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We compute the low-energy excitation spectrum and the dynamical spin structure factor of the Kitaev-
Heisenberg-Gamma model through a variational approach based on the exact fractionalized excitations of the
pure Kitaev honeycomb model. This novel approach reveals the physical reason for the asymmetric stability
of the Kitaev spin liquid phases around the ferromagnetic and antiferromagnetic Kitaev limits. Moreover, we
demonstrate that the fractionalized excitations form bound states in specific regions of each Kitaev spin liquid
phase and that certain phase transitions induced by Heisenberg and Gamma interactions are driven by the
condensation of such a bound state. Remarkably, this bound state appears as a sharp mode in the dynamical spin
structure factor, while its condensation patterns at the appropriate phase transitions provide a simple explanation
for the magnetically ordered phases surrounding each Kitaev spin liquid phase.
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I. INTRODUCTION

Quantum spin liquids are highly unconventional, funda-
mentally quantum phases of magnetic systems that do not
order by spontaneous symmetry breaking and are instead
characterized by long-range quantum entanglement [1,2],
along with a rich variety of exotic phenomena, including
topological order, emergent gauge theories, and quasiparti-
cle fractionalization. Indeed, the spin degrees of freedom
in quantum spin liquids appear to be fractionalized into
nonlocal quasiparticle excitations that carry internal gauge
charges and exhibit nontrivial anyonic particle statistics. In
addition to their fundamental appeal, these anyonic quasiparti-
cles facilitate topological braiding processes and thus provide
manifestly fault-tolerant schemes of quantum computation
[3,4].

The Kitaev spin liquid phase on the honeycomb lattice is
particularly amenable to theoretical studies due to its exactly
solvable limit described by the famous Kitaev honeycomb
model [5]. Remarkably, it has been demonstrated that the
bond-directional spin interactions of the Kitaev model are
naturally realized between effective spin-one-half magnetic
moments in strongly spin-orbit-coupled 4d and 5d systems
[6], and this realization has led to the discovery of several
candidate materials in which the microscopic spin Hamil-
tonian is believed to be well approximated by the Kitaev
model [7–10]. These Kitaev materials include the honey-
comb iridates Na2IrO3 [11–16], α-Li2IrO3 [17,18], H3LiIr2O6

[19], Ag3LiIr2O6 [20], as well as the analogous ruthenium
system α-RuCl3 [21–29]. While the precise microscopic
Hamiltonians of these materials are still subject to intense

debate [30–41], the simplest nearest-neighbor model one may
consider is the Kitaev-Heisenberg-Gamma model [42–44],
where isotropic (Heisenberg) interactions and symmetric off-
diagonal anisotropic (Gamma) interactions are superimposed
on the diagonal anisotropic (Kitaev) interactions.

Even though none of the candidate materials seem to re-
alize the Kitaev spin liquid, and most of them are found
to be magnetically ordered at the lowest temperatures, there
are nevertheless direct experimental indications of domi-
nant Kitaev interactions [16]. The Kitaev materials are thus
expected to be proximate to the Kitaev spin liquid [27],
making it important to understand the magnetically or-
dered phases surrounding the Kitaev spin liquid, along with
the corresponding quantum phase transitions giving rise to
magnetic order. To this end, the phase diagram of the Kitaev-
Heisenberg-Gamma model has been studied extensively using
a wide range of techniques, including exact diagonaliza-
tion [42–46], density-matrix renormalization group [47–49],
tensor-network methods [50,51], slave-particle mean-field
theories [52], and variational Monte Carlo approaches [53].
These works yield consistent phase diagrams, predicting a
rich variety of magnetically ordered phases around the fer-
romagnetic (FM) and antiferromagnetic (AFM) Kitaev spin
liquid phases. However, while they seem to indicate that some
of the phase transitions are close to continuous (i.e., weakly
first order), the underlying mechanisms driving these phase
transitions are still not properly understood.

Since quantum spin liquids do not break any symmetries
and possess no local order parameters or any other “smoking-
gun” signatures, they are notoriously difficult to identify in
an experimental setup. It is conventional wisdom that, as a
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result of fractionalization, quantum spin liquids are charac-
terized by diffuse continuum features in spectroscopic probes
because any local magnetic excitation (magnon) created by
such a probe immediately decomposes into several nonlo-
cal quasiparticle excitations (spinons). Indeed, for the Kitaev
spin liquid, such continuum features have been proposed to
be observable in inelastic neutron scattering [54–57], Raman
scattering [58], and resonant inelastic x-ray scattering [59,60].
However, it is important to emphasize that the presence of
such continuum features does not necessarily indicate an un-
derlying quantum spin liquid, as it can also originate from
disorder and/or thermal fluctuations in classical phases with
no long-range entanglement [61–63].

The main difference between the two scenarios is that the
continuum features of quantum spin liquids are produced by
coherent (albeit nonlocal) quasiparticles while those appear-
ing in classical phases have completely incoherent (diffusive)
origins. To confirm the presence of an underlying quantum
spin liquid, one must therefore demonstrate the coherent na-
ture of its nonlocal quasiparticle excitations. For example,
these nonlocal excitations, which typically correspond to con-
tinuum features in dynamical responses, may also form local
bound states, thereby producing sharp modes and providing
evidence for coherent behavior. Surprisingly, the distinctive
signature of the quantum spin liquid in this scenario is then a
sharp mode, in conjunction with the continuum features and
the lack of magnetic order.

In this paper, we use a variational approach based on the
exactly solvable Kitaev honeycomb model to demonstrate that
such local bound states of nonlocal excitations are prominent
in both Kitaev spin liquid phases of the Kitaev-Heisenberg-
Gamma model. Specifically, we focus on the nonlocal flux
pair and Majorana fermion excitations of the pure Kitaev
model and investigate their dynamics and interactions re-
sulting from the Heisenberg and Gamma perturbations. We
find that the flux pairs, which are static in the pure Kitaev
model, acquire an emergent dynamics and may bind Majorana
fermions to form local magnonlike excitations. In turn, such
a local excitation manifests in the dynamical spin structure
factor as a sharp mode descending from a diffuse continuum
feature. Moreover, when such a bosonic magnonlike exci-
tation becomes gapless, its condensation directly gives rise
to magnetic order. We argue that this condensation is the
driving force behind the weakly first-order transitions out of
the Kitaev spin liquid phases and, by considering the precise
condensation patterns, we account for the resulting magnet-
ically ordered phases found in previous works. Finally, by
studying the dynamics of both nonlocal and local excitations,
we explain the asymmetric stability of the Kitaev spin liquid
phases around the FM and AFM Kitaev limits.

The structure of this paper is as follows. In Sec. II, we intro-
duce the model Hamiltonian and the variational approach for
computing its low-energy excitation spectrum. In Sec. III, we
study the dynamics of flux-pair excitations while, in Sec. IV,
we consider magnonlike bound states formed by a flux pair
and a Majorana fermion. In Sec. V, we determine the magnetic
orders obtained by condensing these magnonlike excitations
while, in Sec. VI, we calculate their direct contributions to
the dynamical spin structure factor. Finally, we conclude the
paper with a brief summary and outlook in Sec. VII.

FIG. 1. Kitaev honeycomb model with bond-dependent Ising in-
teractions on the honeycomb lattice. The three bond types (x, y, z)
are marked by three different colors. The bond variables u〈i j〉 are Z2

gauge fields whose fluxes around hexagonal plaquettes p coincide
with the plaquette operators Wp.

II. GENERAL FORMULATION

A. Kitaev-Heisenberg-Gamma model

The Kitaev-Heisenberg-Gamma model [42–44] is obtained
by including Heisenberg and Gamma interactions on top of
the exactly solvable Kitaev honeycomb model [5]. The corre-
sponding Hamiltonian

H = HK + HH + H�, (1)

includes three contributions,

HK = K
∑

γ={x,y,z}

∑
〈 jk〉‖γ

σ
γ
j σ

γ

k ,

HH = J
∑
〈 jk〉

σ j · σk,

H� = �
∑

α �=β �=γ

∑
〈 jk〉‖γ

σ α
j σ

β

k , (2)

where J is the isotropic Heisenberg interaction, � is a sym-
metric off-diagonal exchange anisotropy, and K is the Kitaev
interaction, corresponding to diagonal exchange anisotropy.
As it is illustrated in Fig. 1, the Kitaev terms are bond-
dependent Ising interactions between spin components that
depend on the bond orientation.

B. Exactly solvable Kitaev limit

The pure Kitaev model (J = � = 0) is exactly solvable by
means of a simple mapping in which each spin operator is
expressed as a product of two Majorana fermions: σγ

j = ibγ
j c j

[5]. The “matter” Majorana fermion c j does not carry any
flavor and is associated with the site j. In contrast, the “bond”
Majorana fermions bγ

j have three flavors, γ = x, y, z, asso-
ciated with the three orientations of the bonds connected to
the site j. In terms of these Majorana fermions, the Kitaev
Hamiltonian becomes

HK = −iK
∑

γ

∑
〈 jk〉‖γ

u〈 jk〉‖γ c jck, (3)

where u〈 jk〉‖γ ≡ ibγ
j bγ

k are conserved bond variables that can
be identified as static Z2 gauge fields coupled to the mat-
ter fermions. In each bond-fermion sector characterized by
the Z2 gauge fields, u〈 jk〉 = ±1, the quadratic matter-fermion
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Hamiltonian can then be diagonalized:

Hu
K =

∑
α

εu
α

(
f u
α

)†
f u
α . (4)

The superscript u of the fermion operators, f u
α , and the cor-

responding eigenenergies, εu
α � 0, indicates their dependence

on the Z2 gauge-field configuration. Note that, in the fol-
lowing, we use the terms “fermions” and “matter fermions”
interchangeably, unless we make an explicit distinction be-
tween them.

Since the Majorana fermion representation of the spin op-
erators enlarges the local Hilbert space, it gives rise to a local
Z2 gauge transformation, Dj = bx

jb
y
jb

z
jc j , which commutes

with any physical observable and anticommutes with the bond
variables u〈 jk〉 that include the site j. The physical states are
then characterized by gauge-invariant products or “fluxes” of
the Z2 gauge fields, corresponding to their circulation (i.e.,
Wilson loop) around each hexagonal plaquette (p):

Wp =
∏

〈 jk〉∈∂ p

u〈 jk〉 = ±1. (5)

An eigenvalue −1 (+1) of the flux operator Wp indicates the
presence (absence) of a Z2 gauge flux 	 or, equivalently, a
vison at the plaquette p.

To obtain a general eigenstate of the Kitaev model, we start
from a product state |u〉 ⊗ |nu〉 in the enlarged Hilbert space
of the Majorana fermions, where the Z2 gauge field configu-
ration, |u〉, is a simultaneous eigenstate of all bond variables,
u〈 jk〉 = ±1, while the matter-fermion state |nu〉 is a simultane-
ous eigenstate of all fermion numbers, nu

α = ( f u
α )† f u

α = {0, 1},
corresponding to a Slater determinant in terms of the mat-
ter fermions c j . The physical eigenstate is then obtained by
projecting this product state into the physical Hilbert space
through an appropriate projector,

P = 1

2N

∏
j

(1 + Dj ), (6)

which enforces Dj = +1 for all sites j = 1, . . . , N of the
lattice. Consequently, the physical eigenstate

|	; f 〉 = 2N/2P {|u〉 ⊗ |nu〉}, (7)

labeled schematically by its flux (	) and fermion ( f ) con-
figurations, is manifestly gauge invariant. Note that the same
physical eigenstate, |	; f 〉, can be obtained by projecting
distinct Majorana-fermion states |u1〉 ⊗ |nu1〉 and |u2〉 ⊗ |nu2〉
related by gauge transformations. While these states belong
to distinct bond-fermion sectors, u1 and u2, they correspond
to the same flux sector 	.

Due to the extensive projection described by Eq. (6), it
is not surprising that the ground state of the Kitaev model,
characterized by flux operators Wp = +1 for all p and fermion
numbers nu

α = 0 for all α, is a strongly entangled quantum
spin liquid [5]. While the flux excitations, characterized by
Wp = −1 for some p, are gapped, the fermion excitations,
characterized by nu

α = 1 for some α, have a single gapless
Dirac point.

C. Variational approach

Beyond the exactly solvable Kitaev limit, one can treat
small enough Heisenberg and Gamma interactions as per-
turbations. In general, perturbation theory would require the
evaluation of all matrix elements of HH and H� between
the exact Kitaev eigenstates. To simplify the problem, we
instead take a variational approach and only calculate these
matrix elements within an appropriate variational subspace.
Importantly, this variational subspace is naturally constrained
by the various selection rules on the flux and fermion quan-
tum numbers which make most of the above matrix elements
vanish.

Let us first concentrate on the fluxes. For a Heisenberg term
along an x bond, 〈 jk〉 ‖ x, the component σ x

j σ
x
k simply renor-

malizes the corresponding Kitaev term, while the components
σ

y
j σ

y
k and σ z

j σ
z
k each invert the eigenvalues, 	p = ±1, of all

four fluxes at the plaquettes p surrounding the bond 〈 jk〉. In
contrast, for a Gamma term along the same x bond, 〈 jk〉 ‖ x,
the components σ

y
j σ

z
k and σ z

j σ
y
k each invert the eigenvalues of

only two fluxes at the plaquettes p that are separated by the
bond 〈 jk〉. The symmetry-inequivalent flux sectors connected
by these Heisenberg and Gamma terms are depicted in Figs. 2
and 3, respectively.

From the flux selection rules of Figs. 2 and 3, it is clear
that both Heisenberg and Gamma interactions naturally result
in flux-pair hopping [see Figs. 2(b) and 3(b)]. Remarkably,
a flux-pair excitation, consisting of two flux excitations at
neighboring plaquettes, can propagate coherently and, thus,
can be treated as a well-defined quasiparticle even in the
presence of the gapless fermions. Indeed, a flux-pair excita-
tion does not lead to an orthogonality catastrophe because
it corresponds to a local perturbation (the flip of a single
hopping amplitude u〈 jk〉 = ±1) from the perspective of the
fermions which are, in turn, gapless at a Dirac point only [64].
In other words, the matrix elements of HH and H� connecting
different flux sectors in Figs. 2(b) and 3(b) are O(1) between
the respective fermion vacua and exponentially small in the
number of fermions created or annihilated.

Focusing on flux-pair excitations, the variational subspace
is then restricted to flux sectors containing a single flux pair
at various positions [see Figs. 2(b) and 3(b)]. As shown in
Refs. [55,56], the fermion vacuum of such a flux sector has
odd fermion parity.1 Therefore the flux-pair excitation has
fermionic statistics and is topologically equivalent to a bond
fermion. The hopping problem of such a bare flux pair is
obtained by calculating the matrix elements of HH and H�

between the fermion vacua of the appropriate flux sectors. An-
other excitation of interest is the bound state of a flux pair (i.e.,
bond fermion) and a matter fermion which has bosonic statis-
tics and is topologically equivalent to a spin flip or, in other
words, a magnon (i.e., topologically trivial). This composite
flux pair is important for us because it directly manifests in the
dynamical spin structure factor and its condensation immedi-
ately leads to magnetic order. To demonstrate its formation

1Note that the fermion parity is defined with respect to the fermion
vacuum of the flux-free sector and accounts for both bond and matter
fermions.
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FIG. 2. Distinct matrix elements of the Heisenberg interactions in terms of the J = � = 0 flux sectors connected.

and solve the hopping problem, we calculate the matrix el-
ements of HH and H� between one-fermion states of the
appropriate flux sectors.

As shown in Figs. 2 and 3, the Heisenberg and Gamma
interactions also give rise to many other processes beyond
flux-pair hopping. First, the energy of the ground state is
renormalized because of matrix elements connecting the
ground-state flux sector (i.e., the flux-free sector) with ex-
cited flux sectors [see Figs. 2(a) and 3(a)]. Next, the “closed”
flux-pair excitations of Figs. 2(b) and 3(b) can hybridize with
“open” flux-pair excitations [see Fig. 2(c)] and four-flux ex-
citations [see Fig. 3(c)]. Finally and most interestingly, the
remaining processes describe the hopping of single-flux exci-
tations [see Fig. 3(d)] and their hybridization with three-flux
excitations [see Figs. 2(d), 2(e), 3(e), and 3(f)]. While such
single-flux excitations seem natural to consider in conjunc-
tion with flux-pair excitations, we do not expect a single-flux
excitation to be a coherent quasiparticle as it corresponds to a
vortex (rather than a local perturbation) from the perspective
of the gapless fermions. Therefore we concentrate on flux-pair
hopping [see Figs. 2(b) and 3(b)] in the following and only
consider the hybridization between “open” and “closed” flux
pairs [see Fig. 2(c)] in Sec. III D.

To verify that a flux pair is a well-defined quasiparticle
while a single flux is not, we investigate how the presence
of each distorts the matter-fermion vacuum. We first consider
the effect of a flux pair. In the pure Kitaev limit, the distortion
of the matter-fermion vacuum can be studied by computing

the spatial variation of the bond energy, εi j = 〈G|Kσ
γ
i σ

γ
j |G〉,

where |G〉 is the ground state of the corresponding flux sector.
For the flux-free sector, this bond energy is the same for
all bonds by symmetry and is numerically found to be ε0 	
−0.5249|K|. The gapless nature of the matter fermions then
implies that the distortion of the bond energy, δεi j ≡ εi j − ε0,
induced by a flux pair, falls off as a power law r−ν for long
distances r between the bond 〈i j〉 and the flux pair. The situ-
ation is similar to Friedel oscillations induced by an impurity
in half-filled graphene, where the decay exponent is known
to be ν = 3 in both sublattices [65]. This power-law behavior
is confirmed by our numerical results [see Fig. 4(a)], for the
distortion around a flux pair in a specific direction with no
oscillatory behavior. The value of the exponent, ν = 2.96, is
very close to the expected value, ν = 3, for the true asymptotic
behavior, and its small deviation can be attributed to finite-size
effects. In turn, since the 2D integral

∫
d2r r−ν is convergent

for ν > 2, a distortion decaying as 1/r3 can be regarded as
localized. Therefore the two matter-fermion vacua connected
by the matrix element in Fig. 2(b) must have an O(1) overlap,
which is numerically found to be 	 0.78. From this result,
we also expect that matrix elements involving multi-matter-
fermion states can be safely neglected.

Next, we investigate the effect of a single flux. We start
by noting that, for a closed system with periodic boundary
conditions, fluxes must always be inserted in pairs because
of the global constraint

∏
p Wp = 1. Therefore we introduce

two fluxes separated by the largest possible distance on a

FIG. 3. Distinct matrix elements of the Gamma interactions in terms of the J = � = 0 flux sectors connected.

014411-4



VARIATIONAL STUDY OF THE … PHYSICAL REVIEW B 104, 014411 (2021)

FIG. 4. Radial dependence of the bond-energy distortion δεi j

induced by (a) a flux pair and (b) a single flux. In each case, the
asymptotic behavior obeys a power law δεi j ∼ r−ν . The exponent ν

is obtained by fitting the bond-energy distortion computed on a hon-
eycomb lattice of 80 × 80 unit cells. The fitting range 17 < r < 25
is chosen to capture the asymptotic behavior while minimizing the
boundary effects.

finite lattice, and we only concentrate on one of these fluxes.
Similarly to the case of a flux pair, the spatial variation of the
bond energy, δεi j , as defined above, falls off as a power law for
long enough distances r between the bond 〈i j〉 and the single
flux. However, in this case, we find an exponent ν 	 1.98 [see
Fig. 4(b)], which is close to the critical value ν = 2 separating
the localized and the delocalized scenarios. In other words, the
distortion of the matter-fermion vacuum due to a single flux is
found to be marginally delocalized.

In view of these considerations, we exclude single-flux
excitations from our variational analysis. By doing so, we
implicitly assume that single-flux excitations do not play a
relevant role in the instabilities induced by the Heisenberg
and Gamma terms. Note also that these excitations are not
expected to give a substantial contribution to dynamical cor-
relation functions of local observables, such as the dynamical
spin structure factor, because local operators necessarily cre-
ate fluxes in pairs.

D. Computation of matrix elements

In this section, we explain how to compute the matrix ele-
ment of an arbitrary Hamiltonian H′ between two eigenstates
of the pure Kitaev model specified in the form of Eq. (7). For
the purposes of this work, we consider two different classes
of eigenstates. First, there are “conventional eigenstates” con-
taining a single topologically trivial excitation, for example,
a bosonic bound state of a flux pair and a matter fermion.
Second, there are “fractionalized eigenstates” containing a
topologically nontrivial (i.e., fractionalized) excitation, for
example, a fermionic bare flux pair. Importantly, for a closed
system, an eigenstate containing a single fractionalized ex-
citation is unphysical and annihilated by the projector in
Eq. (6). This problem can be circumvented by considering
an eigenstate with two fractionalized excitations: the original
excitation of interest and another excitation as far away as
possible. In this work, however, instead of including another
excitation, we modify the projector in Eq. (6) such that it
enforces Dj = −1 at a far-away reference site j and Dj′ = +1

at all other sites j′:

P̄j = 1

2N
(1 − Dj )

∏
j′

(1 + Dj′ ). (8)

In contrast to the original projector P, this modified projector
P̄j annihilates states with even fermion parity but not those
with odd fermion parity. Therefore replacing P with P̄j is
physically equivalent to including a fermion excitation around
site j.

Exploiting [H′, P] = 0 and P2 = P, the general matrix el-
ement between two conventional eigenstates reads

〈	2; f2|H′|	1; f1〉 = 2N 〈nu2 | ⊗ 〈u2|PH′|u1〉 ⊗ |nu1〉. (9)

Similarly, due to [H′, P̄j] = 0 and P̄2
j = P̄j , the general ma-

trix element between two fractionalized eigenstates takes an
analogous form:

〈	2; f2|H′|	1; f1〉 = 2N 〈nu2 | ⊗ 〈u2|P̄jH′|u1〉 ⊗ |nu1〉. (10)

In each case, the two states connected by H′ may have dif-
ferent gauge choices u1 and u2 as the appropriate projector
(P or P̄j) automatically takes care of the gauge transformation
between these two gauge choices.

Since the bond fermions are static, the bond-fermion
matrix elements in Eqs. (9) and (10) can be calculated straight-
forwardly. Thus Eqs. (9) and (10) are reduced to the general
form 〈0u2 |ψ̂1ψ̂2...ψ̂2N |0u1〉 in matter-fermion space, where
|0u1,2〉 is the matter-fermion vacuum of the gauge sector |u1,2〉,
and each ψ̂i = ∑

k (ai
k f (u1 )

k + āi
k f (u1 )†

k ) is expressed as a linear
combination of the normal matter fermion modes f (u1 )

k and
f (u1 )†
k . The matter-fermion matrix element is then computed

by introducing a modified form of Wick’s theorem, which is
necessary because the two states |0u1〉 and |0u2〉 correspond to
different fermion vacua. In general, these fermion vacua are
related by

|0u2〉 = |C|e− 1
2

∑
kl f

(u1 )†
k M∗

kl f
(u1 )†
l |0u1〉, (11)

where the antisymmetric matrix M = X −1Y and the normal-
ization constant C = det[X ]1/2 are both derived from the
unitary transformation(

f (u2 )
n

f (u2 )†
n

)
=

(
X ∗

nm Y ∗
nm

Ynm Xnm

)(
f (u1 )
m

f (u1 )†
m

)
. (12)

By expanding the exponential in Eq. (11), the matter-fermion
matrix element becomes

〈0u2 |ψ̂1ψ̂2 . . . ψ̂2N |0u1〉

= |C|〈0u1 |
∞∑

n=0

1

n!

(
1

2

∑
kl

f (u1 )
k Mkl f (u1 )

l

)n

ψ̂1 . . . ψ̂2N |0u1〉,

(13)

and can be evaluated through Wick’s theorem. If q pairs of
ψ̂ operators are contracted, the remaining 2N − 2q ψ̂ op-
erators must be paired with f operators. In this case, only
the term of order n = N − q gives a finite contribution be-
cause 〈0u1 | f (u1 )

k f (u1 )
l |0u1〉 = 0. If we consider the partitions

of 2N − 2q ψ̂ operators into N − q pairs, for each partition
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there are n! = (N − q)! equivalent ways of contracting each
pair with 1

2

∑
kl f (u1 )

k Mkl f (u1 )
l . This factor cancels the pref-

actor 1/n! = 1/(N − q)!. Summing over all possible cases,
0 � q � N , we then obtain

〈0u2 |ψ̂1ψ̂2 . . . ψ̂2N |0u1〉 = |C|
∑

P

ηP

N∏
q=1

[
〈0u1 |ψ̂Pq (1)ψ̂Pq (2) +

(
1

2

∑
kl

f (u1 )
k Mkl f (u1 )

l

)
ψ̂Pq (1)ψ̂Pq (2)|0u1〉

]

= |C|
∑

P

ηP

N∏
q=1

〈0u2 |ψ̂Pq (1)ψ̂Pq (2)|0u1〉, (14)

where P sums over all the possible partitions of the 2N ψ̂

operators into N pairs and (Pq(1), Pq(2)) is the index of
the qth pair. The coefficient ηP = sgn(P) = ±1 arises from
the fermionic statistics of the ψ̂ operators. By introducing
a skew-symmetric matrix A of dimension 2N , whose ma-
trix elements are given by the generalized contraction Ai j ≡
〈0u2 |ψ̂iψ̂ j |0u1〉 ≡ ∑

kl (a
i
kδkl − āi

kMkl )ā
j
l for i < j, the above

result takes the concise form

〈0u2 |ψ̂1ψ̂2 . . . ψ̂2N |0u1〉 = |C| Pf[A], (15)

where Pf[A] is the Pfaffian of the matrix A.

III. DYNAMICS OF BARE FLUX PAIRS

A. General formulation

In this section, we focus on bare flux pairs, which are
coherently propagating fermionic quasiparticles and are topo-
logically equivalent to bond fermions. The relevant variational
subspace contains all eigenstates of the pure Kitaev model
that have two flux excitations at neighboring plaquettes and
no matter-fermion excitations. Each state from the variational
subspace then corresponds to a bond on the honeycomb lat-
tice, and the state corresponding to bond 〈 jk〉 ‖ γ (with j ∈ A)
can be written as

| j, γ 〉 = 2N/2P
{
bγ

j |u0〉 ⊗ |0( j,γ )〉}, (16)

where |u0〉 is the trivial gauge sector with u〈lm〉 = +1 for all
bonds 〈lm〉, while |0( j,γ )〉 is the matter-fermion vacuum of the
gauge sector bγ

j |u0〉. The labels γ and j specify the orientation
(also denoted as “flavor”) and the position of the flux pair,
respectively.

The Hamiltonian restricted to the above variational sub-
space describes a tight-binding problem on the dual Kagome
lattice formed by the center of bonds of the honeycomb lattice
[see Fig. 5(a)]. The dual Kagome lattice has a primitive unit
cell of three lattice sites corresponding to the bonds with
different orientations, which is shown by the three colors (red,
blue, green) in Fig. 5(a). The primitive vectors a1,2 coincide
with the ones of the original honeycomb lattice. The Heisen-
berg interaction (J) generates effective hopping amplitudes
within one of the three sublattices of the Kagome lattice
that are shown by one particular color in Fig. 5(a), which is
diagonal in the flavor index of the flux pair. In contrast, the
Gamma interaction (�) propagates the flux pair within one of
the three Kagome sublattices that are shown by one particular
color in Fig. 5(b), which is off-diagonal in the flavor index
of the flux pair. Each sublattice forms an enlarged Kagome

lattice spanned by the primitive vectors a′
1,2. For either J = 0

or � = 0, the respective “sublattice” index is a good quantum
number, which leads to a triple degeneracy of the flux pair
spectrum.

To compute each hopping amplitude, we consider a flux
pair |i0, z〉 on the bond 〈i0 j0〉 ‖ z [see Fig. 5(c) or 5(d)]. The
hopping amplitude of a flux pair on bonds x or y is related to
this case by the threefold rotation symmetry of the model. The
Heisenberg interaction moves this flux pair to the neighboring
sites of the dual (Kagome) lattice with the same bond orienta-
tion. The hopping amplitude that takes the flux pair |i0, z〉 to
|i1, z〉 [see Fig. 5(c) for lattice site labels] is

T zz
i1,i0

= Ju0
〈i0 j0〉z

[〈0(i1,z)|ici1 c j0 |0(i0,z)〉
+ u0

〈i1 j0〉x
〈0(i1,z)|0(i0,z)〉], (17)

where iμ ∈ A and jμ ∈ B, μ = 0, 1. This formula also applies
to the other hopping processes related by mirror symmetry
about the z bond shown by Fig. 5(c). The remaining two
hopping amplitudes are obtained by complex conjugation of
Eq. (17). There are in total six independent hopping param-
eters including all the three flavors of flux pairs. For the

FIG. 5. Sublattices of the dual Kagome lattice on which the flux
pair propagates through (a) Heisenberg and (b) Gamma interactions.
The primitive lattice vectors of the triangular Bravais lattice of the
dual Kagome lattice are indicated in each figure. (c) The blue arrows
indicate the nonzero hopping amplitudes of a flux pair via Heisen-
berg interaction. (d) The green arrows indicate the nonzero hopping
amplitudes of a flux pair via Gamma interaction.
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FIG. 6. Finite-size scaling of the flux-pair hopping amplitudes
under Heisenberg and Gamma interactions on top of the FM and
AFM Kitaev models. (Insets) Extrapolated hopping amplitudes as
a function of 1/Lmax, where Lmax refers to the maximal system size
used in the finite-size fitting.

isotropic Kitaev model, the six hopping parameters are equal
and real:

T xx
−a1

= T xx
−a2

= T yy
a1−a2

= T yy
a1

= T zz
a2

= T zz
a2−a1

≡ TH∈ R, (18)

where the subscript denotes the relative vector between the
final and the initial flux pair. The hopping amplitude TH has
been computed for FM and AFM Kitaev models as shown
in Figs. 6(a) and 6(b), which has an apparent system size
dependence due to the gapless nature of the matter fermion
spectrum. By fitting the numerical results with a second de-
gree polynomial in 1/L, we obtain the following extrapolation
of the hopping amplitudes to the thermodynamic limit: TH 	
0.0938J for the FM Kitaev model and TH 	 1.4702J for the
AFM Kitaev model. It is interesting to note that the two
amplitudes (for the same value of J) are different by one order
of magnitude between the FM and AFM Kitaev models.

Through the Gamma interaction, the flux pair |i0, z〉 prop-
agates to its four second nearest neighbors of the dual
(Kagome) lattice as shown in Fig. 5(d). The one that takes
the flux pair |i0, z〉 to |i1, y〉 reads

T yz
i1,i0

= �u0
〈i0 j0〉z

[〈0(i1,y)|ici1 c j0 |0(i0,z)〉
− u0

〈i1 j0〉x
〈0(i1,y)|0(i0,z)〉]. (19)

The other hopping amplitude that takes the flux pair |i0, z〉 to
|k, y〉 reads

T yz
k,i0

= �u0
〈k j1〉γ

[〈0(k,y)|ici0 c j1 |0(i0,z)〉
− u0

〈i0 j1〉x
〈0(k,y)|0(i0,z)〉]. (20)

The above two formulas also apply to the remaining two
hopping processes related by mirror symmetry about the z
bond. There are also six independent hopping parameters. For
the isotropic Kitaev model, the six hopping parameters are

equal and real:

T yz
a2

= T yz
−a1

= T xz
−a1+a2

= T xz
a1

= T xy
a2

= T xy
a1−a2

≡ T�∈ R. (21)

The finite size scaling of T� is shown in Figs. 6(c) and 6(d).
The extrapolation to the thermodynamic limit gives T� 	
−1.4391� for the FM Kitaev model and T� 	 −0.1733� for
the AFM Kitaev model. As in the previous case, the two
amplitudes differ by one order of magnitude.

B. Asymmetry between FM and AFM Kitaev models

We have observed that there is an apparent difference in
magnitude between the hopping amplitudes of the flux pairs
for the FM and AFM Kitaev models. As we demonstrate
below, this asymmetry arises from the fact that each flux-pair
hopping process has two contributions which interfere con-
structively for one sign of Kitaev interaction and destructively
for the other.

Without loss of generality, we consider the matrix ele-
ment shown in Fig. 2(b) due to the Heisenberg interaction
on the x bond. This matrix element has contributions from
the two spin-exchange interactions, Jσ

y
i σ

y
j and Jσ z

i σ z
j , de-

noted as Ty and Tz, respectively. Note that the FM and AFM
Kitaev interactions are related to each other by a four-site
unitary transformation. The two Heisenberg interactions ac-
quire a relative “−” sign under this transformation, namely,
σ

y
i σ

y
j → −σ

y
i σ

y
j and σ z

i σ z
j → σ z

i σ z
j . It then follows that, if

T FM = Ty + Tz for the FM Kitaev model, we have T AFM =
Ty − Tz for the AFM Kitaev model. Given the similar absolute
values of Ty and Tz, the net hopping amplitudes T FM and
T AFM are dramatically different [see Figs. 6(a) and 6(b)]. The
relative sign between Ty and Tz can be determined using a
simple argument. We will denote the initial and final flux-pair
configurations by 	1 and 	2, and their respective ground
states by |	1; ω1〉 and |	2; ω2〉. In the spirit of our approxi-
mation scheme, we can estimate the product of the two matrix
elements:

TyTz = J2〈	1; ω1|σ y
i σ

y
j |	2; ω2〉〈	2; ω2|σ z

i σ z
j |	1; ω1〉

	 J2
∑

f2

〈	1; ω1|σ y
i σ

y
j |	2; f2〉〈	2; f2|σ z

i σ z
j |	1; ω1〉

= −J2〈	1; ω1|σ x
i σ x

j |	1; ω1〉

= −J2

K
ε

	1
i j = 0.5851J2sign(K ), (22)

where, in the second step, the ground state projec-
tor |	2; ω2〉〈	2; ω2| is replaced with the identity∑

f2
|	2; f2〉〈	2; f2| = I in the gauge sector 	2 ( f2 runs over

all the eigenstates of the pure Kitaev model in the gauge sector
	2). We note that this approximation is basically the same as
the one that we are using in our variational scheme, where
we ignore the tunneling of |	1; ω1〉 into multimatter-fermion
states |	2; f2 �= ω2〉. The simple outcome is that the above
product is proportional to the bond energy ε

	1
i j on the bond

where the Heisenberg interaction applies in the ground
state |	1; ω1〉 of the pure Kitaev model. By following
the scheme described in the previous section, we obtain
TyTz 	 0.5382J2sign(K ), which is very close to the value
obtained in Eq. (22). Besides providing a sanity check for
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the approximation scheme adopted in this work, this simple
analysis explains that Ty and Tz have opposite sign for the FM
Kitaev model and the same sign for the AFM Kitaev model.

Now we consider the Gamma interaction acting on the x
bond, that also includes two terms: Jσ

y
i σ z

j and Jσ z
i σ

y
j . Both

terms contribute to the matrix elements shown in Fig. 3(b),
which are denoted as Tyz and Tzy, respectively. Under the
same unitary transformation that relates the FM and AFM
Kitaev model, the above two Gamma terms transform accord-
ing to: σ

y
i σ z

j → −σ
y
i σ z

j and σ z
i σ

y
j → σ z

i σ
y
j . Therefore Tyz and

Tzy have opposite relative sign for the FM and AFM Kitaev
models. Once again, this relative sign is determined by the
sign of the Kitaev interaction:

TyzTzy 	 �2

K
ε

	1
i j = −0.5851�2sign(K ). (23)

Thus Tyz and Tzy have the same sign for a FM Kitaev model
and opposite sign for an AFM Kitaev model. According to the
calculation, TyzTzy 	 −0.5102�2sign(K ) which is in a good
agreement with the approximated value given in Eq. (23).

C. Stability analysis

The projection of the full Hamiltonian in Eq. (1) to the
subspace spanned by the states (16) leads to the tight-binding

Hamiltonian:

Hodd = �
∑
α,r∈A

χ̃α†
r χ̃α

r

+
⎡
⎣ ∑

αβ,δβα

∑
r∈A

T βαχ̃
β†
r+δβα

χ̃α
r + H.c.

⎤
⎦, (24)

where � 	 0.26|K + J| is the energy gap of the flux-pair
excitation of the pure Kitaev model, χ̃α†

r j
, χ̃α

r j
are fermionic

creation and annihilation operators of a flux pair state
|r j, α〉 ≡ χ̃α†

r j
(|u0〉 ⊗ |0u0〉) (u0 refers to the trivial gauge

sector as in Eq. (16)) which inserts a flux-pair and simultane-
ously polarizes the matter fermion vacuum, T β=α = TH and
T β �=α = T� , the bond vectors δβα are summed over the sets:
δxx = {−a2,−a1}, δyy = {a1, a1 − a2}, δzz = {−a1 + a2, a2},
δyz = {a2,−a1}, δxz = {−a1 + a2, a1}, and δxy = {a2, a1 −
a2}. This tight-binding Hamiltonian can be diagonalized in
momentum space:

Hodd =
∑

q

X̃ †
q (�I3×3 + Mq)X̃q, (25)

where I3×3 is the 3 × 3 unit matrix, X̃q ≡ (X̃ x
q , X̃ y

q , X̃ z
q )T with

χ̃α
r =

√
2

N

∑
q

X̃ α
q eiq·r, (26)

and

Mq =

⎛
⎜⎝

2TH [cos(q1) + cos(q2)] T�[e−iq2 + e−i(q1−q2 )] T�[ei(q1−q2 ) + e−iq1 ]

T�[eiq2 + ei(q1−q2 )] 2TH [cos(q1) + cos(q1 − q2)] T�[e−iq2 + eiq1 ]

T�[e−i(q1−q2 ) + eiq1 ] T�[eiq2 + e−iq1 ] 2TH [cos(q1 − q2) + cos(q2)]

⎞
⎟⎠. (27)

The resulting tight-binding spectrum of the flux-pair is shown
in Figs. 7(a) and 7(b) for different sets of model parame-
ters (K = ±1, J, � = 0), (K = ±1, J = 0, �). As expected,
for equal strengths of either J or �, the bandwidth is very
different between the FM and AFM Kitaev models. Interest-
ingly, in the J = 0 limit, the flux pair propagates through the
Gamma interaction on one of the three Kagome sublattices
shown in Fig. 5(b). It is well-known that the spectrum of
this tight-binding problem hosts a completely flat band, which
corresponds to a localized single-particle state that circulates
around the six lattice sites of a hexagon and carries momen-
tum π . This flat band becomes the lowest energy band for
� < 0.

The tight-binding spectrum becomes gapless for a critical
strength of the perturbations, indicating a potential instabil-
ity of the Kitaev liquid state. As we will see in the next
section, a (bosonic) bound state between a flux pair and a
matter fermion can become gapless for a lower strength of the
perturbations. While more details of the instability analysis
are presented in the next section, here we aim to provide a
qualitative understanding of the stability of the FM or AFM
Kitaev spin liquid. Figures 7(c) and 7(d) show the boundaries
in the J-� space where the flux-pair spectrum becomes gap-
less. According to this analysis, the AFM Kitaev spin liquid is

more fragile against the inclusion of a Heisenberg term, while
the FM Kitaev spin liquid is more fragile against the inclusion
of a Gamma term. Both results are entirely consistent with
numerical results pulished in previous works [46,47]. As we
will see in Sec. VI, besides the stability analysis, the flux
pair dispersion induced by the Heisenberg and Gamma terms
determines the dispersion of the continuum of excited states
that contribute to the dynamical spin structure factor.

D. Hybridization with open flux pairs

Finally, we discuss the quantum tunneling between the
closed and open flux pairs shown in Fig. 2(c). Both pertur-
bations, J and �, contribute to this tunneling. Given that the
two flux sectors have ground states with opposite fermion
parities, the fermion vacuum of the closed flux sector can
tunnel into a continuum of excited states with odd number
of fermions in the open flux sector. In the pure Kitaev limit,
the closed flux pair has higher excitation energy than the open
flux pair, implying that the closed flux pair is immersed in the
matter fermion continuum of the open flux sector. The energy
difference between the two excitations is δ 	 0.03K .

For weak tunneling, |λ(ε ∼ δ)| � δ, the lifetime of the
closed flux pair is τ ∝ 1/[ρ(δ)|λ(δ)|2] ∝ 1/[δ|λ(δ)|2], where
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FIG. 7. [(a) and (b)] Dispersion of a bare flux pair (corresponding to the odd-fermion-parity sector) for the FM (a) and AFM (b) Kitaev
models with four representative perturbations indicated by black dots in (c) and (d). [(c) and (d)] Stability ranges of the FM (c) and AFM
(d) Kitaev spin liquids based on a partial variational subspace restricted to bare flux pairs. The dashed lines mark the boundary of each Kitaev
spin liquid where bare flux pairs become soft.

ρ(ε) ∝ ε is the density of states of the matter fermions around
the Dirac point. A stronger tunneling can eventually push the
energy of a closed flux pair below the continuum. Figure 8(a)
shows the matter fermion continuum of the open flux pair
and the energy level of the closed flux pair as a function of
J for the FM Kitaev model and for two different values of
the momentum of the flux pair. The tunneling between the
two sectors produces a large renormalization of the energy
of the closed flux pair. In particular, the spectrum of the flux
pair becomes gapless for a smaller absolute value of the crit-
ical Heisenberg interaction Jc. For instance, Jc reduces from
0.40|K| to 0.20|K| for an AFM Heisenberg interaction, and
from 2.0|K| to 0.34|K| for a FM Heisenberg interaction. As
shown in Fig. 8(b), the quasiparticle residue of the closed flux
pair remains above 70% before the mode becomes soft.

IV. MAGNONLIKE BOUND STATES

A. General formulation

In this section, we aim to describe topologically trivial
bound states of flux pairs and matter fermions. The relevant
variational subspace contains all eigenstates of the pure Kitaev
model that have two flux excitations at neighboring plaquettes

and a single matter-fermion excitation. In the notation of
Eq. (16), a general state from this variational subspace can
then be written as

| j, γ , n〉 = 2N/2P
{

f ( j,γ )†
n χ

γ †
j |u0〉 ⊗ |0( j,γ )〉}, (28)

where j ∈ A, f ( j,γ )
n (labeled by n) are the matter fermions

in the gauge sector bγ

j |u0〉 specified by the superscript ( j, γ )
and u0 refers to the trivial gauge sector. Generally, the matrix
elements of the Heisenberg and Gamma terms that connect
these eigenstates give rise to independently propagating flux
pairs and matter fermions. However, due to the interactions
generated by such non-Kitaev terms, these excitations may
also form bosonic (magnonlike) bound states.

Once again, the low-energy dynamics of flux pairs is gov-
erned by an effective low-energy Hamiltonian that results
from projecting H on the subspace spanned by the basis (28):

H j,β,m;i,α,n
even = 〈 j, β, m|(HK + HH + H� )|i, α, n〉. (29)

The Kitaev term is diagonal on this basis,
〈 j, β, m|HK |i, α, n〉 = δβαδi jδnm(� + εn). In contrast, the
Heisenberg and Gamma interactions generate off-diagonal
elements of Heven, namely a hopping matrix (T βα

i j )mn =
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FIG. 8. (a) Minimal energy of a closed flux pair for the FM
Kitaev model in the presence/absence of hybridization with the open
flux pair continuum (green shaded region). (b) Quasiparticle residue
of a closed flux pair hybridized with the open flux pair continuum.

〈 j, β, m|(HH + H� )|i, α, n〉 which is a generalization of the
hopping amplitudes T βα

i j = 〈 j, β|(HH + H� )|i, α〉 introduced
for a flux pair. For concreteness, the hopping matrix associated
with the flux-pair hopping processes in Figs. 5(c) and 5(d) is
given by (the lattice site labels are shown in the figures)

(
T zz

i1,i0

)
mn

= Ju0
〈i0 j0〉z

[〈0(i1,z)| f (i1,z)
m icA,i1 cB, j0

(
f (i0,z)
n

)†|0(i0,z)〉
+ u0

〈i1 j0〉x
〈0(i1,z)| f (i1,z)

m

(
f (i0,z)
n

)†|0(i0,z)〉], (30)(
T yz

i1,i0

)
mn

= �u0
〈i0 j0〉z

[〈0i1,y| f (i1,y)
m icA,i1 cB, j0

(
f i0,z
n

)†|0i0,z〉
− u0

〈i1 j0〉x
〈0(i1,y)| f (i1,y)

m

(
f i0,z
n

)†|0(i0,z)〉], (31)(
T yz

k,i0

)
mn

= �u0
〈k j1〉z

[〈0(k,y)| f (k,y)
m icA,i0 cB, j1

(
f (i0,z)
n

)†|0(i0,z)〉
− u0

〈i0 j1〉x
〈0(k,y)| f (k,y)

m

(
f (i0,z)
n

)†|0(i0,z)〉]. (32)

The hopping matrix associated with the other symmetry re-
lated hopping processes can be derived in a similar way. The
translational invariance of the above Hamiltonian Heven im-
plies that the center of mass momentum Q is a good quantum
number. Correspondingly, we introduce the Fourier transform

of the basis | j, γ , n〉 in Eq. (28):

|Q, γ , n〉 ≡
√

2

N

∑
j∈A

eiQ·r j | j, γ , n〉, (33)

where r j refers to the coordinate of lattice site j. For a given
center of mass momentum Q, the diagonalization of Heven pro-
duces the eigenvectors

∑
n,γ cQ,p(n, γ )|Q, γ , n〉 with energy

eigenvalues Ep(Q), p = 1, 2, . . . , 3N/2.

B. Formation of bound states

The spectrum of Heven forms a flat continuum (localized
flux pair plus gapless matter fermions) in the pure Kitaev
limit because of the static nature of the fluxes. However, it
becomes dispersive upon addition of the non-Kitaev terms
because the flux pair can propagate coherently through the
honeycomb lattice. As we discussed before, the Heisenberg
perturbation leads to a spectrum that is much more dispersive
for the AFM Kitaev model than for the FM Kitaev model.
For the FM case, i.e., for the Kitaev liquid state that is more
robust against the perturbation, a discrete level appears below
the continuum when the strength of the Heisenberg interaction
exceeds a critical value J = Jc [see Fig. 9(a)]. For J < 0, we
obtain Jc 	 −0.25|K| and the minimum of the bound state
dispersion is located at the � point. For J > 0, the critical
Heisenberg exchange is Jc 	 0.16|K| and the minimum of the
bound state dispersion is located at the M point.

We note that extended states have a rather strong finite
size dependence. Figure 9(a) shows the finite size scaling of
the spectrum at the � point, which is the wave vector that
minimizes the bound state dispersion. In the continuum limit,
the size dependence of the energy levels follows from the
linear dispersion Ep(Q; L) = Ep(Q) + ApL−1. By contrast, the
energy of the bound state has negligible dependence on L
because the linear size of the bound state is much smaller than
the L values used in our calculations. The L → ∞ extrapola-
tion of the finite size results indicates that the binding energy
(gap between the bound state and the continuum) remains
finite in the thermodynamic limit.

The positive and negative signs of the Heisenberg interac-
tion are related by a four sublattice spin rotation [42,52,66]
that produces the following transformations: HH → −HH +
2HK and HK → HK . This unitary operation then establishes
a correspondence between points of the quantum phase di-
agram with exactly the same energy spectrum. In terms of
the dimensionless ratio x = J/|K|,2 this transformation maps
1/2 > x+ > 0 to x− < 0,

x− = −x+/(1 − 2x+). (34)

This property of the exact solution of the problem provides
a quantitative test for our approximation scheme. In other
words, the instability that we are finding for positive x at x+ =
0.20 must have its negative x counterpart at x− = −0.3333.
This value agrees very well with the result x− = −0.3312
from our approximation scheme.

2x+ = 0.5 with FM Kitaev interaction is mapped into the pure FM
Heisenberg model, implying that the local magnetic moment is fully
saturated.
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FIG. 9. [(a)–(d)] Two-body energy spectrum of a flux pair and a matter fermion (corresponding to the even-fermion-parity sector) for the
FM [(a) and (c)] and AFM [(b) and (d)] Kitaev models with four representative perturbations indicated by black dots in (e) and (f). The right
panels of (a)–(d) show the finite size scaling of the spectrum for the wave vector that minimizes the excitation energy (the maximum linear size
of the finite lattices is 52 × 52 unit cells). [(e) and (f)] Stability ranges of the FM (e) and AFM (f) Kitaev spin liquids. The dashed lines indicate
phase boundaries where bare flux pairs become gapless [see also Figs. 7(c) and 7(d)], while the solid lines denote phase boundaries induced
by a softening of a magnonlike bound state between a flux pair and a matter fermion. The color of each line segment shows the center-of-mass
momentum Q of the bound state.

The Gamma term also makes the continuum spectrum dis-
persive and it induces a bound state between the flux pair
and a matter fermion. However, in this case the bound state
only appears for the AFM Kitaev model because the FM
model is much more fragile against the Gamma term (the
flux-pair gap closes before the bound state is formed). There
are two interesting features associated with the bound state
dispersion. First, in the absence of Heisenberg interaction,
the spectra are identical for the � and the K points of the
Brillouin zone because the dual Kagome lattice is subdivided
into three disconnected Kagome sublattices [see Fig. 5(a)].
Consequently, the bound state dispersion has global minima at
both momentum points for positive Gamma interaction. This
degeneracy is lifted by the Heisenberg term: the � (K) point
has a lower energy for a small positive (negative) J . As the
bound state becomes soft for a particular wave vector Q, the
system develops a divergent magnetic susceptibility, χ (Q, ω),
at ω = ωQ → 0. Consequently, the vertical line J = 0 can be

regarded as a phase boundary between � and K magnetic
orderings.

Secondly, for negative Gamma interaction, multiple bands
of bound states are formed and the lowest energy band has a
quasiflat dispersion. This is a direct consequence of the flat
lowest energy band of a bare flux pair for the AFM Kitaev
model with � < 0 [see Fig. 7(b)]. For J < 0.0145|K|, the
bound state becomes soft at six incommensurate wave vec-
tors related by the C6 symmetry of H. These wave vectors
are located on the paths that connect the M points of the
Brillouin zone with the zone center (the � point). For in-
stance, one of these wave vectors is Q = (0, 4πq/

√
3a) with

0 < q < 0.35. The six wave vectors converge at the � point
for J > 0.0145|K|.

In summary, by contrast to the odd-parity sector, the
even-parity sector can include bosonic modes if the spe-
cific perturbation induces a bound state of two elementary
fermionic particles. The softening of one of these bosonic
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modes indicates an instability towards magnetic ordering. The
corresponding stability boundaries are shown in Figs. 9(e) and
9(f). In the next section, we analyze the type of magnetic or-
dering that has dominant divergent susceptibility at each point
of these boundaries. We stress that the actual phase transition
does not need to be continuous. Correspondingly, the area
enclosed by the stability boundaries is an upper bound for the
area occupied by the Kitaev liquid phase. It is important to
note that the hybridization with the open flux pair has been
ignored when considering the even-parity sector. As we have
shown for the odd-parity sector, this hybridization reduces the
energy of an individual closed flux pair and, consequently, the
upper bound for the area occupied by the Kitaev liquid phase.
To account for this effect in the even-parity sector, one must
enlarge the variational space by including states with an open
flux pair and two matter fermions.

V. MAGNETIC ORDER

The magnetic ordering with dominant susceptibility can be
obtained by computing the matrix element of the spin opera-
tor between the overall ground state |	0; f0〉 ≡ 2N/2P{|u0〉 ⊗
|0u0〉} of the pure Kitaev model and the bound state |BQ〉 with
center of mass momentum Q that becomes soft,

Cμ
α,r = 〈

	0; f0

∣∣Ŝμ
α,r

∣∣BQ
〉
, (35)

where 	0 refers to the flux-free sector represented by the
gauge field configuration u0, α = A, B and r denotes the po-
sition of each unit cell of the honeycomb lattice. Throughout
this work, the position of the unit cells is labeled by the lattice
site on the A sublattice. The quantity

Ô =
∑
μ,α,r

Re
[
Cμ

α,r

]
Ŝμ

α,r, (36)

is the corresponding order parameter. We note that Cμ
α,r is

defined up to a U(1) phase (relative phase between the states
with n and n + 1 bound states), which is replaced by a Z2

freedom (H has only discrete symmetries) upon including
processes that create a pair of bound states. 3

The consequent local magnetic moment at each lattice site
is given by

Mμ
α,r ∝ Re

[
Cμ

α,r

]
. (37)

The spin components μ = x, y, z refer to the directions par-
allel to the cubic axes of the underlying ligand octahedra of
O2− ions that mediate the Kitaev, Heisenberg and Gamma in-
teractions in most realizations of this model. In this reference
frame, the honeycomb layer is perpendicular to the [111] axis.

As discussed in the previous section, the bound state |BQ〉
is obtained as the eigenstate of the variational Hamiltonian
Heven at the wave vector Q, which is formally written as

|BQ〉 =
∑
n,μ

cQ(n, μ)|Q, μ, n〉. (38)

3Note that those processes can only be included by enlarging the
variational space to states containing two flux pairs and an even
number of matter fermions.

The degeneracy ν of the lowest energy bound state depends
on the perturbations. For ν > 1, we should in principle eval-
uate the matrix element (35) for each degenerate bound state.
However, this is not necessary because the magnetic orderings
associated with different matrix elements are related by sym-
metry operations. In principle, the boson can condense in a
linear combination of bound state wave functions |BQ〉 with
different symmetry related wave vectors Q (multi-Q magnetic
ordering). For simplicity, we will assume that the condensa-
tion occurs at a bound state with well defined ordering wave
vector Q (single-Q magnetic ordering). However, we should
keep in mind that in these cases the actual linear combination
of bound state wave functions is determined by interaction
terms between the bound states, whose derivation is beyond
the scope of the present work.

To determine the magnetic moments explicitly, we com-
puted the two matrix elements on the A and B sublattices:

Cμ
A,r = 2√

N/2
e−iQ·rC̃μ

A,Q, (39)

Cμ
B,r = 2√

N/2
e−iQ·rμC̃μ

B,Q, (40)

where rμ ∈ A is connected to the B site of the unit cell at r via
the μ-th bond, and

C̃μ

A,Q = i
∑

n

cQ(n, μ)〈0(rμ,μ)| f (r,μ)
n cA,r|0u0〉, (41)

C̃μ

B,Q =
∑

n

cQ(n, μ)〈0(rμ,μ)| f (rμ,μ)
n cB,r|0u0〉. (42)

According to Eq. (37), the magnetic moment at each lattice
site is explicitly given by

Mμ
α,r ∝ cos(φ − Q · r)nμ

α,1 − sin(φ − Q · r)nμ
α,2. (43)

with

nμ
α,1 = Re

[
C̃μ

α,Q

]
, nμ

α,2 = Im
[
C̃μ

α,Q

]
. (44)

In other words, the local magnetic moments on sublattice
α = A, B are spanned by the two vectors nα,1 and nα,2 (a bold
variable n ≡ (nx, ny, nz ) refers to a three-component vector).
The U(1) degree of freedom, C̃μ

α,Q → C̃μ

α,Qeiφ , corresponds
to a uniform rotation of the local moments on the 2D plane
spanned by {nα,1, nα,2}. The U(1) phase does not affect the
nature of the magnetic orderings that we discuss below, ex-
cept for the 120◦ order. Correspondingly, the analysis of the
φ-dependence will be restricted to that case.

A. Ferromagnetic Kitaev model

1. Ferromagnetic order (J < 0)

For the FM Kitaev model, a strong enough FM Heisenberg
term (J < 0) gives rise to three degenerate bound states at
the � point. The bond orientation γ = x, y, z of the flux pair
is preserved to first-order in the Heisenberg interaction. The
resulting three degenerate bound states can then be labeled by
the quantum number |γ 〉. The condensation at one of the three
bound states gives rise to a collinear magnetic ordering with
the moments oriented along γ axis, namely, Mμ

r = Mrδμγ .
The Gamma term splits the degenerate triplet into a singlet

and a doublet. For � < 0, the lowest energy bound state is the
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FIG. 10. Magnetic order deduced from the condensation of the lowest-energy bound state for different model parameters.

singlet

|s〉 = (|x〉 + |y〉 + |z〉)/
√

3, (45)

that belongs to the trivial representation of the C3 sym-
metry group. Consequently, C̃x

α,0 = C̃y
α,0 = C̃z

α,0 ≡ C̃α, α =
A, B. Note that the ground state and the bound state
are both invariant up to a phase factor under the in-
version symmetry, cA,r → cB,r, cB,r → −cA,r: |0u0〉 → |0u0〉,
|b〉 ≡ ∑

nμ cQ(n, μ) f (r,μ)†
n |0r,μ〉 → i|b〉, implying that C̃A =

C̃B. According to Eq. (37), this indicates an instability to-
wards ferromagnetic ordering along the [111] direction [see
Fig. 10(a)].

For � > 0, the lowest energy bound states are spanned by
the doublet

|d1〉 = 1√
3

(|x〉 + ei2π/3|y〉 + e−i2π/3|z〉),

|d2〉 = 1√
3

(|x〉 + e−i2π/3|y〉 + ei2π/3|z〉)/
√

3. (46)

The bosons can then condense in any linear combination
of these two states. If we assume that the condensation
takes place in |d1〉 or |d2〉, we obtain nA2, nB2 = 0 and
nA1 = nB1⊥[111]. This result implies an instability towards
ferromagnetic ordering in the plane perpendicular to the
[111] direction [see Fig. 10(b)]. Different in-plane moment
directions correspond to condensations in different linear
combinations of |d1〉 and |d2〉. We note that this magnetic
order coincides with the one that is obtained in the classical
limit of the model [44]. The same is true for the remaining
magnetic orders that we discuss below.

2. Stripy order (J > 0)

For the FM Kitaev model, a strong enough AFM Heisen-
berg term (J > 0) gives rise to three degenerate bound states
at the three M points. For concreteness, we will assume that
the bound state condenses at the M point Q = (2π/

√
3a, 0)

(single-Q ordering). The magnetic orders associated with con-
densations at the other two M points are obtained by applying
a C3 rotation. In the absence of the � term, the condensation
gives rise to a collinear magnetic order along the [001] direc-
tion. As shown in Fig. 10(c), spins that are connected by the z
bonds are oriented in the same direction, forming the so-called
stripy magnetic order [44–46]. A finite Gamma term induces
a global rotation of the magnetic moments about the b axis.

B. Antiferromagnetic Kitaev model

1. Antiferromagnetic order (� > 0, J > 0)

We will consider now the instabilities of the AFM Kitaev
model. As shown in Fig. 9(b), for � > 0 and J = 0, there are
three degenerate bound states. One of them is located at the �

point, while the other two are located at the two K points. This
degeneracy is a direct consequence of the restricted motion
of the bound state to one of the three sublattices shown in
Fig. 5(b). An arbitrarily small Heisenberg interaction lifts the
degeneracy between the � and ±K points. The � state has
lower (higher) energy if J > 0 (J < 0). In this section, we
consider the case J > 0, while the case J < 0 is left for the
next section.

The bound state at the � point picks up a phase −i un-
der inversion. Together with the C3 symmetry of H, this
property dictates that C̃x

α,0 = C̃y
α,0 = C̃z

α,0 ≡ C̃α, α = A, B and
C̃A = −C̃B. According to Eq. (37), this indicates an instability
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towards antiferromagnetic ordering along the [111] direction.
The resulting antiferromagnetic order is shown in Fig. 10(d).

2. 120◦ magnetic order (� > 0, J < 0)

As explained in the last section, the bound state dis-
persion induced by a positive Gamma interaction has a
global minimum at the ±K points for arbitrarily small and
negative FM Heisenberg interaction (J < 0). The magnetic
order produced by the condensation in one of the two K
points corresponds to a six-sublattice structure. For instance,
there are three nonequivalent magnetic moments on the
A sublattice,

MA,0 ∝ nA1 cos(φ) − nA2 sin(φ),

MA,a1 ∝ nA1 cos

(
φ − 4π

3

)
− nA2 sin

(
φ − 4π

3

)
,

MA,2a1 ∝ nA1 cos

(
φ − 2π

3

)
− nA2 sin

(
φ − 2π

3

)
,

and three on the B sublattice,

MB,0 ∝ ñB1 cos(φ) − ñB2 sin(φ),

MB,a1 ∝ ñB1 cos

(
φ − 4π

3

)
− ñB2 sin

(
φ − 4π

3

)
,

MB,2a1 ∝ ñB1 cos

(
φ − 2π

3

)
− ñB2 sin

(
φ − 2π

3

)
,

where

ñx
B1 = −1

2
nx

B1 +
√

3

2
nx

B2, ñx
B2 = −

√
3

2
nx

B1 − 1

2
nx

B2,

ñy
B1 = −1

2
ny

B1 −
√

3

2
ny

B2, ñy
B2 =

√
3

2
ny

B1 − 1

2
ny

B2,

ñz
B1 = nz

B1, ñz
B2 = nz

B2.

Here φ is the angle associated with the above-mentioned U(1)
freedom.

The calculation of the matrix element (35) leads to the fol-
lowing constraints: |nA1| = |nA2| = |ñB1| = |ñB2| 	 0.66 and
nA1⊥nA2, ñB1⊥ñB2. These constraints imply that the mag-
nitude of the magnetic moments is uniform over the whole
lattice. As a result, the magnetic moments form a 120◦ struc-
ture on each A and B sublattice. Another constraint that
results from the calculation is that ñB1 = −nA1 and ñB2 = nA2.
This constraint locks the relative vector chirality of the two
different sublattices: for each hexagonal plaquette of the hon-
eycomb lattice, the vector spin chirality along the up-triangles
on the A sublattice is the same as the vector chirality along
the down-triangles on the B sublattice [see Fig. 10(e)]. There
is still a remaining degree of freedom in the magnetic pattern
because a change of φ corresponds to a uniform rotation of
the magnetic moments on the A and B sublattices in opposite
directions. This freedom, that also exists in the classical limit
of the model [44], is removed by the processes that create and
annihilate pairs of bound states (vacuum fluctuations) with
opposite wave vectors K and −K . As it is shown in Fig. 10(e)
for a fixed value of φ, the resulting coplanar order lies in the
[111] plane and it agrees with the result that is obtained for
the classical limit of the model [44].

TABLE I. Phase boundaries of the FM Kitaev spin liquid in the
presence of a Heisenberg interaction (� = 0).

Jc/|K| this work ED [46] DMRG [47]

J < 0 −0.33 −0.1648 −0.1167
J > 0 0.20 0.1231 0.0938

3. Spiral magnetic and antiferromagnetic order (� < 0)

As we found in Sec. IV B, for � < 0 and J � 0.0145|K|,
the bound state becomes gapless at six incommensurate wave
vectors related by C6 symmetry [see Fig. 9(f)]. A (single-
Q) condensation in one of these wave vectors, such as Q =
(0, 4πq/

√
3a) with 0 < q < 0.35, leads to a coplanar mag-

netic order that lies in the plane perpendicular to the [1̄10]
axis because nA1 × nA2, nB1 × nB2 ‖ [1̄10] [see Fig. 10(f)]. By
choosing a proper phase of the bound state wave-function
such that nA1 is orthogonal to nA2, the two vectors nA1 and
nA2 have different lengths. The same holds true for the B
sublattice. This property leads to a spin density wave, i.e., to
a modulation of the magnitude of the magnetic moments.

The six incommensurate wave vectors converge to the �

point upon increasing J , giving rise to a doublet of bound
states. Meanwhile, the magnetic moments rotate about the
[1̄10] axis and form an AFM structure parallel to the [112̄]
axis. Given the double degeneracy of the lowest energy bound
state, the AFM moments can point in any direction of the
[111] plane. We note that positive and negative signs of the
Gamma interaction added to the AFM Kitaev model both lead
to AFM order. However, the C3 symmetry about the [111]
axis is preserved in the former case, while it is broken in
the latter case. According to numerical simulations [44,45],
the two AFM orders are adjacent to each other on the J-�
phase diagram, in agreement with Fig. 9(f) where J > 0. Our
analysis indicates that there should be a magnetic moment
reorientation phase transition between the two types of AFM
order.

C. Comparison with numerical results

We close this section with a comparison against the ex-
isting numerical simulations. The ordering wave vectors that
we extracted from the analysis presented in this section are
consistent with exact-diagonalization (ED) studies of a 24-site
cluster [44–46]. The orientation of the magnetic moments was
determined from studies of the classical limit of the model
[44] and it also agrees with our results. Tables I and II include
a comparison between the critical values of the perturbations
at which the two-fermion bound state becomes a gapless ex-
citation and the phase boundaries obtained from ED studies

TABLE II. Phase boundaries of the AFM Kitaev spin liquid in
the presence of a Gamma interaction (J = 0).

�c/|K| this work ED [44,45]

� < 0 −0.4 −0.14
� > 0 0.27 0.095
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[44–46] and density matrix renormalization group (DMRG)
[47]. In all cases, the present analysis predicts a larger sta-
bility range of the Kitaev liquid because of two reasons. The
first reason is that in our simple analysis we have neglected
processes, such as the hybridization with the open flux pair
or the creation/annihilation of two flux pairs [see Fig. 2(a)],
that produce a significant reduction in the energy of the flux
pair (Fig. 8). The second reason is that these phase transitions
are expected to be of first order, implying that the transition
occurs before the bound state excitation becomes gapless.

In the previous section, we have also shown that the
FM and AFM Kitaev spin liquids have very different
stability against the Heisenberg and the Gamma terms
considered in this work. This asymmetry arises from the
constructive/destructive interference between processes that
contribute to the effective hopping of flux pairs and it is also
verified by numerical studies of this model.

Finally, we note that some magnetic orders reported in
the ED study [44] are not explained by the current approach
because of the absence of preformed bound states in the exci-
tation spectrum. In this case, the excitations that become soft
are the fractional (fermionic) modes. This result is consistent
with a recent DMRG study [49], where it is found that an
AFM Gamma interaction induces a transition from the FM
Kitaev spin liquid to a different type of spin liquid. The
transition is characterized by a discontinuous change in the
average flux 〈Wp〉 per plaquette.

VI. DYNAMICAL SPIN STRUCTURE FACTOR

The above-mentioned two-fermion bound state should ap-
pear as a sharp mode in the dynamical spin structure factor
that is measured with inelastic neutron scattering. As ex-
plained above, the emergence of these coherent quasiparticle
modes signals the proximity to a quantum phase transition
into a magnetically ordered state. This phenomenon can be
exploited to reveal the coherent nature of the continuum of
magnetic excitations produced by the unbounded flux pair and
matter fermion modes.

The diagonal components of the dynamical structure factor
are

Sμμ(q, ω) =
∑

n

δ(ω − En + EG)|〈G|Sμ
q |n〉|2, (47)

where |n〉 and |G〉 denote the exact eigenstates and the ground
state of H with eigenvalues En and EG, respectively, and μ =
x, y, z. Sμμ(q, ω) can be exactly computed at T = 0 for the
pure Kitaev model. In this case, the ground state has zero flux
and the excited states contributing to the matrix elements in
Eq. (47) have only one flux pair. As we argued in previous
sections, the main contribution to these matrix elements arises
from states containing only one matter fermion (Bogoliubov
quasiparticle in the two-flux sector). Our approach should then
provide an accurate estimate of Sμμ(q, ω) for small enough
values of J/K and �/K .

The excited eigenstates that contribute to Sμμ(q, ω) are
approximated by the eigenstates of the effective Hamiltonian
Heven [see Eq. (29)] that acts on the reduced even-parity
sector. Figs. 11(a) and 11(d) show the resulting S(q, ω) ≡∑

μ Sμμ(q, ω) for the pure FM and AFM Kitaev model. Pan-

FIG. 11. Dynamical structure factor S(q, ω) ≡ ∑
μ Sμμ(q, ω) for

different perturbations of the FM Kitaev model [(a)–(c)] and AFM
Kitaev model [(d)–(f)]. The black dashed line indicates the lower
edge of the continuum. The calculation has been done on a finite
lattice of 71 × 71 unit cells and the artificial broadening of the delta
functions in Eq. (47) is η = 0.08|K|.

els (b) and (c) show the result for two representative sets of
perturbations around the FM Kitaev model. Similarly, panels
(e) and (f) show the result for two representative sets of per-
turbations around the AFM Kitaev model.

Since the mass of the flux pair reduces to a finite value
for J �= 0 or � �= 0, the spectral weight distribution acquires a
finite dispersion in the presence of these perturbations. The
magnonlike bound state that was discussed in the previous
section gives rise to sharp and dispersive magnetic modes.
These modes acquire a finite lifetime (the line becomes broad)
upon entering in the continuum because they can decay into
two independent bond and matter Majorana fermions. The
sharp features below the continuum provide unambiguous ev-
idence of a coherent quantum spin liquid (continuum features
can also originate from disorder and/or thermal fluctuations in
classical phases with no long-range quantum entanglement).

VII. SUMMARY AND OUTLOOK

In this paper, we have studied the low-energy excitation
spectrum of the Kitaev-Heisenberg-Gamma model through a
novel variational approach that is based on the exact frac-
tionalized excitations of the pure Kitaev honeycomb model.
We have demonstrated that this new approach reveals the
microscopic mechanisms behind many important aspects of
the quantum phase diagram from previous numerical works
[42–47].
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First of all, our results provide a simple explanation for the
asymmetric stability of the Kitaev spin liquid phases around
the FM and AFM Kitaev limits. In our picture, the phase
transitions out of the Kitaev spin liquid phases are related to
softening of flux-pair excitations, which are static for the pure
Kitaev model but become dispersive in presence of Heisen-
berg and/or Gamma interactions. For J �= 0 and � = 0, the
hopping amplitude of such a flux pair is large (small) for
the AFM (FM) Kitaev spin liquid due to a constructive (de-
structive) interference between two contributions arising from
different components of the Heisenberg interaction. Since a
larger hopping amplitude means a stronger dispersion for the
same perturbation, this simple result naturally explains why
the AFM Kitaev spin liquid is more fragile against a Heisen-
berg perturbation than the FM Kitaev spin liquid. Conversely,
for � �= 0 and J = 0, the hopping amplitude is small (large)
for the AFM (FM) Kitaev spin liquid due to an analogous
interference effect, implying that the AFM Kitaev spin liquid
is more robust against a Gamma perturbation than the FM
Kitaev spin liquid.

Importantly, our variational approach can be straightfor-
wardly generalized to other perturbations on top of the Kitaev
model, including a Zeeman term representing an external
magnetic field [67–69]. By considering the hopping ampli-
tude of a flux pair, the same kind of interference effect then
explains why the AFM Kitaev spin liquid is more robust
(fragile) against a uniform (staggered) magnetic field than the
FM Kitaev spin liquid [69]. Further perturbations of interest
include different forms of disorder, such as bond disorder [70],
random vacancies [71,72], and topological defects [73]. In
particular, our varational approach may shed light on the lo-
calization of flux excitations via the Anderson mechanism or
the flux-binding effect induced by spin vacancies [71,74,75].

Moreover, our results provide valuable insight about the
magnetically ordered phases beyond the transitions out of the
two Kitaev spin liquid phases. In particular, for each phase
transition induced by the kind of perturbation (Heisenberg
or Gamma) against which the given Kitaev spin liquid (FM
or AFM) is more robust, we find a softening of a bosonic
magnonlike excitation at a wave vector that coincides with
the ordering wave vector of the resulting magnetically ordered

phase. Since this bosonic excitation is topologically trivial
(i.e., it does not carry any gauge charge), its condensation
at a continuous transition would lead to a magnetically or-
dered quantum spin liquid phase. To reach a conventional
magnetically ordered phase, one would then require two sub-
sequent phase transitions for generating the magnetic order
and destroying the quantum spin liquid, respectively. How-
ever, according to numerical studies, these two transitions are
preempted by a single discontinuous (first-order) transition
which immediately destroys the quantum spin liquid in favor
of a conventional magnetically ordered phase. It is then an
intriguing question whether including additional perturbations
could make this phase transition continuous, thereby stabi-
lizing a novel quantum phase in which the fractionalized
excitations of the Kitaev spin liquid coexist with long-range
magnetic order.

Finally, our work predicts that the bosonic magnonlike ex-
citation, which forms further away from the pure Kitaev limit,
manifests as a sharp mode in the dynamical spin structure
factor. This exotic bound state of a flux pair and a Majorana
fermion can then be detected in inelastic neutron scattering
and can serve as a direct signature of the Kitaev spin liquid
phase. While we have focused on the dynamical spin structure
factor, straightforward extensions of our approach can also be
used to compute other dynamical responses. In turn, comput-
ing such dynamical responses away from the exactly solvable
limit is crucial for characterizing real candidate materials both
for the actual quantum spin liquid phase as well as the “prox-
imate” magnetically ordered phases.
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