresponding to D → −∞, with nearest- and
next-to-next-to-nearest-neighbor couplings had been studied.
It turns out that the amplitude of leading corrections to scaling
depends on the ratio q3. In particular, there is a value q∗

3,
where leading corrections to scaling vanish. The authors of
Refs. [4,31,32] performed a finite-size scaling analysis based
on the quantity Q = 〈m2〉2/〈m4〉, where m is the magneti-
zation. Note that Q is the inverse of the Binder cumulant
defined here, Eq. (20), for j = 2. In Table III of Ref. [32] the
estimates b1 = 0.097(2), 0.051(2), 0.0118(20), −0.0180(20),
and −0.0480(20) for q3 = 0, 0.1, 0.2, 0.3, and 0.4, respec-
tively, are given, where b1 denotes the amplitude of the leading
correction. Interpolating linearly, we arrive at q∗

3 = 0.24(1).
Assuming that D∗(q3) is monotonically decreasing with

increasing q3, the crossing of qiso
3 (D) and D∗(q3) exists if

qiso
3 (−∞) � q∗

3. Hence, as a first step of our numerical study,
we determine qiso

3 (−∞).
In the following we approach the critical line keeping q3

constant. Therefore, we use the parametrization

K1 = K,

K3 = q3K. (3)

III. CORRECTIONS TO SCALING

Field-theoretic methods and high-temperature series ex-
pansions and Monte Carlo simulations of lattice models give
consistently for the leading correction to scaling exponent
ω ≈ 0.8 for the three-dimensional Ising universality class.
For a summary of results see, for example, Table 19 of [25].
The most accurate result ω = 0.829 68(23), is obtained by
using the CB method [17]. Note that in Table 2 of Ref. [17]
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dimensions � of operators are given. In the case of the leading
correction, ω = �ε′ − 3 holds.

Before the advent of the CB method, information on sub-
leading corrections had been scarce. The ε expansion and
perturbation theory in three dimensions fixed do not provide
information on subleading corrections. In principle, Monte
Carlo renormalization group (MCRG) methods (see, for ex-
ample, Refs. [33–37]) are capable of producing such results.
However, these are not given in the literature. Note that in
these studies the error of the correction exponent ω is consid-
erably larger than that of the critical exponents. Obtaining the
result for subleading corrections should be even harder.

In previous work (for example, Ref. [29]), we assumed that
the results obtained in Ref. [20] by using the scaling field
method on subleading corrections to scaling are correct. It pre-
dicts a subleading correction with ω′ = 1.67(11). This result
is in contradiction with results obtained by using functional
renormalization group methods. Depending on the approx-
imation scheme that is used, results 2.838 � ω′ � 3.6845
are, for example, obtained in Ref. [21]. Recent work [17],
using the conformal bootstrap method gives ω′ = �ε′′ − 3 =
3.8956(43). It seems that ω′ = 1.67(11) is an artifact of the
scaling field method.

There is a correction due to the fact that the simple cu-
bic lattice breaks the spatial isotropy. This phenomenon can
already be observed in the context of partial differential equa-
tions. See, for example, Ref. [38], where the Laplacian on a
square and a simple cubic lattice is discussed. These results
directly apply to free field theory on the lattice. Hence, for free
field theory on the simple cubic lattice we get ωNR,free = 2 and
qiso

3,free = 1
8 .

In the case of the three-dimensional Ising universality class
one gets ωNR = 2.0208(12) (see Table 1 of [18]) or by using
the CB method ωNR = �Cμνρσ

− 3 = 2.022 665(28), given in
Table 2 of Ref. [17]. Note that the value of the correction
exponent differs only by little from the free field value. Also,
the value of qiso

3 that we find below differs only by little from
the free field value. This fact is a bit surprising since qiso

3
should depend on the details of the model.

Our numerical analysis relies on the fact that amplitudes of
corrections to scaling are smooth functions of the parameters
of the reduced Hamiltonian, as it is predicted by RG theory.
Furthermore, following RG theory, ratios of correction ampli-
tudes in different quantities, for the same type of correction,
are universal. (For a discussion see, for example, Sec. 1.5
of Ref. [25].) This fact in particular implies that corrections
in different quantities vanish at the same values, in our case
(qiso

3 , D∗), of parameters of the reduced Hamiltonian.

IV. RESTORING ISOTROPY

Our numerical study consists of two essentially separate
parts. Following the hypothesis that qiso

3 (D) depends only little
on D, we first determine qiso

3 for the Ising limit D → −∞.
Then we perform a preliminary finite-size scaling study to get
an estimate of D∗(qiso

3 (−∞)). For this estimate we determine
again qiso

3 . Since this estimate indeed differs very little from
qiso

3 (−∞), we regard it as our final estimate. In the second part
of our study we perform an extensive FSS study to determine
D∗(qiso

3 ) accurately.

The simulations in the high-temperature phase of the Ising
model were performed by using the single-cluster algorithm
[24]. In the case of the Blume-Capel model with finite D, local
updates that allow the transition from sx = 0 to ±1 and vice
versa were used in addition. For a more detailed discussion
of such a hybrid update scheme see, for example, Sec. 5 of
Ref. [39].

A. Correlation length in the high-temperature phase

In order to quantify spatial anisotropy, we determine the
correlation length in three different directions of the lattice.
Below we discuss how the correlation length is determined.
We start with the definition of the basic quantities. We define
slice averages

S(x0) =
∑
x1,x2

sx, (4)

where the slice is perpendicular to the (1,0,0) axis. In addition,
we consider slices perpendicular to the (1,1,0) and the (1,1,1)
axes. The corresponding slice averages are given by

S̃x0 =
∑
x1,x2

sx0−x1,x1,x2 (5)

and

S̄x0 =
∑
x1,x2

sx0−x1−x2,x1,x2 . (6)

Note that the arithmetics of the coordinates is understood
modulo the linear lattice size L. The distance between adjacent
slices is ds = 1, 2−1/2, and 3−1/2 for slices perpendicular to
the (1,0,0), (1,1,0), and the (1,1,1) axis, respectively. The slice
correlation function is defined as

G(t ) = 〈S(x0)S(x0 + t )〉. (7)

Also here x0 + t is understood modulo the linear lattice size
L. The correlation functions G̃(t ) and Ḡ(t ) are defined analo-
gously.

In our simulations, in order to reduce the statistical error,
we average over all x0 and all directions equivalent to those
given by the (1,0,0), (1,1,0), and the (1,1,1) axis, respec-
tively. The correlation function is determined by using the
variance-reduced estimator associated with the cluster algo-
rithm [23,24].

We define the effective correlation length

ξeff(t ) = ds

ln[G(t )/G(t + 1)]
, (8)

where L � t is assumed and ds is the distance between ad-
jacent slices. To relax L � t to some extent, we take the
periodicity of the lattice into account. To this end we solve
numerically

G(t ) = c

[
exp

(
− dst

ξeff(t )

)
+ exp

(
−ds(L − t )

ξeff(t )

)]
, (9)

G(t + 1)= c

[
exp

(
−ds(t + 1)

ξeff(t )

)
+ exp

(
−ds(L − t − 1)

ξeff(t )

)]
(10)
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TABLE I. Results for the correlation length of the Ising model
with q3 = 0. In the first column we give the coupling K , in the second
column we give the linear lattice size L, and in the third column the
correlation length ξ parallel to the (1,0,0) axis. Then, follow the ratios
r2 and r3 defined in Eq. (11).

K L ξ(1,0,0) r2 r3

0.2 40 2.04147(4) 1.004922(7) 1.006606(8)
0.20944 60 2.99993(4) 1.002281(4) 1.003056(5)
0.21376 80 3.99868(4) 1.001281(3) 1.001715(3)
0.2161 100 5.02713(13) 1.000802(8) 1.001083(10)
0.21743 120 6.00095(9) 1.000562(4) 1.000757(5)
0.21896 160 8.01343(17) 1.000321(6) 1.000426(7)

with respect to ξeff(t ). For the Ising universality class in three
dimensions, in the high-temperature phase, ξeff(t ) converges
quickly as t → ∞. See Ref. [39] and references therein.

In a set of preliminary simulations, we determined the
lattice size L and distance t that is needed to keep deviations
from the desired limit L → ∞ followed by t → ∞ at a size
smaller than the statistical error. We conclude that dst � 2ξ

and L � 20ξ is sufficient. In the following we take ξeff(t ) at
dst � 2ξ as estimate of the correlation length ξ . The direction
is indicated by a subscript.

In order to quantify the spatial anisotropy, we study the
ratios

r2 = ξ(1,0,0)

ξ(1,1,0)
, r3 = ξ(1,0,0)

ξ(1,1,1)
(11)

in the neighborhood of the critical point.

B. Numerical results for the Ising model and the Blume-Capel
model with nearest-neighbor coupling only

First we simulated the standard Ising model in the high-
temperature phase. The behavior of the correlation length is
given by

ξ = a(Kc − K )−ν[1 + c(Kc − K )θ + d (Kc − K ) + · · · ],
(12)

where Kc, a, c, and d are nonuniversal constants. The critical
exponent of the correlation length is ν = 1/yt , where yt is the
thermal renormalization group exponent. The correction ex-
ponent is θ = νω. For numerical results of the second moment
correlation length in the high-temperature phase of the Ising
model with q3 = 0 see, for example, Appendix of Ref. [40].
In Ref. [41] the accurate estimate Kc = 0.221 654 626(5) is
given.

In this study, we focus on ξ < 10. Our numerical results
for the correlation length of the Ising model, q3 = 0, are
summarized in Table I. Note that in the case of the ratios r2 and
r3, the statistical correlation between the correlation lengths
in the different directions are properly taken into account by
performing a jackknife analysis.

We fitted the data with the Ansatz

ri − 1 = aξ−x, (13)

where a and the exponent x are free parameters. We refer
to ξ(1,0,0) as ξ to keep the notation simple. The statistical

TABLE II. We give results for the correlation length of the
Blume-Capel model at q3 = 0 and D = 0.655. In the first column
we give the coupling K , in the second column we give the linear
lattice size L, and in the third column the correlation length ξ(1,0,0)

parallel to the (1,0,0) axis. Then, follow the ratios r2 and r3 defined
in Eq. (11).

K L ξ(1,0,0) r2 r3

0.3568 40 1.99990(5) 1.005124(8) 1.006871(9)
0.3713 60 3.00874(5) 1.002269(4) 1.003026(5)
0.37721 80 4.00087(6) 1.001282(4) 1.001709(4)
0.3804 100 5.03495(8) 1.000804(3) 1.001072(4)
0.38217 120 6.00109(10) 1.000569(3) 1.000754(4)
0.38337 140 7.00206(10) 1.000418(3) 1.000555(4)
0.3842 160 8.00502(10) 1.000317(3) 1.000424(3)
0.3848 180 9.00819(13) 1.000251(3) 1.000336(3)

error of ξ is ignored for simplicity. Fitting all data for r3

we get x = 2.006(3) and χ2/DOF = 0.26, where DOF is
degrees of freedom. Adding a correction term ∝L−2 we get
x = 2.016(12) and χ2/DOF = 0.10 instead. We conclude
that the exponent x is consistent with the results for ωNR of
Refs. [17,18]. However, our accuracy is by far lower than that
of Ref. [17].

Next we have simulated the Blume-Capel model on the
simple cubic lattice with q3 = 0 at D = 0.655 at eight values
of K that correspond to ξ ≈ 2, 3, 4, 5, 6, 7, 8, and 9. Our
numerical results are given in Table II.

Fitting all data for r3 with ξ � 3 by using the Ansatz (13)
we get x = 2.010(4) and χ2/DOF = 0.32. Fitting all data
with an Ansatz containing a correction term ∝L−2 we get
x = 2.010(7) and χ2/DOF = 0.32. Fixing x = 2.022 665 in
the Ansatz (13), we get very similar results for the amplitude
a for both the Ising and the improved Blume-Capel models.
We conclude that the spatial anisotropy depends little on the
amplitude of leading corrections to scaling, as we conjectured
in the beginning. This fact is illustrated in Fig. 1 were we plot
(r2 − 1)ξωNR and (r3 − 1)ξωNR versus the correlation length ξ .
The data for the two models fall essentially on top of each
other.

C. Determination of qiso
3

Next we determine qiso
3 for the Ising model, corresponding

to D → −∞. Preliminary simulations give qiso
3 ≈ 2

15 . In order
to get an accurate estimate of qiso

3 , we performed a number of
simulations at q3 = 1

7 , 2
15 , and 1

8 for a correlation length up to
ξ ≈ 6. Our results are summarized in Table III.

Furthermore, we estimate D∗ for q3 = 2
15 . To this end, we

performed a FSS study focusing on U4 at Za/Zp = 0.5425.
For the definition of the Binder cumulant U4 and the ratio of
partition functions Za/Zp see Sec. V below. Here we simulated
lattices up to the linear size L = 32. We used U ∗

4,Za/Zp=0.5425 ≈
1.603 57 obtained in Sec. VI of Ref. [29] as input. We find
D∗ ≈ −0.43. Based on this preliminary result, we performed
simulations at D = −0.43 for q3 = 2

15 and 1
8 in the high-

temperature phase. The value of K is tuned such that the
correlation length assumes the values ξ ≈ 2, 3, 4, 5, 6, 7, and
8. Our results are summarized in Table IV.
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FIG. 1. We plot (r2 − 1)ξωNR (upper part) and (r3 − 1)ξωNR (lower part) for the Ising model and the Blume-Capel model at D = 0.655,
both at q3 = 0, versus the correlation length ξ . Note that the values on the x axis are slightly shifted to reduce the overlap of the Ising and the
Blume-Capel data points. The two parts of the figure share the legend and the labeling of the x axis. Note the different scales on the y axis.

In Fig. 2 we plot (r2 − 1)ξωNR and (r3 − 1)ξωNR versus
the correlation length ξ . With increasing ξ the values of
(r2 − 1)ξωNR and (r3 − 1)ξωNR seem to approach a constant
for both models and both values of q3 we simulated at. It
seems obvious that 1

8 < qiso
3 < 2

15 for both models. The values
of (r2 − 1)ξωNR and (r3 − 1)ξωNR are slightly larger for the
Ising model, suggesting that qiso

3 is slightly larger for the Ising
model than for the Blume-Capel model at D = −0.43.

In order to obtain a numerical estimate of qiso
3 for the

Blume-Capel model at D = −0.43 we performed fits with the

Ansätze

r3 − 1 = aξ−ωNR (14)

and

r3 − 1 = aξ−ωNR + bξ−ω′
NR , (15)

where we have fixed ωNR = 2.022 665. In the case of the cor-
rection term we took either ω′

NR = 6.420 65 − 3 = 3.420 65
(see Table 2 of Ref. [17]) or the ad hoc choice ω′

NR = 4. For
example, with the Ansatz (15) and ω′

NR = 3.420 65, taking
ξ � 3 we get a = −0.000 62(7) and 0.000 73(7) for q3 = 2

15

TABLE III. We give results for the correlation length ξ(1,0,0) and the ratios r2 and r3 of the Ising model with q3 = 1
7 , 2

15 , and 1
8 . L is the

linear lattice size and K the coupling constant.

q3 K L ξ(1,0,0) r2 − 1 r3 − 1

1/7 0.1556 40 2.02430(7) −0.000410(12) −0.000695(14)
1/7 0.16938 100 5.02654(24) −0.000043(14) −0.000055(16)
2/15 0.158 40 2.03501(3) −0.000189(6) −0.000372(7)
2/15 0.1663 60 3.02940(4) −0.000056(5) −0.000074(5)
2/15 0.16981 80 3.99996(6) −0.000025(4) −0.000028(5)
2/15 0.17175 100 5.00911(7) −0.000008(4) −0.000009(5)
2/15 0.172889 120 5.99953(9) −0.000009(4) −0.000004(5)
1/8 0.16 40 2.03256(3) 0.000041(6) −0.000050(7)
1/8 0.1686 60 3.06724(4) 0.000043(5) 0.000058(5)
1/8 0.171951 80 3.99987(7) 0.000025(5) 0.000038(6)
1/8 0.1739 100 5.00231(10) 0.000033(6) 0.000047(7)
1/8 0.17506 120 5.99911(11) 0.000009(5) 0.000020(6)
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TABLE IV. We give results for the correlation length ξ(1,0,0) and the ratios r2 and r3 of the Blume-Capel model at D = −0.43 with q3 = 2
15

and 1
8 . L is the linear lattice size and K the coupling.

q3 K L ξ(1,0,0) r2 − 1 r3 − 1

2/15 0.2037 40 1.98782(3) −0.000222(7) −0.000431(7)
2/15 0.2144 60 3.00063(3) −0.0000699(27) −0.0001043(31)
2/15 0.2188 80 4.00152(3) −0.0000344(19) −0.0000494(22)
2/15 0.2211 100 5.00263(4) −0.0000208(19) −0.0000288(22)
2/15 0.22247 120 6.00387(5) −0.0000140(19) −0.0000227(22)
2/15 0.223356 140 6.99959(5) −0.0000116(18) −0.0000166(22)
2/15 0.223971 160 7.99879(6) −0.0000067(18) −0.0000081(21)
1/8 0.2065 40 2.00215(3) 0.0000136(52) −0.0001107(60)
1/8 0.217 60 2.99516(3) 0.0000307(34) 0.0000290(39)
1/8 0.22147 80 4.00089(4) 0.0000275(28) 0.0000290(33)
1/8 0.2238 100 5.00716(4) 0.0000168(18) 0.0000215(22)
1/8 0.22517 120 5.99963(5) 0.0000116(19) 0.0000120(22)
1/8 0.226065 140 6.99452(5) 0.0000090(19) 0.0000120(22)
1/8 0.226687 160 7.99376(6) 0.0000070(19) 0.0000078(22)

and 1
8 , respectively. Note that qiso

3 is defined as the zero of a.
Linearly interpolating we get qiso

3 = 0.1295(3). Based on the
fits that we performed by using the Ansätze (14) and (15) we
quote

qiso
3 = 0.129(1) (16)

as final result for the Blume-Capel model at D = −0.43. It is
chosen such that the estimates, including their respective error
bars, obtained by performing these fits are covered. We did not

repeat this analysis for r2. However, just comparing the upper
and lower parts of Fig. 2 by eye, it is clear that the outcome of
such an analysis will be very similar.

Below we perform a thorough FSS study, resulting in
D∗ = −0.380(5) for q3 = 0.129. Since the difference of qiso

3
for the Blume-Capel model at D = −0.43 and the Ising
model is small, we regard the result (16) as valid for the
revised estimate of D∗ and abstain from simulating again
in the high-temperature phase of the Blume-Capel model
at D∗ = −0.38.

FIG. 2. We plot (r2 − 1) ξ 2.022 665 (upper part) and (r3 − 1) ξ 2.022 665 (lower part) versus the correlation length ξ for the Ising model and the
Blume-Capel model at D = −0.43 at q3 = 2

15 and 1
8 . Note that the values on the x axis are slightly shifted to reduce the overlap of the Ising

and the Blume-Capel model data points. The two parts of the figure share the legend and the labeling of the x axis. Note the different scales on
the y axis.
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From Fig. 1 we read off that (r3 − 1)ξωNR ≈ 0.029 for the
Ising model and the Blume-Capel model at D = 0.655 both
at q3 = 0 in the limit ξ → ∞. Taking the results of the fits
discussed above for the amplitude of r3 − 1 at q3 = 1

8 and 2
15

we get d[(r3 − 1)ξωNR ]/dq3 ≈ 0.0013/( 1
8 − 2

15 ) = −0.156 at
q3 = qiso

3 . Hence, the error given in Eq. (16) means that
for q3 = 0.129, the leading violation of spatial isotropy is
suppressed at least by a factor of about 0.029/(| − 0.156| ×
0.001) ≈ 180 compared with q3 = 0.

To get an idea of the statistics of our simulations let us
briefly discuss the runs for L = 160, q3 = 2

15 , and D = −0.43.
In total we performed about 3.6 × 107 update cycles. Each
cycle consists of one sweep with the local update algorithm
followed by 12 000 single-cluster updates. The number of
single-cluster updates is chosen such that this number times
the average size of a cluster roughly equals half of the volume
L3 of the lattice. For parallelization, we performed 400 sepa-
rate runs. For each run, we performed 10 000 update cycles
for equilibration. In total these runs took about 6 months
of CPU time on a single core of an AMD EPYCT M 7351P
CPU. In the simulations discussed in this section, we used
the SIMD-oriented Fast Mersenne Twister (SFMT) algorithm
[42] as random number generator.

Throughout this work, least-square fits were performed
by using the function curve_fit() contained in the SCIPY

library [43]. Plots were generated by using the MATPLOTLIB

library [44].

V. FINITE-SIZE SCALING STUDY

In the second part of our numerical study we accurately
determine D∗ for q3 = 0.129. The outline of the study follows
closely our recent studies [10,13]. Therefore, we abstain from
a detailed discussion of the theoretical background. Below
we define the quantities that we measure during the simu-
lation. It follows a brief discussion of the simulations that
we performed. First, we analyze the dimensionless quantities
to locate D∗ and get accurate estimates of Kc for several
values of D close to D∗. Next, we obtain accurate estimates
of the critical exponents η and ν by analyzing the behavior
of the magnetic susceptibility and the slopes of dimensionless
quantities.

A. Quantities studied in finite-size scaling

The magnetic susceptibility χ for a vanishing magnetiza-
tion and the second moment correlation length ξ2nd are defined
as

χ = 1

V

〈(∑
x

sx

)2〉
(17)

and

ξ2nd =
√

χ/F − 1

4 sin2 π/L
, (18)

where

F = 1

V

〈∣∣∣∣∣
∑

x

exp

(
i
2πx1

L

)
sx

∣∣∣∣∣
2〉

(19)

is the Fourier transform of the correlation function at the
lowest nonzero momentum. The Binder cumulant U4 and its
generalizations U2 j are defined as

U2 j = 〈(m2) j〉
〈m2〉 j

, (20)

where m = 1
V

∑
x sx is the magnetization of the system. Fur-

thermore, we study the ratio of partition functions Za/Zp,
where a denotes a system with antiperiodic boundary con-
ditions in one of the directions and periodic ones in the
remaining two directions, while p denotes a system with pe-
riodic boundary conditions in all directions. This quantity is
computed by using the cluster algorithm. For a discussion see
Appendix A 2 of Ref. [8].

The second moment correlation length ξ2nd , the Binder
cumulant U4, its generalizations, and the ratio of partition
functions Za/Zp are dimensionless quantities or phenomeno-
logical couplings. In the following we denote these quantities
by Ri. We obtain the critical exponent ν from the behavior of
the slope of dimensionless quantities

SRi = ∂SRi

∂K
. (21)

In the analysis discussed below, we need the quantities as a
function of K in some neighborhood of the value Ksim ≈ Kc

of K that is used in the simulation. To this end, we compute
the Taylor coefficients of the observables around Ksim up to
third order.

For a discussion of corrections that are caused by the
observable itself see, for example, Sec. 4 of Ref. [45]. The au-
thors discuss the two-dimensional Ising model on the square
lattice with periodic boundary conditions. The arguments
brought forward should also apply to the present case. In
particular, it is noted that one has to take into account the
analytic background of the magnetic susceptibility. This leads
to a correction in U2 j and ξ2nd/L proportional to L−(2−η). In
the case of ξ2nd/L, there are in addition corrections that are
proportional to L−2. The ratio of partition functions has only
corrections that decay exponentially in the linear lattice size.

B. Simulations

The simulations are performed by using a hybrid of lo-
cal updates, single-cluster updates [24], and the wall-cluster
update [6]. For each measurement, we performed one sweep
with the local update, L/4 single-cluster updates, and one
wall-cluster update. For a more detailed discussion of similar
hybrid update schemes see, for example, Refs. [10,13]. We
simulated the model for q3 = 0.129 at D = −0.3, −0.35,
−0.38, −0.4, −0.42, and −0.46. We simulated at good
approximations of Kc(D, q3). These estimates were succes-
sively improved, while increasing the linear lattice size that is
simulated.

For all values of D that we consider, we simulated the linear
lattice sizes L = 6, 7, 8, ..., 15, 16, 18, 20, ..., 32, 36, 40, 48,
56, ..., 72. For D = −0.3, we simulated L = 120 in addition.
For D = −0.35, −0.4, and −0.42 we simulated L = 80, 100,
and 120 in addition. In the case of D = −0.38, we simulated
L = 80, 100, 120, and 200 in addition.
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In total we have spent the equivalent of about 90 years
of CPU time on a single core of an AMD EPYCT M 7351P
CPU. To give the reader an idea of the statistics of our
simulations: In the case of D = −0.38 we performed about
6.7 × 109 measurements for L = 20. This number decreases
to 1.5 × 108 measurements for L = 200. As random number
generator, we used either the SIMD-oriented fast Mersenne
twister (SFMT) algorithm [42] or a modified KISS generator.
A few simulations for D = −0.38 have been performed by
using Lüscher’s ranlux generator [46] for comparison. For
more details, see Appendix A. Analyzing data and in particu-
lar estimating errors of the final results for critical exponents
and other quantities of interest, we follow a cautious approach
that we adopted over the years. It is spelled out, for example,
in Sec. V of Ref. [10]. Essentially, we perform a number of
different fits that we consider as reasonable. Then the final
result and its error bar are chosen such that the results of
these fits, including their respective error bars are covered.
This obviously leads in general to a larger error bar compared
with selecting one preferred fit and taking its result and error
bar as the final one.

C. Dimensionless quantities

In a first step we performed a joint fit of the dimension-
less quantities Za/Zp, ξ2nd/L, U4, and U6 for all values of D
considered. As Ansatz we use

Ri(Kc, L) = R∗
i + bi(D)L−ω + ci(D)L−ε1 + di(D)L−ε2 . (22)

We have omitted corrections cb2
i (D)L−2ω and higher powers

since bi(D) is assumed to be small for the values of D that we
consider.

In the case of ξ2nd/L, U4, and U6 we expect that there are
corrections due to the analytic background of the magnetic
susceptibility. Hence, ε1 = 2 − η. In the case of ξ2nd/L there
is in addition ε2 = 2, as discussed in Sec. V A. We assume that
corrections due to the violation of the rotational invariance can
be ignored here. As a check, in the case of Za/Zp, we assume
one subleading correction with ε1 = 2.022 665.

The renormalization group predicts that the ratio
bi(D)/b j (D) does not depend on D. In our fits, we used
different parametrizations of bi(D). For example, the linear
approximation

bi(D) = ai(D − D∗), (23)

where ai and D∗ are free parameters. As check we added a
quadratic term

bi(D) = ai[(D − D∗) + c(D − D∗)2]. (24)

The coefficients of subleading corrections are assumed either
to be constant or linearly dependent on D. In a preliminary
stage of the analysis we performed a number of fits using dif-
ferent Ansätze of the type discussed above, including different
subsets of values of D. Note that by varying the range of D,
we probe the validity of approximations such as Eqs. (23) and
(24). Motivating our final results, we focus on three differ-
ent Ansätze that we specify below. Note that these three fits
essentially cover the range of results that we considered as
reasonable in the preliminary stage of the analysis.

Fit 1. We include four values of D: D = −0.35, −0.38,
−0.4, and −0.42. We parametrize the amplitude of leading
corrections to scaling by using Eq. (24). The coefficients of
corrections related to the analytic background of the magnetic
susceptibility are approximated by a linear function of D. All
other coefficients of subleading corrections are assumed to be
constant.

Let us summarize the free parameters of the fit: Kc for
each value of D, R∗

i for each dimensionless quantity D∗, ai

[Eq. (24)], for each dimensionless quantity c [Eq. (24)], two
coefficients for each of U4, U6, and ξ2nd/L for the correction
related to the analytic background of the magnetic suscepti-
bility, one coefficient for the second subleading correction of
ξ2nd/L, and one coefficient for probing a possible correction
∝L−2.022 665 in Za/Zp.

Fit 2. We use the same Ansatz as for fit 1. In contrast to fit
1, we include all six values of D, where we simulated at.

Fit 3. We use the same data set as for fit 2. We use the same
approximations for the coefficients in Eq. (22) as in fits 1 and
2. In contrast to fits 1 and 2, we add an additional correction
term eiL−ε3 , where now ε3 is a free parameter of the fit. It is
assumed to be the same for all four dimensionless quantities.
In the Ansatz, ei does not depend on D.

In our fits, we include all data with a linear lattice size
L � Lmin. Since corrections decrease with increasing L, the
fits should become better, up to statistical fluctuations, with
increasing Lmin. In the following, we always plot results of
the fits versus the minimal lattice size Lmin. Let us discuss the
results of the fits in detail.

In the case of fit 1 we get χ2/DOF = 4.68, 1.73, 1.22, and
1.01 for Lmin = 6, 7, 8, and 9, respectively. For Lmin � 10 we
get χ2/DOF slightly smaller than one. The numbers for fit
2 look similar: We get χ2/DOF = 4.54, 1.68, 1.22, and 1.02
for Lmin = 6, 7, 8, and 9, respectively. Again, for Lmin � 10
we get χ2/DOF slightly smaller than one. In the case of fit
3, we get χ2/DOF = 1.04 for Lmin = 6. For Lmin � 7 we get
χ2/DOF slightly smaller than one.

In the case of fit 3 we get ε3 ≈ 5, where the error bar is
smaller than 1 only for Lmin � 9. We should be cautious in
interpreting this result, since it is essentially based only on a
few small lattice sizes that discriminate fits 2 and 3. Certainly,
we can not exclude a correction with a smaller correction
exponent and a small amplitude.

In the figures below we show data points for a p value
p > 0.01 only. Corresponding to the χ2/DOF discussed
above, p gets rapidly larger than this value, with increasing
Lmin.

In Fig. 3 we give our numerical results for the am-
plitude of the correction ∝L−ωNR of Za/Zp. We find that
it is compatible with zero. For comparison, we have re-
analyzed the data of [29] for the Blume-Capel model at
q3 = 0 for D = 0.641, 0.655, and ln 2. We used the fi-
nal estimates of the fixed-point values of the dimensionless
quantities obtained here as input, taking into account their
covariances. As estimate of the amplitude of the correc-
tion ∝L−ωNR of Za/Zp we find d = −0.047(5). In the case
of the other three quantities it is impossible to disentangle
the correction ∝L−ωNR from the analytic background of the
magnetization.
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FIG. 3. Numerical estimates of the amplitude dZa/Zp of correc-
tions ∝L−2.022 665 in Za/Zp as a function of the minimal lattice size
Lmin. These estimates are obtained from the fits 1, 2, and 3, which are
discussed in the text. Note that the values on the x axis are slightly
shifted to reduce overlap of the symbols.

In Fig. 4 we plot the estimates of −D∗ obtained by the three
different fits as a function of Lmin. We quote as final result

D∗ = −0.380(5). (25)

The central value and the error bar are chosen such that for
10 � Lmin � 18 the results of the three fits, including their
error bars, are covered.

In Fig. 5 we plot our estimates of (Za/Zp)∗ obtained by
using fits 1, 2, and 3. The value of our final result is determined
by fit 1 for Lmin = 11 up to 20. The error bar is chosen such
that up to Lmin = 18 the results, including their error bars, of
all three fits are covered. We quote

(Za/Zp)∗ = 0.542 53(1). (26)

FIG. 4. Estimates of −D∗ plotted versus the minimal lattice size
Lmin taken into account in the fit. The numerical estimates of −D∗ are
obtained from the fits 1, 2 and 3, which are discussed in the text. The
solid black line gives our final estimate of −D∗, while the dashed
lines indicate the error bar. Note that the values on the x axis are
slightly shifted to reduce overlap of the symbols.

FIG. 5. Numerical estimates of (Za/Zp)∗ obtained from the fits 1,
2 and 3, which are discussed in the text. These estimates are plotted
versus the minimal lattice size Lmin taken into account in the fit. The
solid black line gives our final estimate of (Za/Zp)∗, while the dashed
lines indicate the error bar. Note that the values on the x axis are
slightly shifted to reduce overlap of the symbols.

Performing a similar analysis we arrive at U ∗
4 = 1.603 59(4),

U ∗
6 = 3.105 35(10), and (ξ2nd/L)∗ = 0.643 12(1). These

numbers can be compared with (Za/Zp)∗ = 0.5425(1), U ∗
4 =

1.6036(1), U ∗
6 = 3.1053(5), and (ξ2nd/L)∗ = 0.6431(1),

which were obtained in [29]. Note that in the analysis of
[29] we assumed that there is a correction with the exponent
ω′ = 1.67(11), Ref. [20], which leads to an increase of the
systematic error compared with the hypothesis that there is
no such correction. Furthermore, the statistics in this study is
considerably larger than that of [29]. From a finite-size scaling
study of the Ising model on the simple cubic lattice the authors
of Ref. [41] get U ∗

4 = 1.603 56(15). Note that the authors
use a different definition of U4. We have converted their nu-
merical result correspondingly. As an example of many older
results we quote U ∗

4 = 1.6044(10) [4]. Note the authors of
[4] performed a joint analysis of several different models that
are supposed to share the three-dimensional Ising universality
class.

Note that the fixed-point values R∗ of dimensionless quan-
tities depend on the universality class. Furthermore, one
should notice that R∗ depends on the global geometry of the
system. The numbers quoted here are only valid for the torus
geometry with L0 = L1 = L2 = L.

TABLE V. Results for the critical coupling Kc for different values
of D at q3 = 0.129. For a discussion see the text.

D Kc

−0.3 0.234765504(20)
−0.35 0.232071588(15)
−0.38 0.230514310(10)
−0.4 0.229500032(12)
−0.42 0.228504501(14)
−0.46 0.226568459(20)
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Finally, in Table V we give our estimates of the critical
value Kc of the coupling K . The error is estimated in a similar
fashion as for the quantities discussed above.

D. U4 and U6 at fixed values of Za/Zp or ξ2nd/L

In order to get an estimate of ω and a check of the results
of the previous section, we analyze, similar to previous work
(see, for example, [10,13,29], U4 and U6 at fixed values of
Za/Zp or ξ2nd/L. As discussed, for example, in [10], it is
advantageous to fix Za/Zp and ξ2nd/L to good approximations
of their fixed-point values, respectively. Here we take Za/Zp =
0.542 53 and ξ2nd/L = 0.643 12. The quantities behave as

Ū4 = Ū ∗
4 + b̄(D)L−ω + b̄2[b̄(D)L−ω]2

+ · · · + c̄(D)L−ε + · · · . (27)

The bar on top of the quantities refers to the fact that the quan-
tity is taken at either Za/Zp = 0.542 53 or ξ2nd/L = 0.643 12.
This means that we evaluate for each lattice size L the value
of K , where Za/Zp or ξ2nd/L assumes the desired value. Then
U4 and U6 are evaluated at this particular value of K . For a
more detailed discussion of Eq. (27), see Sec. III of Ref. [10]
and references therein. In our Ansätze we did not use the
term b̄2[b̄(D)L−ω]2 since b̄(D) is small for the values of D
that we consider. The term c̄(D)L−ε represents subleading
corrections.

In the case of U4 the leading one is c(D)L−2+η due to
the analytic background of the magnetic susceptibility. In
addition, in the case of ξ2nd/L, we expect a correction with
the exponent ε2 = 2. The correction L−ωNR should be highly
suppressed in our case.

We consider the two Ansätze

Ū4 = Ū ∗
4 + b̄(D)L−ω + c̄1(D)L−ε1 (28)

and

Ū4 = Ū ∗
4 + b̄(D)L−ω + c̄1(D)L−ε1 + c̄2(D)L−ε2 . (29)

We parametrized b̄(D) by

b̄(D) = b̄1(D − D∗) + 1
2 b̄2(D − D∗)2, (30)

where the free parameters are D∗, b̄1, and b̄2. An advantage of
this parametrization is that D∗ is a direct outcome of the fit.
Since the values of D are contained in a narrow interval, we
assumed c̄1(D) and c̄2(D) to be constant in the fit.

First we analyzed our data for U4 at Za/Zp = 0.542 53.
Here we only used Ansatz (28), with ε1 = 2 − η as subleading
correction exponent. Fitting data for all values of D, we get
χ2/DOF = 4.58, 1.30, 1.13, and 1.08 for Lmin = 6, 7, 8, and
9, respectively. Going to larger Lmin, χ2/DOF remains slightly
larger than one.

Next, we analyzed our data for U4 at ξ2nd/L = 0.643 12
by using the Ansatz (28) with ε1 = 2 − η. Fitting data for all
values of D, we get χ2/DOF = 2.72, 1.90, 1.50, 1.31, 1.11,
and 1.06, for Lmin = 6, 7, 8, 9, 10, and 11, respectively. For
Lmin � 12, χ2/DOF drops slightly below one.

Since for fixing ξ2nd/L = 0.643 12 the χ2/DOF decreases
more slowly with increasing Lmin at small Lmin than for fix-
ing Za/Zp = 0.542 53 and also motivated by the behavior of
the results for D∗, we analyzed our data for U4 at ξ2nd/L =

FIG. 6. We plot estimates of −D∗ obtained by fitting U4 at
Za/Zp = 0.542 53 and ξ2nd/L = 0.643 12 by using the Ansatz (28)
versus the minimal lattice size Lmin taken into account in the fit. In
the legend the Ansatz (28) is indicated by F1. In the case of fixing
ξ2nd/L = 0.643 12 we fitted in addition by using the Ansatz (29),
which is indicated by F2. The solid and the dashed lines give the final
result of the previous section and the corresponding error bar. Note
that the values on the x axis are slightly shifted to reduce overlap of
the symbols.

0.643 12 in addition by using the Ansatz (29) with ε1 = 2 −
η and ε2 = 2. Here we find χ2/DOF = 0.938 already for
Lmin = 6. For larger values of Lmin it stays below one.

In Fig. 6 we give our results for D∗ obtained by using these
three different fits. In the case of fixing Za/Zp = 0.542 53 the
estimate is consistent with the one of the previous section,
starting from Lmin = 8. The situation is quite different for
fixing ξ2nd/L = 0.643 12 and Ansatz (28). For small Lmin the
estimate of −D∗ is too large compared with the one of the
previous section and only slowly decreases with increasing
Lmin. In contrast, using the Ansatz (29), we see consistent
results, starting from very small Lmin. We conclude that the
analysis presented here confirms the final estimate of D∗,
Eq. (25), given above.

Next, in Fig. 7, we plot estimates of ω obtained by these
three fits. In contrast to D∗, there is very little difference
between the results of the different fits. In Fig. 7, we give the
estimate ω = 0.829 68(23) of Ref. [17] for comparison. Our
data are certainly consistent with this estimate. As our final
estimate we might quote ω = 0.825(20). This is less precise
than ω = 0.832(6) given in Ref. [29]. Note that this study was
not designed for an accurate estimate of ω. To this end, a larger
range of D is needed.

In order to understand better the interplay of the two cor-
rections, we have rewritten the Ansatz (29) in the form

Ū4 = Ū ∗
4 + b̄(D)L−ω + c̄(D)L−ε1 + d̄ (D)(L−ε1 − L−ε2 ).

(31)

Here we fitted with ω = 0.829 68 fixed and c̄ and d̄ not
depending on D. Data for U4 at ξ2nd/L = 0.643 12 for D =
−0.35, −0.38, −0.4, and −0.42 are included in the fit.
The estimates of the amplitudes c̄ and d̄ are plotted in
Fig. 8. The results clearly indicate that there are two different
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FIG. 7. We plot estimates of ω obtained by fitting U4 at Za/Zp =
0.542 53 and ξ2nd/L = 0.643 12 by using the Ansatz (28) versus the
minimal lattice size Lmin taken into account in the fit. In the legend
the Ansatz (28) is indicated by F1. In the case of fixing ξ2nd/L =
0.643 12 we fitted in addition by using the Ansatz (29), which is
indicated by F2. Note that the values on the x axis are slightly shifted
to reduce overlap of the symbols. The dashed-dotted line gives the
result of Ref. [17].

corrections with exponents ε ≈ 2. Furthermore, the fact that
|d̄| being clearly larger than |c̄| shows that at least for the
lattice sizes L considered here, the corrections numerically
cancel to a considerable extent. Just to give an idea, for
example 10−η = 0.9198 . . . or 100−η = 0.8460 . . ., using the
CB estimate η = 0.036 297 8 [17,47]. This fact might explain
the behavior of the results for −D∗ obtained by fitting U4 at
ξ2nd/L = 0.643 12 with the Ansatz (28). We also analyzed U6

FIG. 8. We plot estimates of amplitudes of subleading correc-
tions obtained by fitting U4 at ξ2nd/L = 0.643 12 by using the Ansatz
(31) versus the minimal lattice size Lmin taken into account in the fit.
We give the amplitude c̄ of L−ε1 and d̄ of the difference L−ε1 − L−ε2 .
In the legend we give either the value of the correction exponent ε1

or “difference.” Note that the values on the x axis are slightly shifted
to reduce overlap of the symbols.

at fixed values of Za/Zp or ξ2nd/L. Since the results are very
similar to those for U4, we abstain from a discussion.

Finally, we have reanalyzed our data for the standard Ising
model obtained in Ref. [29]. We determined the amplitude
b̄ of the leading correction in U4 at Za/Zp = 0.542 53 using
ω = 0.829 68 as input. Combining the result b̄Ising ≈ −0.2 of
this analysis with the data obtained here for the derivative of
the amplitude of the leading correction with respect to D at
D = −0.38, we conclude that at D = −0.38, for q3 = 0.129,
leading corrections to scaling are suppressed at least by a
factor of about 270 compared with the standard Ising model
on the simple cubic lattice.

E. Magnetic susceptibility

In order to determine the critical exponent η, we ana-
lyze the magnetic susceptibility χ at Za/Zp = 0.542 53 or
ξ2nd/L = 0.643 12. Fixing Za/Zp, no additional corrections
with ε ≈ 2 are introduced. For ξ2nd/L fixed, the statistical
error is smaller. However, the analysis of the data is more dif-
ficult due to subleading corrections with the exponent ε2 = 2.

In addition to the magnetic susceptibility χ̄ at a fixed value
of a dimensionless quantity, we analyzed the improved ver-
sion of it

χ̄imp = χ̄Ū x
4 , (32)

where the bar indicates that the quantity is taken at a fixed
value of Za/Zp or ξ2nd/L. The exponent x is tuned such that
leading corrections to scaling are eliminated. For simplicity,
we took the result obtained in Sec. VII of Ref. [29]: x =
−0.66 and x = −0.57 for fixing Za/Zp and ξ2nd/L, respec-
tively.

We fit our data for fixing Za/Zp and ξ2nd/L with the Ansatz

χ̄ = c̄L2−η + b̄. (33)

In the case of fixing ξ2nd/L we used in addition

χ̄ = c̄L2−η (1 + d̄L−2) + b̄. (34)

Our results for D = −0.38 and the standard version of χ̄ are
given in Fig. 9. In the case of fixing Za/Zp, χ2/DOF already
drops below one at Lmin = 9. In contrast, for fixing ξ2nd/L it
drops below two at Lmin = 16 and remains larger than 1.5 even
for larger Lmin. Using the Ansatz (34) we get χ2/DOF = 1.23
for Lmin = 6, corresponding to p = 0.16. The χ2/DOF stays
roughly at this level going to larger values of Lmin. One might
be tempted to take η = 0.036 299(8) obtained from the fit
using the Ansatz (33) of χ at Za/Zp = 0.542 53 with Lmin =
10 as final result, where χ2/DOF = 0.93 corresponding to
p = 0.58.

Nevertheless, as our final estimate we quote the more cau-
tious

η = 0.036 284(40) . (35)

It is chosen such that it covers the results, including their error
bars, obtained by fitting χ at Za/Zp = 0.542 53 by using the
Ansatz (33) up to Lmin = 26. In addition the results, including
their error bars, obtained by fitting χ at ξ2nd/L = 0.643 12 by
using the Ansatz (33) for Lmin = 22 and 24 are covered. In
the case of fitting χ at ξ2nd/L = 0.643 12 by using the Ansatz
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FIG. 9. Numerical estimates of η for D = −0.38 plotted versus
the minimal lattice size Lmin taken into account in the fit. We have
fitted the nonimproved χ by using the Ansatz (33) for both fixing
Za/Zp and ξ2nd/L. These fits are denoted by F1 in the legend. In the
case of fixing ξ2nd/L, we give results obtained by using the Ansatz
(34) in addition. These fits are denoted by F2 in the legend. The
values on the x axis are slightly shifted to reduce overlap of the
symbols. The solid black line gives our final estimate of η, while
the dashed lines indicate the error bar. The dashed-dotted line gives
the estimate of Refs. [17,47]. Note that the error bar of the CB result
is by a factor of 20 smaller than the one obtained here.

(34) the results, including their error bars, are covered for the
majority of Lmin values with Lmin � 22.

Finally, we study the effect of deviations of D from D∗.
To this end we have fitted χ at Za/Zp = 0.542 53 and its
improved version for all values of D we simulated at by using
the Ansatz (33). Our results for Lmin = 12 are given in Fig. 10.
We see that the estimate of η obtained from χ̄ has a clear

FIG. 10. Numerical estimates of η obtained by fitting χ at
Za/Zp = 0.542 53 by using the Ansatz (33) versus D. We compare
results obtained for the standard and the improved, Eq. (32), version
of the magnetic susceptibility. In all cases we give the estimate
obtained with Lmin = 12. The values on the x axis are slightly shifted
to reduce overlap of the symbols. The dashed-dotted line gives the
estimate of Refs. [17,47].

FIG. 11. Numerical estimates of yt for D = −0.38 obtained by
fitting the slopes of dimensionless quantities at Za/Zp = 0.542 53
by using the Ansatz (36) versus the minimal lattice size Lmin that
is taken into account. The dashed-dotted line gives the estimate of
Refs. [17,47]. The legend refers to the quantity that is analyzed.

dependence on D. In contrast, this dependence is, within
errors, eliminated for χ̄imp. This finding confirms that the
exponent x is universal. Note that in Ref. [29], we have de-
termined x by studying the Blume-Capel model at q3 = 0.
Furthermore, we see that for D = −0.38 the estimates ob-
tained by fitting χ̄ and χ̄imp essentially coincide. This confirms
our result D∗ = −0.380(5), Eq. (25), obtained above. Further-
more, no revision of our final estimate (35) is needed.

F. The exponent ν

We study the slopes of dimensionless quantities at a fixed
value of a dimensionless quantity. Below we restrict the dis-
cussion on fixing Za/Zp = 0.542 53 since Za/Zp has virtually
no corrections ∝L−ε , where ε ≈ 2.

1. Analyzing quantity by quantity

In this section we have fitted the slopes of dimensionless
quantities one by one. First we have fitted the data for D =
−0.38 with the Ansatz

S̄R = āLyt , (36)

not taking into account corrections. The estimates of yt ob-
tained this way are given in Fig. 11. In the figure we give only
results that correspond to p > 0.01. For the slope of Za/Zp,
actually already for Lmin = 10, we get χ2/DOF = 0.96 corre-
sponding to p = 0.52. Furthermore, we see that for the slope
of Za/Zp the estimate of yt does change little with increasing
Lmin. For Lmin = 10 we get yt = 1.587 382(9), consistent with
the CB estimate yt = 1.587 375(10) [17,47].

In the case of the other quantities, we see a clear depen-
dence of the estimate on Lmin. At least, in all cases the CB
estimate is approached as Lmin increases. This observation is
consistent with the fact that only in the case of the slope of
Za/Zp we do not expect corrections ∝L−ε with ε ≈ 2.
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FIG. 12. Numerical estimates of yt for D = −0.38 obtained by
fitting the slopes of dimensionless quantities with the Ansatz (37)
versus the minimal lattice size Lmin that is taken into account. The
dashed-dotted line gives the estimate of Refs. [17,47]. The legend
refers to the quantity that is analyzed in the fit.

Next, in Fig. 12 we give estimates of yt obtained by fitting
with the Ansatz

S̄R = āLyt (1 + c̄L−ε ), (37)

where ε = 2 − η. Here p > 0.01 is reached for much smaller
Lmin than for Ansatz (36). Furthermore, the estimates obtained
by analyzing the different slopes are close to each other start-
ing from small values of Lmin. For example, for Lmin = 14
the preliminary result yt = 1.587 33(7) corresponding to ν =
0.629 989(28) covers the estimates obtained by analyzing the
four different quantities. It is fully consistent with the estimate
of Refs. [17,47]. Note that for Lmin = 14 we get χ2/DOF =
0.96, 1.34, 1.18, and 1.26 corresponding to p = 0.51, 0.12,
0.25, and 0.17 for the slopes of Za/Zp, ξ2nd , U4, and U6,
respectively.

Next, we focus on the slope of Za/Zp. It should not contain
a correction related to the analytic background and the contri-
bution ∝L−ωNR should be very small. One expects a correction
with the correction exponent yt + ω. For a discussion see,
for example, Sec. III of Ref. [10]. It turns out that replacing
ε = 2 − η by ε = yt + ω ≈ 2.417 055 in the Ansatz (37) the
numerical estimates of yt change only slightly. This can be
explained by the fact that the amplitude of the correction is
small.

In Fig. 13 we give estimates of yt obtained by fitting the
slope of Za/Zp with the Ansatz (37) and setting the correc-
tion exponent to ε = yt + ω. We give data for D = −0.35,
−0.38, −0.4, and −0.42. We see only a small variation of the
result with D. Here we take yt = 1.587 34(4) corresponding
to ν = 0.629 985(16) as preliminary result that covers esti-
mates obtained for 10 � Lmin � 14 for D = −0.38. Note that
χ2/DOF = 0.91 corresponding to p = 0.61 for Lmin = 10.

2. Joint fit using all four dimensionless quantities

Finally, we performed joint fits of the slopes of all four
dimensionless quantities using the Ansatz (37) and in addition

S̄R = āLyt (1 + c̄1L−ε1 + c̄2L−ε2 + c3L−ε3 ), (38)

FIG. 13. Numerical estimates of yt for D = −0.35, −0.38, −0.4,
and −0.42 obtained by fitting the slope of Za/Zp by using the Ansatz
(37) with ε = yt + ω as correction exponent. These estimates are
plotted versus the minimal lattice size Lmin taken into account in the
fit. Note that the values on the x axis are slightly shifted to reduce
overlap of the symbols. The dashed-dotted line gives the estimate of
Refs. [17,47].

where ε1 = 2 − η, ε2 = 2, and ε3 = yt + ω. We set c̄1 = 0
for the slope of Za/Zp and c̄2 = 0 for the slopes of Za/Zp,
U4, and U6. In Fig. 14 we give the results for yt obtained by
performing these fits using our data for D = −0.38. It turns
out that for the Ansatz (38) an acceptable χ2/DOF is reached
for considerably smaller Lmin than for Ansatz (37). On the
other hand, the estimates obtained for yt are similar. As our
preliminary result we quote

yt = 1.587 39(7) (39)

corresponding to ν = 0.629 965(28). It covers the estimates
obtained by both Ansätze (37) and (38), for 16 � Lmin � 22.

FIG. 14. Numerical estimates of yt for D = −0.38 obtained by
fitting the slopes of all four dimensionless quantities jointly with
the Ansatz (37) or Ansatz (38). These estimates are plotted versus
the minimal lattice size Lmin that is taken into account in the fit. In the
legend, these Ansätze are denoted by fit 1 and fit 2, respectively. Note
that the values on the x axis are slightly shifted to reduce overlap of
the symbols.
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FIG. 15. Numerical estimates of yt for D = −0.35, −0.38, −0.4,
and −0.42 obtained by fitting the slopes of all four dimensionless
quantities jointly with the Ansatz (38) versus the minimal lattice size
Lmin taken into account. Note that the values on the x axis are slightly
shifted to reduce overlap of the symbols for different values of D.

Note that for Lmin = 16, we get χ2/DOF = 1.19 and 1.14,
corresponding to p = 0.11 and 0.17 for the Ansätze (37) and
(38), respectively.

Finally, in Fig. 15 we give results obtained by fitting
the data for D = −0.35, −0.38, −0.4, and −0.42 using the
Ansatz (38). The estimates obtained for different values of
D differ only by little. Hence, the estimate, Eq. (39), quoted
above needs not to be revised. Similar to Eq. (32), improved
slopes can be constructed. Since the dependence of our es-
timate of yt on D is relatively small, we abstained from
analyzing improved slopes here.

In this section we obtained three preliminary estimates of
yt = 1/ν by analyzing the slopes of dimensionless quantities
in different ways. Our final result

ν = 0.629 98(5) (40)

covers these preliminary estimates, including their error bars.

VI. SUMMARY AND OUTLOOK

We have studied a generalized Blume-Capel model on the
simple cubic lattice. In addition to the nearest-neighbor cou-
pling K1 there is a third-nearest-neighbor coupling K3. This
model has been studied for example in Ref. [4]. Here we are
aiming at the elimination of both the leading contribution to
the spatial anisotropy and the leading correction to scaling.
This is achieved by tuning the ratio q3 = K3/K1 and the pa-
rameter D that controls the distribution of the spin at a given
site. For the precise definition of the reduced Hamiltonian, see
Sec. II. The values, where these corrections are eliminated, are
denoted by qiso

3 and D∗. It is conjectured and numerically con-
firmed that the spatial anisotropy depends little on D. Hence,
qiso

3 depends little on D. In contrast, the leading correction to
scaling depends on q3 and D in a similar strength.

In order to quantify the spatial anisotropy, we determine
the correlation length in three different spatial directions in
the high-temperature phase of the model. We tune q3 such
that these three correlation lengths are the same. For our final

estimate qiso
3 = 0.129(1), we determine D∗(q3 = 0.129) =

−0.380(5) by using a finite-size scaling analysis similar to
that of [10,13] and references therein. In addition, we obtain
accurate estimates of the fixed-point values of dimensionless
quantities and critical temperatures. Furthermore, the finite-
size scaling analysis provides accurate estimates of the critical
exponents ν and η.

In Table VI we compare these with selected results ob-
tained by using different methods. For a more complete
summary of theoretical results given in the literature, see
Tables 3, 4, 5, and 6 of Ref. [25] and the references given in
Table VI for more recent work. A summary of experimental
estimates is given in Table 7 of Ref. [25]. In general, we
find a good agreement of the results obtained by the different
methods. In the cases [32,48], where the estimates are slightly
out of the error bars, it is plausible that these were underes-
timated, rather than that there is a fundamental problem. In
Ref. [50] the Blume-Capel model at D = 0.655 at the criti-
cal point has been studied with slab geometry and Dirichlet
boundary conditions. From the behavior of the magnetization
as a function of the distance from the boundary the authors
obtain η = 0.036 284(16). One should note that, for example,
the uncertainty of D∗ and of the critical coupling Kc is not
taken into account in the error bar that is quoted. The results
of this study are fully consistent with those of the CB method.
Our error bars are by a factor of 12.5 and 20 larger than those
of the CB method for the exponents ν and η, respectively.
Nevertheless, one should regard this study as a valuable con-
sistency check since the approaches are complementary.

This study gives strong support to the fact that only the
breaking of the spatial isotropy by the lattice gives rise to
a scaling field associated with a correction exponent ≈2. In
particular, ω′ = 1.67(11) obtained by the scaling field method
[20] seems to be an artifact of the method. In addition to
these corrections, corrections that are intrinsic to the observ-
able need to be taken into account, for example, the analytic
background in the magnetic susceptibility.

In the model studied here, corrections to scaling are highly
suppressed. Compared with the standard Ising model on the
simple cubic lattice, the leading correction to isotropy is re-
duced by at least a factor of 180 and the leading correction to
scaling at least by a factor of 270. Still the model is relatively
simple to implement and can be efficiently simulated. Hence,
it might be the model of choice to study universal properties of
the Ising universality class, for example, interfacial properties,
boundary critical phenomena, or dynamics.

Unfortunately, the idea of this work can not be directly
adopted for O(N )-symmetric models with N > 1 as we dis-
cuss in Appendix B.
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APPENDIX A: RANDOM NUMBER GENERATORS

Motivated by the discussion, Ref. [51] and references
therein, on the reliability of the Mersenne Twister algorithm
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TABLE VI. Selected theoretical results for critical exponents for the three-dimensional Ising universality class taken from the literature. In
the first column we indicate the method that has been used. It follows the year of the publication and the reference. The most accurate results are
provided by the conformal bootstrap (CB) method. Next, we give results obtained by studies of lattice models, where either high-temperature
series expansions (HT) or Monte Carlo (MC) simulations are used. In some of the studies a number of different models have been studied. This
is indicated by “var.” In others, the study is either restricted to the Blume-Capel (BC) or the Ising model. Finally, we give two recent studies
using the ε expansion and the functional renormalization group (FRG) method.

Method Year Ref. ν η ω

CB 2016 [17,47] 0.6299709(40) 0.0362978(20) 0.82968(23)
HT, var 2002 [18] 0.63012(16) 0.03639(15) 0.825(50)
MC, var 2003 [32] 0.63020(12) 0.0368(2) 0.821(5)
MC, BC 2010 [29] 0.63002(10) 0.03627(10) 0.832(6)
MC, Ising 2018 [41] 0.629912(86) 0.03610(45)
MC, BC, iso 2021 This work 0.62998(5) 0.036284(40) 0.825(20)
ε exp. 2017 [48] 0.6292(5) 0.0362(6) 0.820(7)
FRG 2020 [49] 0.63012(16) 0.0361(11) 0.832(14)

[42] we performed some runs with other generators to check
the consistency of the results obtained by different generators.

In particular, we used the double precision version of
Lüscher’s RANLUX generator [46] at the highest luxury
level. Here we made use of Lüscher’s most recent implemen-
tation ranlux-3.4 taken from [52]. Note that there are a number
of alternative implementations. Just search the internet with
your favorite search engine.

Furthermore, we used a generator that is based on the KISS
generator proposed by Marsaglia. It combines three different
generators as

r = (r1 + r2 + r3) mod 264, (A1)

where r1, r2, r3 ∈ {0, 1, 2, . . . , 264 − 1} are generated by three
different, relatively simple generators. The rough idea of such
a combination is that the generators compensate each other’s
weaknesses. For a critical discussion of the KISS generator,
see Ref. [53]. Our starting point is the 64-bit implementation
given in the German version of [54].

Here, we replaced the generators r1 and r2 by ones
that are of better quality than those used in Marsaglia’s
original generator. For r1 we used xoshiro256+ taken
from [55]. For a discussion of the generator see [56].
As second generator we used a 96-bit linear congruen-
tial generator with the multiplier and the increment a =
c =0xc580cadd754f7336d2eaa27d and the modulus m =
296 suggested by O’Neill [57]. In this case we used
our own implementation. In Eq. (A1) we use the upper
64 bits.

Note that in the context of our simulations, the importance
of the quality of the random bits is decreasing from high to
low since the random numbers, normalized to the interval
[0,1), are used for comparisons with double-precision floating
point numbers. It is plausible that both the generators r1 and
r2 would do the job on their own, which we, however, did not
check here. We performed a few basic tests of the combined
generator. In particular, we did run the big crush test [58]
several times, with different initializations of the generator,
on the upper, the middle, and lower 32 bits of the generator.
These tests were passed.

The choice of the particular generator discussed here is
essentially ad hoc and unfortunately not based on deep insight.

While we are confident that the generator is a good choice for
our purpose, we do not recommend it for general use since
there are certainly better tested and motivated generators that
consume less CPU time.

For D = −0.38 we have simulated the lattice sizes L = 12
and 120 close to criticality with roughly equal statistics using
the three choices of the random number generator. We get
consistent results for the three different choices.

The bulk of the simulations have been performed either
by using the SFMT or the modified KISS generator. Which
generator was used is essentially determined by the history
of our simulations. At a certain stage we switched from the
SFMT to the modified KISS generator. As a result, the sim-
ulations for D = −0.3, −0.35, −0.4, were mainly performed
by using the SFMT generator, while those for D = −42 and
−0.46 were mainly performed by using the modified KISS
generator. In the case of D = −0.38 both generators have
been used on roughly the same footing. The fact that fits that
include both sets of simulations give reasonable p values gives
us further assurance that there is nothing terribly wrong with
the generators that we have used.

To give the reader an impression on the relative perfor-
mance of the generators we give the CPU time needed on one
core of an Intel(R) Xeon(R) CPU E3-1225 v3 for one update
and measurement cycle for L = 32. The program has been
compiled with the gcc version 9.3.0 and the −O2 optimization.
We need 0.00198 s, 0.00197 s, 0.00228 s, and 0.00307 s using
the SFMT, the xoshiro256+, the modified KISS, and the
RANLUX generator, respectively. Note that for one sweep
with the local update we need exactly L3 = 32 768 random
numbers. For the cluster algorithms on average about 77 200
random numbers are used in one cycle with L/4 = 8 single
cluster and one wall-cluster update. In a simple program that
only calls the random number generator, the xoshiro256+
and the modified KISS, for example, take 8 × 10−10 and
2 × 10−9 seconds per call, respectively. The difference be-
tween these numbers does not fully explain the difference in
the timings for the whole measurement and update cycle given
above. This might be explained by the fact that the random
number generator is inlined in the code, and the result of the
optimization performed by the compiler depends much on the
code that is inlined.
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APPENDIX B: THREE-DIMENSIONAL XY MODEL WITH
NEXT-TO-NEXT-TO-NEAREST-NEIGHBOR COUPLINGS

We performed a preliminary finite-size scaling study of the
XY model on the simple cubic lattice with next-to-next-to-
nearest-neighbor couplings in addition to the nearest-neighbor
one. The reduced Hamiltonian is given by

H = −K1

∑
〈xy〉

�sx�sy − K3

∑
[xy]

�sx�sy, (B1)

where �sx is a unit vector with two real components. Otherwise,
the notation is the same as in Sec.. II. The simulations were
actually performed prior to the study discussed in the main
part of this paper. Therefore, the setup slightly differs from
that of the main part of this paper. In particular, we varied K1,
while keeping K3 fixed. For K3 = 0.03 and 0.05 we simulated
the linear lattices L = 8, 10, 12, ..., 20. For K3 = 0.04, we sim-
ulated L = 6, 7, 8, ..., 20, 22, 24, ..., 30, 34, 40, 50, ..., 80. We
performed 3 × 109 measurements for L � 20. In the case of
K3 = 0.04, the number of measurements is decreasing, going
to larger lattice sizes. For L = 80, 5.5 × 108 measurements
were performed. We simulated at good estimates of the critical
coupling K1,c. These estimates were iteratively improved with
increasing lattice size. Making use of (Za/Zp)∗ = 0.320 37(6)

for the three-dimensional XY universality class [10], we get
K1,c = 0.393 164 7(10), 0.373 600 5(2), and 0.354 428 2(10),
for K3 = 0.03, 0.04, and 0.05, respectively.

Next, we analyzed U4 at (Za/Zp)∗ = 0.320 37 by using the
Ansatz

Ū4 = Ū ∗
4 + b̄(K3)L−ω + c̄(K3)L−2+η, (B2)

using the estimates U ∗
4 = 1.242 96(8) and ω = 0.789(4) for

the three-dimensional XY universality class [10]. For ω =
0.789 fixed, we arrive at b̄ = −0.031(2), −0.0045(15), and
0.021(2) for K3 = 0.03, 0.04, and 0.05, respectively. The error
of b̄ is dominated by the uncertainty of U ∗

4 that we used as
input. Linearly interpolating, we arrive at q∗

3 = 0.113(2). In
the large-N limit, where N counts the number of components
of the spin �sx, qiso

3,N=∞ = qiso
3,free = 0.125. Therefore, it is plau-

sible that 0.125 < qiso
3,XY < qiso

3,Ising, meaning that qiso
3 > q∗

3 for
the XY model. Hence, following the argument of Sec. II, we
can not find a model similar to Eq. (1), where both the leading
correction to scaling and the leading violation of isotropy are
eliminated. Still the XY model at q∗

3 might be useful since the
spatial anisotropy should be considerably reduced compared
with q3 = 0.
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