
PHYSICAL REVIEW B 104, 014416 (2021)

Symmetry-induced universal momentum-transfer dependencies for inelastic
neutron scattering on anisotropic spin clusters

Shadan Ghassemi Tabrizi *

Technische Universität Berlin, Institut für Chemie, Theoretische Chemie, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany

(Received 12 May 2021; revised 25 June 2021; accepted 1 July 2021; published 14 July 2021)

Inelastic neutron scattering (INS) is a key method for studying magnetic excitations in spin systems, including
molecular spin clusters. The method has significantly advanced in recent years and now permits us to probe the
scattering intensity as a function of the energy transfer and the momentum-transfer vector Q. It was recently
shown that high molecular symmetry facilitates the analysis of spectra. Point-group symmetry imposes selection
rules in isotropic as well as anisotropic spin models. Furthermore, the Q dependence of the INS intensity may
be completely determined by the point-group symmetry of the states involved in a transition, thereby affording
a clear separation of dynamics (energies, transition strengths) and geometrical features (Q dependencies). This
paper addresses this issue for anisotropic spin models. We identify several cases where the Q dependence is
completely fixed by the point-group symmetry. For six- and eight-membered planar spin rings and two polyhedra
(the cube and the icosahedron), we tabulate and plot the corresponding powder-averaged universal intensity
functions. The outlined formalism straightforwardly applies to other highly symmetric systems and should be
useful for future analyses of INS spectra by focusing on those features that contain information on either spin
dynamics or the point-group symmetry of states.
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I. INTRODUCTION

The interest in exchange-coupled spin clusters has hugely
expanded over the last decades [1–3] because the intriguing
properties of magnetic molecules could become a central
ingredient for future technology [4–13]. Inelastic neutron
scattering (INS) was established early on as a technique
for the determination of exchange interactions in small spin
clusters with unrivalled accuracy [14–16]. The increasing
sensitivity and resolution that can be achieved with mod-
ern spectrometers and detectors has more recently allowed
researchers in the field to quantify a larger range of micro-
scopic interactions in terms of spin-Hamiltonian parameters,
including local zero-field splitting or anisotropic exchange
(see Refs. [17–19] for reviews). Except for Ref. [20], experi-
ments were restricted to powder probes, where the scattering
intensity can be recorded as a function of the energy transfer
(E) and the magnitude of momentum transfer (Q). Significant
recent progress in different fields (not least instrumentation)
now allows us to conduct experiments on single crystals
to measure E and the three-dimensional (3D) momentum-
transfer vector Q in what is known as four-dimensional (4D)
INS [19]. This technique is gaining importance, as it pro-
vides unique insights into the physics of diverse spin clusters
[19,21–25]. Although it was argued that the powder-averaged
intensity in principle contains all relevant information (with
respect to pure magnetic scattering), in practice, 4D-INS spec-
tra facilitate the extraction of such information [26].
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When molecular spin clusters comprise many centers,
extensive spectral fittings based on exact spin-Hamiltonian
eigenstates are prohibited, and a search for simplifications
in the theoretical modeling is worthwhile. An exploitation
of symmetry indeed offers significant potential in this re-
spect (beyond the symmetry adaptation of basis states to
facilitate exact diagonalization [27–30]). First, spin symme-
try is approximately valid in many first-row transition-metal
complexes [1], leading to �S = 0,±1 INS selection rules.
Additional selection rules result from point-group symmetry
in isotropic models [31], where point-group symmetry mani-
fests as spin-permutational symmetry (SPS) [27]; in specific
cases, complete permutational symmetry within a subset of
sites leads to further restrictions on INS transitions [32–35].
Secondly, it was found that the Q dependence is completely
fixed by the “relative” symmetry of the levels involved in a
transition in symmetric spin rings [36]. This idea was recently
generalized and applied to a larger class of systems [31].

It is necessary to step beyond spin symmetry when ex-
plicitly considering magnetic anisotropy, which has become
a focus of interest in molecular magnetism and is amenable to
different spectroscopic methods, including INS. Anisotropic
interactions (whose physical origin is usually spin-orbit cou-
pling) mix spin states and thereby lift spin-selection rules.
SPS is broken too, unless one considers a model with ar-
tificially high symmetry, e.g., one that conserves Ŝz [27].
However, combinations of global spin rotations and permuta-
tions corresponding to the real-space molecular point group
leave the general anisotropic (zero field) Hamiltonian in-
variant [37–39]. INS selection rules may result from this
rotational-permutational symmetry [31]. The main objective
of this paper is to show how Q dependencies can be fixed
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by symmetry in anisotropic spin clusters, such that specific
Q-dependent functions describe all transitions of a definite
type. We identify universal Q dependencies in spin rings and
polyhedra and tabulate and plot powder-averaged intensity
functions for planar rings with six or eight centers, and for
the cube and the icosahedron. For a transition associated with
a universal Q-dependent function, information on spin dy-
namics is exclusively contained in the energy transfer and the
transition strength, while the momentum-transfer dependence
(for single crystals or powders) contains only information on
the relative point-group symmetry species of the two levels.

II. THEORY

Usually, isotropic exchange of Heisenberg type represents
the leading contribution to the spin Hamiltonian of a multinu-
clear spin cluster [1]:

Ĥ (0) =
∑
i< j

Ji j ŝi · ŝ j, (1)

where symmetry-equivalent pairs have the same coupling con-
stant Ji j . An anisotropic spin Hamiltonian that is in accord
with the molecular point group can be constructed by consid-
ering symmetric anisotropic coupling:

Ĥ (1) =
∑
i< j

ŝi · Di j · ŝ j . (2)

Here, Di j is a traceless rank-two tensor:

Di j = Di j
(
ni jnT

i j − 1
3 1

)
, (3)

where ni j = Ri j/|Ri j | points from site i to site j, and the
coupling constant Di j is the same for equivalent pairs. In cer-
tain cases, Ĥ (0) + Ĥ (1) displays an artificially high symmetry
compared with the molecular point group. Then the symmetry
group of the spin Hamiltonian can be lowered by introducing
local zero-field splitting terms ŝi · Di · ŝi (for si > 1

2 ), anti-
symmetric exchange di j · ŝi × ŝ j , or by considering rhombic
(as opposed to axial) Di j tensors. As a result, the symmetry
group of the spin Hamiltonian will become isomorphic to
the molecular point group. (Note that the respective double
group must be considered for systems with an odd electron
number [38].) For the systems studied in this paper, antisym-
metric exchange is either excluded on account of point-group
symmetry (cube, icosahedron, cf. the Moriya rules [1,40]) or
not needed to avoid an artificially high symmetry of the spin
Hamiltonian (planar spin rings). As our focus is on universal
Q dependencies, a choice of specific values for Ji j or Di j is of
no concern.

Spin symmetry and SPS overall lead to a point-group
classification of spin multiplets [27,41], meaning that a total
spin-quantum number S and a point-group species � can be at-
tached to each group of degenerate eigenstates of the isotropic
spin Hamiltonian (some additional group-theoretical aspects
related to molecular spin clusters are discussed in Ref. [41]
and references cited therein). As mentioned above, these two
symmetries are separately broken by general anisotropic inter-
actions, but combinations of SPS operations with appropriate
spin rotations remain intact. INS selection rules are identified
based on a symmetry classification of eigenstates and transi-
tion operators, where the latter are spanned by the set of local
spin operators {ŝi} [31]. Waldmann [36] has addressed uni-
versal Q dependencies in spin rings with uniaxial anisotropy
(conserving Ŝz and SPS symmetry). In the following, we shall
elucidate how universal Q dependencies arise more generally
for anisotropic spin models that break Ŝz and SPS symmetry.

In the differential neutron-scattering cross-section [36,42],

d2σ

d�dω
= γ e2

mec2

k′

k
e−2W (Q,T )

×
∑
n,m

e−En/kT

q(T )
Inm(Q)δ

(
ω − Em − En

h̄

)
, (4)

where � denotes the solid angle, h̄ω is the energy trans-
fer, Q = k − k′ is the scattering vector, e−2W (Q,T ) and
e−En/kT /q(T ) are the Debye-Waller factor and the Boltzmann
factor, respectively, and all other symbols have their usual
meaning. Here, Inm(Q) is defined as

Inm(Q) =
∑
i, j

F ∗
i (Q)Fj (Q)eiQ·(Ri−R j )

×
∑
α,β

(
δαβ − QαQβ

Q2

)
〈n|ŝiα|m〉〈m|ŝ jβ |n〉, (5)

where α, β = x, y, z, Ri is the position vector of the ith spin
center (the sums over i and j run over all N sites), and |n〉 and
|m〉 are energy eigenstates. In defining the quantity Lmn(Q) =
|F (Q)|2Inm(Q), we assume a uniform form factor F (Q) for
all ions. The focus will be on Lmn(Q), which defines the Q
dependence (we ignore form factors, which are known with
good accuracy for many ion types).

The spherical integral relevant for powder samples

L̄nm(Q) ≡
∫

Lnm(Q)

4π
d�, (6)

was solved based on tensor-operator techniques [36] and later
translated to a readily usable Cartesian formulation, which for
convenience is quoted from the work of Caciuffo et al. [43]:

L̄nm(Q) =
∑
i, j

{
2

3

[
j0(QRi j ) + C2

0 j2(QRi j )
]
s̃iz s̃ jz + 2

3

[
j0(QRi j ) − 1

2
C2

0 j2(QRi j )

]
(s̃ix s̃ jx + s̃iys̃ jy)

+ 1

2
j2(QRi j )

[
C2

2 (s̃ix s̃ jx − s̃iys̃ jy) + C2
−2(s̃ix s̃ jy + s̃iys̃ jx )

]+ j2(QRi j )
[
C2

1 (s̃iz s̃ jx + s̃ix s̃ jz ) + C2
−1(s̃iz s̃ jy + s̃iys̃ jz )

]}
,

(7)
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(a) (b)

(c) (d)

FIG. 1. Systems studied in this paper: (a) regular hexagon, (b)
octagon, (c) cube, and (d) icosahedron. Each sphere marks a spin
site. These pictures were generated with the PYMOL software.

where

C2
0 = 1

2

[
3(R̂i j )

2
z − 1

]
C2

2 = (R̂i j )
2
x − (R̂i j )

2
y

C2
−2 = 2(R̂i j )x(R̂i j )y

C2
1 = (R̂i j )x(R̂i j )z

C2
−1 = (R̂i j )y(R̂i j )z. (8)

The unit vector R̂i j ≡ Ri j/|Ri j | has Cartesian components
(R̂i j )α , where α = x, y, z. The ordered product s̃αi s̃β j is de-
fined as

s̃iα s̃ jβ ≡ 〈n|ŝiα|m〉〈m|ŝ jβ |n〉. (9)

Equation (7) involves spherical Bessel functions j0(x) and
j2(x):

j0(x) = sin(x)

x
, j2(x) =

(
3

x2
− 1

)
sin(x)

x
− 3 cos(x)

x2
.

(10)

For deriving universal Q dependencies, we suppose that a
transition takes place between levels that transform according
to irreducible representations �n and �m of the anisotropic
point group, where �n = �m is permitted. If levels comprise
multiple states (for multidimensional �n or �m), intensities
are summed over all combinations of initial and final states
(that is, we sum over components kn and km of �n and �m, re-
spectively), yielding L�n�m (Q). Under combined permutations
and rotations, the N site-spin operators {ŝi} span �(3N ). The
decomposition of �(3N ) in terms of irreducible representations
is formally like a symmetry classification of the translational,
rotational, and vibrational modes [31] (the difference is that
the position vectors {R̂i} of the magnetic ions are permuted,
rotated, and inverted by improper rotations, whereas the {ŝi}
are only permuted and rotated).

The derivation of universal Q dependencies proceeds in
close analogy to the isotropic case [31]. We assume that �(3N )

contains exactly one irreducible representation �l such that
�∗

n ⊗ �l ⊗ �m contains the totally symmetric �1, and further
assume that �l occurs exactly one time in �(3N ). The uni-
tary v mediates the transformation to the symmetry-adapted
basis:

T̂�qkq =
∑

iγ

v�qkq,iγ ŝiγ , (11)

where �qkq is a compound index (�qkq = 1, 2, ..., 3N ), which
can include a specific irreducible representation multiple
times; i is a site index; and γ = x, y, z. The reverse transfor-
mation is given as

ŝiγ =
∑
�qkq

v∗
�qkq,iγ T̂�qkq . (12)

TABLE I. Decompositions of �(3N ) spanned by {ŝi} in the anisotropic systems considered in this paper.a Mulliken symmetry labels follow
Ref. [44]. In the last column, the Hilbert-space decompositions for the respective s = 1

2 systems are provided (for reference only).

System N Group �(3N ) �(s = 1
2 )

Ring 6 D6h

A1u ⊕ A2g ⊕ A2u ⊕ B1g

⊕ B2g ⊕ B2u ⊕ 2E1g

⊕ E1u ⊕ E2g ⊕ 2E2u

A1g ⊕ 2A1u ⊕ 5A2g ⊕ 2A2u

⊕ 4B1g ⊕ 5B2g ⊕ 4B2g ⊕ B2u

⊕ 6E1g ⊕ 5E1u ⊕ 5E2g ⊕ 4E2u

Ring 8 D8h

A1u ⊕ A2g ⊕ A2u ⊕ B1g ⊕ B1u

⊕ B2u ⊕ 2E1g ⊕ E1u ⊕ E2g

⊕ 2E2u ⊕ 2E3g ⊕ E3u

13A1g ⊕ 8A1u ⊕ 5A2g ⊕ 8A2u

⊕ 14B1g ⊕ 8B1u ⊕ 6B2g ⊕ 8B2u

⊕ 16E1g ⊕ 14E1u ⊕ 17E2g ⊕ 16E2u

⊕ 16E3g ⊕ 14E3u

Cube 8 Oh
A1u ⊕ A2g ⊕ Eg ⊕ Eu ⊕ 2T1g

⊕ T1u ⊕ T2g ⊕ 2T2u

11A1g ⊕ 8A1u ⊕ 5A2g ⊕ 4A2u

⊕ 15Eg ⊕ 9Eu ⊕ 14T1g

⊕ 13T1u ⊕ 16T2g ⊕ 17T2u

Icosahedron 12 Ih
Au ⊕ 2T1g ⊕ T1u ⊕ T2g ⊕ Fg

⊕ Fu ⊕ Hg ⊕ 2Hu

47Ag ⊕ 45Au ⊕ 98T1g

⊕ 94T1u ⊕ 95T2g ⊕ 93T2u

⊕ 141Fg ⊕ 135Fu

⊕ 178Hg ⊕ 174Hu

aExcept for the N = 8 ring, the �(3N ) decompositions were already reported in Ref. [31].

014416-3



SHADAN GHASSEMI TABRIZI PHYSICAL REVIEW B 104, 014416 (2021)

TABLE II. Symmetry labels �l specifying K�l (Q) functions for INS transitions �n → �m in the anisotropic D6h spin ring.a

A1g A1u A2g A2u B1g B1u B2g B2u E1g E1u E2g E2u

A1g 0 A1u A2g A2u B1g 0 B2g B2u N/A E1u E2g N/A
A1u A1u 0 A2u A2g 0 B1g B2u B2g E1u N/A N/A E2g

A2g A2g A2u 0 A1u B2g B2u B1g 0 N/A E1u E2g N/A
A2u A2u A2g A1u 0 B2u B2g 0 B1g E1u N/A N/A E2g

B1g B1g 0 B2g B2u 0 A1u A2g A2u E2g N/A N/A E1u

B1u 0 B1g B2u B2g A1u 0 A2u A2g N/A E2g E1u N/A
B2g B2g B2u B1g 0 A2g A2u 0 A1u E2g N/A N/A E1u

B2u B2u B2g 0 B1g A2u A2g A1u 0 N/A E2g E1u N/A
E1g N/A E1u N/A E1u E2g N/A E2g N/A N/A N/A N/A N/A
E1u E1u N/A E1u N/A N/A E2g N/A E2g N/A N/A N/A N/A
E2g E2g N/A E2g N/A N/A E1u N/A E1u N/A N/A N/A N/A
E2u N/A E2g N/A E2g E1u N/A E1u N/A N/A N/A N/A N/A

aThe point-group labels �n and �m of the two levels are given in boldface in the first row and first column. The �l are given in the bulk of the
table. Forbidden transitions have entry 0, whereas N/A marks transitions which do not have a universal Q dependence. The table is symmetric
about the diagonal.

Then as transitions can be mediated only by T̂�l kl transition
operators, when working in the standard convention for (com-
plex unitary) representation matrices [44], we overall obtain
(see Ref. [31] for further details)

L�n�m (Q) = 〈�n ‖T̂�l ‖�m〉 〈�m ‖T̂�l ‖�n〉

×
∑
i, j

eiQ·(Ri−R j )
∑
α,β

(
δαβ − QαQβ

Q2

)

×
∑

kl

v∗
�l kl ,iαv�l kl , jβ, (13)

where 〈�n‖T̂�l ‖�m〉 is a point-group reduced matrix element
(RME) [44,45], which is left undefined up to an irrelevant
constant factor. (Equation (13) assumes that �∗

n ⊗ �m contains
�l exactly once. In the icosahedral group, �∗

n ⊗ �m can con-
tain a specific �l twice [44], but universal Q dependencies
in the icosahedron, dodecahedron, or icosidodecahedron, and
most likely also in all larger icosahedral polyhedra, do not oc-
cur between two levels that both belong to multidimensional
representations, cf. our results for the icosahedron presented
below.) In Eq. (13), note the single complex-conjugation sign

TABLE III. Coefficients c and d [c�l
t and d�l

t in Eq. (15)] defining
K̄�1 (Q) functions for the anisotropic D6h spin ring. Sites are num-
bered consecutively around the ring.a

A1u A2g A2u B1g B2g B2u E1u E2g

(1,1) c 4 2 4 4 4 2 2 2
(1,2) c 4 4 4 −4 −4 −4 2 −2

d −5 −2 7 5 −7 2 −1 1
(1,3) c −4 4 −4 −4 −4 4 −2 −2

d −7 −2 5 −7 5 −2 1 1
(1,4) c −4 2 −4 4 4 −2 −2 2

d −4 −1 2 4 −2 1 1 −1

aOne representative site pair (i, j) for each group t of symmetry-
equivalent pairs is given in the first column. The �l label is specified
in the first row.

(b)

(c)

(a)

(f)

(g)

(e)

(d) (h)

FIG. 2. Universal powder-averaged functions K̄�l (Q) (in arbi-
trary units, with maximal intensities normalized to 1; symmetry
labels �l are specified in the plots) in the anisotropic D6h spin ring.
Magnetic ions have a nearest-neighbor distance of 3 Å and lie in the
xy plane. Transition operators are drawn in terms of vectors attached
to the spin centers. They are either (a)–(e) confined to the plane or
(f)–(h) parallel to the z axis. (f)–(h) Vectors pointing in the positive
or negative z direction are shown as blue circles, or red circles with
crosses, respectively. For (g) E1u and (h) E2g, vectors marked by large
circles have twice the length of vectors marked by small circles.
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TABLE IV. Symmetry labels �l specifying K�l (Q) functions for INS transitions �n → �m in the anisotropic D8h spin ring. For further
details, see footnote to Table II.

A1g A1u A2g A2u B1g B1u B2g B2u E1g E1u E2g E2u E3g E3u

A1g 0 A1u A2g A2u B1g B1u 0 B2u N/A E1u E2g N/A N/A E3u

A1u A1u 0 A2u A2g B1u B1g B2u 0 E1u N/A N/A E2g E3u N/A
A2g A2g A2u 0 A1u 0 B2u B1g B1u N/A E1u E2g N/A N/A E3u

A2u A2u A2g A1u 0 B2u 0 B1u B1g E1u N/A N/A E2g E3u N/A
B1g B1g B1u 0 B2u 0 A1u A2g A2u N/A E3u E2g N/A N/A E1u

B1u B1u B1g B2u 0 A1u 0 A2u A2g E3u N/A N/A E2g E1u N/A
B2g 0 B2u B1g B1u A2g A2u 0 A1u N/A E3u E2g N/A N/A E1u

B2u B2u 0 B1u B1g A2u A2g A1u 0 E3u N/A N/A E2g E1u N/A
E1g N/A E1u N/A E1u N/A E3u N/A E3u N/A N/A N/A N/A N/A N/A
E1u E1u N/A E1u N/A E3u N/A E3u N/A N/A N/A N/A N/A N/A N/A
E2g E2g N/A E2g N/A E2g N/A E2g N/A N/A N/A N/A N/A N/A N/A
E2u N/A E2g N/A E2g N/A E2g N/A E2g N/A N/A N/A N/A N/A N/A
E3g N/A E3u N/A E3u N/A E1u N/A E1u N/A N/A N/A N/A N/A N/A
E3u E3u N/A E3u N/A E1u N/A E1u N/A N/A N/A N/A N/A N/A N/A

in v∗
�l kl ,iα

v�l kl , jβ . The Q-dependent part of Eq. (13) is K�l (Q),

K�l (Q) =
∑
i, j

eiQ·(Ri−R j )
∑
α,β

(
δαβ − QαQβ

Q2

)

×
∑

kl

v∗
�l kl ,iαv�l kl , jβ. (14)

Here, K�l (Q) is obviously independent of the spin dynamics,
which is contained in the RMEs. With an analytic represen-
tation of the v�l kl vectors available (generated by the usual
projection-operator formalism [46,47]), the K�l (Q) functions
can be tabulated. However, as the polarization factor δαβ −
QαQβ/Q2 is still present in Eq. (14), the K�l (Q) functions
take a less compact form than for unpolarized transitions in
isotropic systems (such functions were listed in Ref. [31]).
One could still tabulate the contributions of different pair
types in a local coordinate system. For brevity, we do not
pursue such an approach, but instead report the far more
compact expressions for powder averages K̄�l (Q). These are
obtained by replacing the Cartesian local spin operators in
Eq. (7) by their component along �l kl (that is, s̃αi s̃β j in Eq. (7)
is replaced by v∗

�l kl ,iα
v�l kl , jβ) and by summing over kl .

III. RESULTS AND DISCUSSION

We found that several types of transitions in anisotropic
spin rings and small polyhedra are characterized by universal
K�l (Q) functions. As examples, we chose planar six- and
eight-membered rings, as well as the cube and the icosahe-
dron. These systems are illustrated in Fig. 1. As we comment
below, a certain number of K�l (Q) functions exist also in
nonplanar even-membered spin rings and in other polyhedra
(e.g., the tetrahedron, octahedron, cuboctahedron, or dodeca-
hedron).

As explained in the Theory section, a transition type �n →
�m is associated with a definite K�l (Q) if �(3N ) contains ex-
actly one �l a single time, such that �∗

n ⊗ �l ⊗ �m contains
�1. Thus, only the direct-product table for a given point group
[44] and the symmetry decomposition of �(3N ) are needed to
determine if �n → �m has a definite K�l (Q). Decompositions
of �(3N ) are collected in Table I. For the sake of reference,
Table I also includes the state-space decomposition for the
respective s = 1

2 systems (but keep in mind that all our results
are valid for arbitrary s).

The combined spin permutations and global spin rota-
tions that generate the D6h symmetry group were detailed
in Ref. [31]. We note in passing that a Zeeman term would
lower the symmetry according to D6h → Ci for an arbitrary

TABLE V. Coefficients c and d defining K̄�1 (Q) functions for the anisotropic D8h spin ring. For further details, see footnote to Table III.

A1u A2g A2u B1g B1u B2u E1u E2g E3u

(1,1) c 4 2 4 2 4 4 4 2 4
(1,2) c 4

√
2 4 4

√
2 −4 −4

√
2 −4

√
2 4

√
2 0 −4

√
2

d
√

2−6 −2
√

2 + 6 2 −√
2−6 −√

2 + 6 −2
√

2 0 2
√

2
(1,3) c 0 4 0 4 0 0 0 −4 0

d −6 −2 6 −2 6 −6 0 2 0
(1,4) c −4

√
2 4 −4

√
2 −4 4

√
2 4

√
2 −4

√
2 0 4

√
2

d −√
2−6 −2 −√

2 + 6 2
√

2−6
√

2 + 6 2
√

2 0 −2
√

2
(1,5) c −4 2 −4 2 −4 −4 −4 2 −4

d −4 −1 2 −1 2 −4 2 −1 2
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(b)

(c)

(a)

(e)

(f)

(d)

(h)

(i)

(g)

FIG. 3. Universal K̄�l (Q) functions and transition operators in the anisotropic D8h spin ring. For further details, see caption to Fig. 2. For
(g) E1u and (i) E3u, vectors marked by large circles have a length which is larger by a factor of

√
2 than vectors marked by small circles.

orientation of the magnetic field, where Ci is a pure spin
permutation that corresponds to an inversion at the ring center.
A higher unitary symmetry (and additionally magnetic sym-
metry [46]) is maintained when the magnetic field is oriented
along a symmetry axis or perpendicular to a symmetry plane,
e.g., D6h → C6h when the magnetic field is oriented along the
C6 axis.

Table II lists the �l species defining K�l (Q) for all �n →
�m in the D6h ring. Some transitions are not characterized by
a universal Q dependence because �n and �m are coupled by
multiple transition operators, or transitions have zero intensity
because the set {ŝi} does not span A1g or B1u.

As remarked, the single-crystal K�l (Q) functions cannot be
given in a particularly compact form, and we instead tabulate
powder averages K̄�l (Q). Each K̄�l (Q) is an expansion in
j0(Qrt ) and j2(Qrt ):

K̄�l (Q) =
∑

t

[
c�l

t j0(Qrt ) + d�l
t j2(Qrt )

]
, (15)

where the sum runs over all pairs t that are not equivalent by
symmetry, and rt is the Cartesian distance between two ions
forming a pair. The expansion coefficients c�l

t and d�l
t (in the

following, these are simply denoted by c and d , respectively)
and one representative pair defining each group t are collected
in Table III. We formally count (1,1) as a pair, with rt = 0
and d�l

t = 0 (the vanishing d coefficients for this pair are not
explicitly included in Table III or any of the following tables).

As a concrete example for constructing K̄�l (Q) functions
from Table III, we explicitly write out K̄A1u (Q):

K̄A1u (Q) = 4 + 4 j0(QR12) − 5 j2(QR12) − 4 j0(QR13)

− 7 j2(QR13) − 4 j0(QR14) − 4 j2(QR14). (16)

The coefficients in Table III (and following tables) are
provided in the simplest possible form. That is, each result
from an evaluation of Eq. (7) (which is here implied to include
a summation over all components of multidimensional repre-
sentations, see Theory section) was multiplied by a specific
factor to avoid fractions in c and d . Consequently, these coef-
ficient sets do not in general reflect the relative intensities for
transitions that originate in the first order from the same spin
multiplet [when sublevels merge into a single spin multiplet,
the d contributions must vanish, so that K̄ (Q) becomes an
expansion in j0(Qrt ) only]. It is a straightforward exercise
in group theory to determine anisotropy-induced symmetry
decompositions of spin multiplets with definite SPS (physi-
cally speaking, this could be loosely regarded as a combined
crystal-field and spin-orbit splitting), but this issue is of no
immediate concern here; a few examples can be found in
Refs. [39,48,49].

The sum of c coefficients
∑

t c�l
t is nonzero for K̄A2g (Q)

only, where the A2g transition operator is Ŝz and K̄A2g (Q) has
its global maximum at Q = 0. All the other K̄�l (Q) vanish at
Q = 0. The universal K̄�l (Q) functions for the D6h spin ring
are plotted in Fig. 2. In Fig. 2, we also illustrate the transition

014416-6
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TABLE VI. Oh symmetry labels �l defining K�l (Q) functions for
INS transitions �n → �m in the anisotropic spin cube. For further
explanations, see the footnote to Table II.a

A1g A2g Eg T1g T2g A1u A2u Eu T1u T2u

A1g 0 A2g Eg N/A T2g A1u 0 Eu T1u N/A
A2g A2g 0 Eg T2g N/A 0 A1u Eu N/A T1u

A1u A1u 0 Eu T1u N/A 0 A2g Eg N/A T2g

A2u 0 A1u Eu N/A T1u A2g 0 Eg T2g N/A

aOnly pairs with at least one 1D level (A1g, A2g, A1u or A2u) are
included because all the other entries would be N/A.

operators in terms of the sets of N 3D vectors defined by v�l kl

[cf. Eq. (11)]. To thus draw the transition operators as vectors
attached to individual spin sites, the complex components of
v�l kl were eliminated through appropriate unitary transforma-
tions on the components of multidimensional representations
(E1u or E2g in this example).

While the curves shown in Fig. 2 were computed by eval-
uating the analytical representations of the K̄�l (Q) functions,
we checked that the same curves are obtained in a numerical
evaluation of the spherical integral (Eq. (6); Lebedev-Laikov
grids [50] were used) based on exact eigenstates of the s = 1

2
spin Hamiltonian with nearest-neighbor isotropic and sym-
metric anisotropic interactions. The basis was adapted to D6h

symmetry, and exact energy spectra were compared against
results from calculations that did not employ symmetry. Re-
sults for the other systems discussed below were similarly
verified.

Turning to the D8h ring, the �l species are collected as a
function of �n → �m in Table IV, and the c and d coefficients
defining K̄�l (Q) functions are given in Table V. Here, K̄�l (Q)
plots and the corresponding transition operators are finally
shown in Fig. 3.

The basic features observed in the D6h and D8h systems
are generally valid in DNh for larger N (with N even). That
is, transitions between two nondegenerate levels are either
forbidden or have a universal K�l (Q) because each one-
dimensional (1D) representation occurs at most one time
in �(3N ). Although a remarkable variety of symmetric spin
rings (particularly those with even N) were already studied
by INS (a nonexhaustive list for N = 8, 10, 18 is included
in Refs. [21,51–58]), to the best of our knowledge, none of
these molecules had DNh symmetry. One could then ask if

TABLE VII. Coefficients c and d defining K̄�1 (Q) functions for
the anisotropic Oh spin cube. For further details, see footnote to
Table III.

A1u A2g Eg Eu T1u T2g

(1,1) c 2 2 4 4 4 4
(1,2) c 2 −2 −4 4 4 −4

d −4 4 8 −8 4 −4
(1,3) c −2 −2 −4 −4 −4 −4

d −5 −5 −1 −1 5 5
(1,4) c −2 2 4 −4 −4 4

d −2 2 −2 2 2 −2

(a) (b)

FIG. 4. Schlegel diagrams for (a) the cube and (b) the icosa-
hedron, including a numbering of sites forming distinct pairs with
site 1.

any universal Q dependencies still occur in the more common
group DN (which lacks the inversion center). Indeed, in D6,
A1 and B1 occur only once in �(3N ), and in D8, this applies
to A1 and B2, with analogous relations for larger N (with N
even). Thus, two distinct universal Q-dependent functions still
occur in anisotropic DN spin rings. The K̄�l (Q) functions are
the same as in the DNh systems (assuming that the nearest-
neighbor distance is the same). That is, K̄A1 (Q) and K̄B1 (Q)
in the D6 ring are the same as K̄A1u (Q) and K̄B1g (Q) in D6h,
respectively, etc.

As a brief comment on odd-membered spin rings, we con-
sider the D5h system, where

�(15) = A′′
1 ⊕ A′

2 ⊕ A′′
2 ⊕ E′

1 ⊕ 2E′′
1 ⊕ E′

2 ⊕ 2E′′
2 . (17)

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 5. Universal K̄�l (Q) functions and transition operators in
the anisotropic spin cube. For further details, see caption to Fig. 2. In
the A1u transition operator, all vectors are directed radially outward,
while the vectors alternately point inward and outward in the A2g

operator. The multidimensional transition operators are slightly more
complicated.
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TABLE VIII. Ih symmetry labels �l specifying K�l (Q) functions
for INS transitions �n → �m in the anisotropic spin icosahedron. For
further explanations, see the footnote to Table II.a

Ag T1g T2g Fg Hg Au T1u T2u Fu Hu

Ag 0 N/A T2g Fg Hg Au T1u 0 Fu N/A
Au Au T1u 0 Fu N/A 0 N/A T2g Fg Hg

aOnly pairs with at least one 1D level (Ag or Au) are included because
all the other entries would be N/A.

Eigenstates of the spin Hamiltonian transform as fermionic
representations (E1/2, E3/2, E5/2, E7/2, and E9/2, in the no-
tation of Ref. [44]) of the double group D∗

5h [38]. The
direct-product table for such representations [44] shows that
there is no combination �n → �m such that the above-given
conditions for a universal Q dependence are fulfilled. This
appears to be the case for all odd-membered spin rings, but
no proof shall be attempted here.

We now turn to the spin cube. Several cubic spin clusters
have been synthesized, although apparently no system with
genuine cubic symmetry was realized yet. We here consider a
perfect cube (Oh group). Only transitions involving at least
one 1D representation are explicitly included in Table VI
because only these can have a universal K�l (Q) in the cube.

The centers defining distinct pair types in Table VII are
numbered in the order of increasing distance from site 1.
For convenience, the site numbering is also given in a planar
coupling graph in Fig. 4(a). (In general, two pairs which are
not symmetry equivalent can still have the same Cartesian
distance, but this caveat is of no concern for the cube or
icosahedron.)

The K̄�l (Q) functions and transition operators are plotted
in Fig. 5. Regarding checking these curves in numerical cal-
culations based on exact eigenstates, it should be mentioned
that the anisotropic cube with symmetric exchange between
nearest neighbors has an artificially high symmetry [31],
which causes accidental degeneracies. This additional sym-
metry is lifted by symmetric anisotropic exchange between
next-nearest neighbors, which yields a spin model with actual
Oh symmetry.

The discovery of interesting properties of the classical-
and quantum-spin icosahedron [59,60] motivated efforts to
chemically synthesize such a species, but so far, these efforts
yielded only an {Fe9} molecule composed of Fe3+ (s = 5

2 )
ions [61]. This tridiminished icosahedron was studied by INS
[62,63]. If genuine spin icosahedra should become available in
the future, INS would represent a method of choice for their
detailed magnetic characterization. In the anisotropic icosa-
hedron, most transitions involving at least one nondegenerate
level have a definite K�l (Q), see Table VIII, but no definite
K�l (Q) exists when �n and �m are both multidimensional.

The K̄�l (Q) functions are specified in Table IX and plotted
in Fig. 6. The curves for the different transition types take
very distinct shapes and should be already experimentally
distinguishable by the location of the global maximum on the
Q axis.

It is lastly worth mentioning that universal K�l (Q) func-
tions occur also in many other polyhedra. When there is

(a) (d)

(b) (e)

(c) (f)

FIG. 6. Universal K̄�l (Q) functions and transition operators in
the anisotropic spin icosahedron. For further details, see caption to
Fig. 2.

a �l that occurs exactly one time in �(3N ), then transi-
tions mediated by the �l transition operator (e.g., �1 → �l )
are characterized by K�l (Q). We have explicitly checked
that K�l (Q) functions exist in the tetrahedron, octahedron,
truncated tetrahedron, cuboctahedron, dodecahedron, icosido-
decahedron, and truncated icosahedron (and presumably also
in several other polyhedra). However, the number of distinct
K�l (Q) functions tends to decrease with system size. There are
six such functions in the icosahedron (see above), three in the
dodecahedron [KAu (Q), KT1u (Q), and KT2u (Q)], but only one
in the icosidodecahedron and truncated icosahedron [KAu (Q)
and KAg (Q), respectively]. A more extensive discussion for
other systems is beyond the scope of this paper.

IV. CONCLUSIONS

It was recently shown [31] that the point-group symme-
try of molecular spin clusters can impose selection rules on
INS transitions in both isotropic and anisotropic spin models.
Additionally, the momentum-transfer dependence in isotropic
systems is under certain conditions completely determined
by the SPS of the levels [31,36]. In this paper, we have
addressed the question if definite universal Q dependencies
exist also in anisotropic spin systems. Indeed, dihedral spin
rings and spin polyhedra are systems that exhibit transitions
that contain dynamical information only in terms of the energy
transfer and the transition strength, while the Q dependence
exclusively reflects the relative symmetry of the two levels.
We have described a simple formalism to generally iden-
tify such transitions and applied it to two spin rings (N =
6, 8) and two polyhedra (cube and icosahedron). Universal
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TABLE IX. Coefficients c and d defining K̄�1 (Q) functions for the anisotropic Ih icosahedron. Sites are numbered by increasing distance
from site 1 [cf. Fig. 4(b)]. For further details, see footnote to Table III.

Au T1u T2g Fg Fu Hg

(1,1) c 4 8 4 4 2 8
(1,2) c 4

√
5 8

√
5 −4 −4 −2

√
5 −8

d −15 + √
5 15−√

5 −1 + 3
√

5 −1−3
√

5
√

5 7 + 3
√

5
(1,3) c −4

√
5 −8

√
5 −4 −4 2

√
5 −8

d −15−√
5 15 + √

5 −1−3
√

5 −1 + 3
√

5 −√
5 7−3

√
5

(1,4) c −4 −8 4 4 −2 8
d −4 4 4 −2 1 −4

powder-averaged scattering intensities were compactly tabu-
lated. For an efficient accumulation and theoretical modeling
of data, it appears advantageous to be aware of those cases
where dynamical and geometrical effects are strictly indepen-
dent. In view of recent significant progress in INS techniques,

we therefore believe that the present results could help in
future analyses of spectra of symmetric spin clusters.
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