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Dynamic magnetoelastic boundary conditions and the pumping of phonons
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We derive boundary conditions at the interfaces of magnetoelastic heterostructures under ferromagnetic reso-
nance for arbitrary magnetization directions and interface shapes. We apply our formalism to magnet|nonmagnet
bilayers and magnetic grains embedded in a nonmagnetic thin film, revealing a nontrivial magnetization angle
dependence of acoustic phonon pumping.
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I. INTRODUCTION

The functionalities explored by spintronics may lead to
novel information technologies that take advantage of the spin
degrees of freedom. The current-induced spin transfer by elec-
trons [1] and magnons [2,3] can, e.g., be used for nonvolatile
memories and magnetic logic devices. Electromagnetic fields
[4,5] and lattice vibrations [6–13] may also carry spin. The
orbital and spin angular momentum of the deformation fields
of continuous isotropic acoustic media with SO(3) rotational
symmetry derive from Noether’s theorem [7,10]. The phonon
spin is the angular-momentum contribution that does not de-
pend on the origin of the coordinate system [10,12,13].

Magnetic anisotropy and magnetoelasticity in magnetic
materials couple the phonon spin with the magnetization [14].
Interfaces between magnets (M) and nonmagnets (NM) play
crucial roles in spintronics. An interesting material for the
“spin mechanics” extension of spintronics are thin films of
magnetic insulator yttrium iron garnet (YIG) grown on the
paramagnet gadolinium gallium garnet (GGG), which are
both of very high acoustic quality. The magnetization dynam-
ics in YIG emits phonons into the GGG (phonon pumping)
[15]. In YIG|GGG|YIG phononic spin valves, the magnetic
layers communicate by the exchange of phonons over mil-
limeters [16,17], much larger than the propagation distance
of diffuse magnon spin currents in YIG [18].

The Landau-Lifshitz-Gilbert (LLG) equation governs the
magnetization dynamics and the elastic equation of mo-
tion (EOM) that of the underlying lattice. They are coupled
by effective forces and fields, which are functional cross-
derivatives of the total energy [19–23]. This approach is ap-
propriate in the GHz frequency regime in which wavelengths
far exceed the lattice constants. Ferromagnetic resonance
(FMR) excites the uniform precession (the Kittel mode) for
which effective forces and torques in the bulk cancel out to
a large extent. Dynamical magnetoelastic stresses at surfaces
and interfaces of the magnet, however, are a source of phonons
[24] and its generation is governed by boundary conditions
(BCs).

Comstock and LeCraw [24] formulated the BCs for planar
M|NM interfaces with magnetization normal to the plane.

Tiersten [25,26] addressed BCs of general structures such
as sketched in Fig. 1 in the framework of nonlinear contin-
uum mechanics, but the practical consequences of spin-lattice
coupling are difficult to distill from the heavy mathematics.
Here, we address the BCs in linear system, clearly separating
elastic and magnetoelastic effect, generalizing Ref. [24] to
arbitrary interface geometries and directions of the macrospin
dynamics, including shear and pressure waves. We interpret
the BCs in terms of physically appealing conservation laws
for linear- and angular-momentum currents. The formalism
can handle different material combinations; here we focus on
YIG|GGG and Galfenol|GaAs. We illustrate the formalism
by calculating the FMR spectra and phonon pumping for two
geometries: M|NM bilayers and M grains embedded in NM
thin film. The model leads to analytic expressions of FMR and
phonon pumping in the planer systems, with a good agreement
with the experiments by An et al. [16] when magnetization
is normal to the interface, and we predict a magnetization
angle-dependence that reveals generation of pressure waves.
By the curvilinear BCs, the dynamics of magnetic grains, on
the other hand, emits a nontrivial distribution of phonon spin
currents.

This article is organized as follows. In Sec. II we intro-
duce and simplify Tiersten’s formalism [26] and define the
linear- and angular-momentum phonon currents. Sections III
and IV deal with phonon pumping from planar and curvilinear
interfaces, respectively. In Sec. V we discuss applications
and justify the approximations. In Sec. VI we summarize our
results and give an outlook.

II. FORMALISM

A. Variational principle

We consider the M-NM composite system in Fig. 1 with
NM|vacuum surface A, M|vacuum surface B, and NM|M
interface C. Sound waves in elastic media with frequencies
up to tens of GHz have wavelengths much longer than the
lattice constants and continuum theory applies. We disregard
the effect of global rotations on magnons and phonons [27],
assuming the total system size to be macroscopic. We focus
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FIG. 1. The displacement (deformation) vector fields of lattice u
and magnetization m determine the state of magnet (M)-nonmagnet
(NM) composite systems studied in this paper. The boundaries con-
sist of NM|vacuum surface A (black), M|vacuum surface B (blue),
and NM|M interface C (red).

on the linear regime in which the material (Lagrangian) and
spatial (Eulerian) coordinates coincide [28] and denote them
by r, while u(r, t ) is the displacement vector at time t of a
volume element with equilibrium position r. M and NM are
assumed bonded, with identical displacement on both sides
close to the interface C in Fig. 1:

u|NM = u|M on interface C. (1)

The magnetization vector field is normalized by its modu-
lus Ms as m(r, t ) = M(r, t )/Ms. Throughout, Greek letters
α, β, . . . denote spatial coordinates and we adopt the sum-
mation convention over repeated indices.

We compartmentalize the Lagrangian density as

L =
{Kel − Uel in NM

Kel − Uel + Kmag − Umag − Usurf − Ume in M
,

(2)
where the kinetic energy Kel(r) is ρu̇(r)2/2 in NM and
ρ̃u̇(r)2/2 in M. The mass densities ρ, ρ̃ and constitu-
tive parameters are taken to be constant in each material,
but allowed to differ. The spin kinetic term reads Kmag =
Ms/(−γ )φ̇(cos θ − 1), where −γ , θ and φ are the gyromag-
netic ratio and the polar- and azimuthal angles, respectively
[29,30]. We consider elastic, magnetic, and magnetoelastic
energy densities that depend linearly on the deformations,
magnetization, and their derivatives

Uel = Uel(∂βuα ), (3a)

Umag = Umag(mα, ∂βmα ), (3b)

Ume = Ume(∂βuα, mα, ∂βmα ). (3c)

The deformation gradients ∂βuα = εαβ + ωαβ consist of
strains εαβ = (∂βuα + ∂αuβ )/2 and rotational deformations
ωαβ = (∂βuα − ∂αuβ )/2. The coupling of strain and magne-
tization is the “magnetoelastic coupling” [14,19]. Rotational
deformations tilt the anisotropy axis, leading to the mag-
netorotation coupling [31–34]. The general form Eq. (3c)
includes both interactions but we still refer to it as mag-
netoelastic coupling (MEC) in the following. The surface
anisotropy energy Usurf = μ0M · Hsurf/2 arises from crys-
talline and magnetodipolar effective fields Hsurf at the
boundaries in Figs. 1(b) and 1(c) [19]. The classical action
functional reads

S[u, m] =
∫ T

0
dt

∫
M+NM

d3r L(u̇α, ∂βuα, mα, ∂βmα ). (4)

We can derive the governing equations by the principle of
least action. We assume a strong ferromagnet with constant
modulus of the magnetization vector:

δS + δ

∫ T

0
dt

[∫
M

d3r λ1|m|2 +
∫

A+B
dS λ2|m|2

]
= 0. (5)

The Lagrange multipliers λ1,2 enables independent variations
of the three magnetization components {δmα}. In the absence
of external forces at surfaces and interfaces, the variations
at the boundaries must be taken into account when mini-
mizing the action. For mathematical convenience, we impose
δuα (r, 0) = δuα (r, T ) = δmα (r, 0) = δmα (r, T ) = 0, which
does not affect the results as long as the time T is sufficiently
large. Equation (5) yields the following EOMs and BCs for
the lattice and magnetization [26]:

ρüα = ∂σ
αβ

el

∂rβ

in NM, (6a)

ρ̃üα = ∂σ
αβ

el

∂rβ

+ ∂σ
αβ
me

∂rβ

in M, (6b)

σα
el · n = 0 on A, (7a)(

σα
el + σα

me

) · n = 0 on B, (7b)(
σα

el|M + σα
me

) · n = σα
el|NM · n on C, (7c)

ṁ = −γμ0m × (Hmag + Hme) in M, (8)

and

εαβγ mβ

(
1
2μ0MsH

γ

surf + Xγ · n
) = 0 (9)

on boundaries to M, where

σ
αβ

el = ∂Uel

∂ (∂βuα )
, σ αβ

me = ∂Ume

∂ (∂βuα )
, (10a)

Hmag ≡ − 1

μ0Ms

[
∂Umag

∂m
− ∂ν

∂Umag

∂ (∂νm)

]
, (10b)

Hme ≡ − 1

μ0Ms

[
∂Ume

∂m
− ∂ν

∂Ume

∂ (∂νm)

]
, (10c)

X αβ ≡ ∂Umag

∂ (∂βmα )
+ ∂Ume

∂ (∂βmα )
, (10d)

the vectors of tensor components are defined as Aα ≡
(Aαx, Aαy, Aαz )T , and n is a surface normal. In Appendix A
we discuss the definition of the stress tensor Eq. (10a).

MEC causes a nonvanishing magnetoelastic stress tensor
σme and forces Fα

me = ∂βσ
αβ
me in Eq. (6b). A uniform magne-

tization appears to not affect the dynamics, but comes into
play via the BCs [19,24], as seen in Eqs. (7) that ensures
the continuity of stress across the interfaces and boundaries.
Equations (7) contain all surface and interface stresses and
uniquely determines the solution to Eqs. (6) [35]. In the ab-
sence of MEC (σα

me = 0), Eqs. (7) reduce to the free- and
bonded-boundary conditions in the ordinary theory of elas-
ticity [36]. Akhiezer [37] and Tiersten [26] derived the BCs at
the boundaries B and C more than half a century ago. How-
ever, these authors did not separate magnetoelastic and elastic
contributions, which is helpful for practical implementations
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TABLE I. Material parameters used in this paper.

ρ (kg/m3) ct (m/s) c� (m/s) ηel/(2π ) (MHz) αG μ0Ms (T) K1 (MJ/m3) b1 (MJ/m3) b2 (MJ/m3)

YIG 5170a 3843a 7209a 0.35 9 × 10−5b 0.172b −6.10 × 10−4c 0.348a 0.696a

GGG 7070d 3568d 6411d 0.35b

Galfenol 7800e 4.0 × 103e 5.0 × 103f 1 0.017g 1.59e 3.3 × 10−2g -15.6h -6.19e

GaAs 5317i 3.34 × 103i 4.73 × 103i 1j

aReference [19].
bReference [16].
cReference [47].
dReference [48].
eReference [23].
fCalculated from C44 = 1.23 × 1011 Pa and C11 = 1.96 × 1011 Pa [49].
gThin film value [50].
hBulk single crystal value [51].
iRef. [52]. For propagation along 〈100〉 and at 300 K.
jIn the absence of experimental data at 3–10 GHz, we average the room-temperature results at 1.03 GHz [53] [ηel/(2π ) ∼ 0.1 MHz] and
56 GHz [54] (∼60 MHz).

and physical understanding. Equations (7) hold for arbitrarily
curved interfaces, magnetization direction, and MEC energy.
For a bilayer system with macrospin magnetization normal or
parallel to the plane, Eq. (7c) reduces to MEC-BCs involving
only pure shear waves [15,17,21,24].

Magnetization dissipation can be taken into account in
Eq. (8) by adding a phenomenological viscous damping
torque to arrive at the LLG equation:

ṁ = −γμ0m × (Hmag + Hme) + αGm × ṁ, (11)

where αG is the Gilbert damping constant. Ultrasonic atten-
uation in solids arises from thermoelasticity, phonon-phonon
interactions, and defects and depends on frequency and tem-
perature [38]. Here we focus on a small frequency range and
room temperature and model the attenuation by additional
damping forces −ρηelu̇α on the right-hand side of Eq. (6) with
frequency-independent attenuation per unit length, for which
we adopt the parameters from the MHz-GHz experiments (see
Table I). Both types of phenomenological damping, αG and
ηel, cause a loss of angular momentum that can in a micro-
scopic description be accounted for by a transfer of angular
momentum to global rotations [27] or to the environment that
supports the sample [12].

The magnetization obeys the BC (9). In the long-
wavelength limit the exchange contribution to the MEC
vanishes, i.e., ∂Ume/∂ (∂βmα ) = 0. When, on the other hand,
the surface anisotropy is small compared to exchange in-
teraction, Eq. (9) simplifies to “free” BC, i.e., vanishing
magnetization gradient at the boundaries.

B. Linear-momentum current

According to Streib et al. [15] the BCs for the bilayer with
perpendicular and in-plane magnetization reflect conservation
of the linear-momentum current at the interface. Here we
extend this notion for arbitrary shape of the boundaries and
magnetization directions. Newton’s Eqs. (6) are equivalent to
the conservation law of linear momentum,

d pα

dt
= −divjαp, (12)

where

jαp (r) ≡
{ − σα

el(r) r ∈ NM

− σα
el(r) − σα

me(r) r ∈ M
(13)

is the (outward) linear-momentum current density tensor with
units [N m−2] = [kg m/s s−1 m−2] (linear-momentum flux
per unit area). The index α denotes Cartesian component of
the linear momentum, whereas the vector is the current flow
direction. The minus signs in Eq. (13) indicate that the stress
is a force exerted on the volume by its surrounding parts
of the body [39] equivalent to an incoming flow of linear
momentum. Our central result Eq. (7) and assumption Eq. (1)
are therefore equivalent to the continuity of linear-momentum
current and displacement:

jαp · n = 0 on outer surfaces A and B,

u|NM = u|M
jαp|NM · n = jαp|M · n

}
on interface C. (14)

C. Angular-momentum currents

Akhiezer [37] and Kamra et al. [21] derived the BCs by
considering energy flux and energy conservation (integral of
motion) but did not address the angular momentum. Here, we
find that the linear-momentum current introduced in Sec. II B
is closely related to the magnon-phonon angular-momentum
current across M|NM interfaces.

Let us consider a volume element of a deformed elastic
magnet located at the vector sum of its equilibrium position
and displacement, r + u. When |u| � |r|, the volume integral
of physical quantities over a deformed body and equilibrium
body with volume V is the same. The motion of a volume
element in continuous media may acquire Newtonian angular
momentum Jph = Lph + Sph, where [9,10,12,40]

Lph =
∫

V
d3r r × p, Sph =

∫
V

d3r u × p. (15)

The first integral expresses a global rotation of the body,
depends on the choice of the origin, and vanishes for elastic
plane waves with finite wavelengths [12]. The second may
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FIG. 2. (a) Sketch of a planar M|NM bilayer with magnetization angle θm and film thicknesses L and d . (b, c) θm-dependence of the
amplitudes of the dynamical magnetoelastic interface stress Eq. (29) induced by pure FMR for different magnets with material parameters
from Table I. Magnetization aligns the applied static fields of (b) μ0H0 = 0.3609 T and (c) 1.6 T and is excited with the same perpendicular
microwave intensity.

be interpreted as “phonon spin,” which is caused by unidi-
rectional rotations of mass particles around their equilibrium
positions [40]. Jph is generated not only by the magne-
torotation coupling in the volume [10,40] but also by the
angular-momentum current through the boundaries, since ac-
cording to Eq. (12):

L̇α
ph = −

∫
∂V

jαL · ndS +
∫

V
T α

L d3r, (16a)

Ṡα
ph = −

∫
∂V

jαS · ndS +
∫

V
T α

S d3r, (16b)

where ∂V is the surface and

jαL = εαβγ rβjγp , T α
L = εαβγ jγ β

p , (17a)

jαS = εαβγ uβjγp , T α
S = εαβγ ∂νuβ jγ ν

p . (17b)

The angular-momentum current densities jαL,S are in units
(angular momentum)/(area)/(time). The surface integrals in
Eqs. (16) represent the angular-momentum transfer across the
boundaries that has not been considered in the bulk theory
[40]. For levitating (non)magnets with stress-free boundary,
the surface integrals vanishes owing to the BC Eq. (14). T α

L,S
are torque densities. T α

L induces a rigid rotation of the body
and therefore does not involve local deformations. On the
other hand, T α

S exerts local torques by elastic deformations
and hence depends on the derivatives of the mechanical dis-
placement. In NM, T α

L vanishes due to the symmetry of the
elastic stress tensor, while T α

S may be disregarded since it is
quadratic in the strain. In M, T α

L is finite due to the antisym-
metric part of the magnetoelastic stress tensor [see Eq. (A2)
in Appendix A], which actuates a rigid rotation [40]. In the
examples illustrated in Secs. III and IV, however, the antisym-
metric part (i.e., magnetorotation coupling) is negligible and

angular momenta are mostly supplied by currents across the
boundaries. In Sec. IV we calculate the phonon spin current
density jαS emitted from a magnetic disk.

III. APPLICATIONS: BILAYERS

As a first example, we consider a flat interface between a
magnetic film of thickness d and a nonmagnetic substrate of
thickness L [Fig. 2(a)]. The governing equations derived in
Sec. II allows us to compute the FMR signals as a function
of layer thicknesses and magnetization orientation, thereby
microscopically modeling the published experiments with
perpendicular magnetization [16].

A. Model

We take the z axis normal to the interface and assume
translational symmetry in the x-y plane. We consider cubic
lattices, whose elastic energy is given by three elastic stiffness
constants Ci j and the strains [41]:

Uel =C11

2

(
ε2

xx + ε2
yy + ε2

zz

)
+ C12

(
εyyεzz + εzzεxx + εxxεyy

)
+ 2C44

(
ε2

yz + ε2
zx + ε2

xy

)
. (18)

Substitution into the first of Eq. (10a) reproduces Hooke’s law.
In YIG and GGG, C11 − C12 � 2C44 and the sound velocities
are virtually isotropic [19], but in general anisotropic in sin-
gle cubic crystals. We adopt the crystallographic orientation
ez ‖ 〈100〉, so the transverse and longitudinal velocities of the
ultrasounds propagating in the z direction read ct = √

C44/ρ

and c� = √
C11/ρ, respectively.
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The magnetic energy density consists of the Zeeman cou-
pling UZ = −μ0Msm · Hext and the shape and crystalline
anisotropy energies [42]

UA = 1
2μ0M2

s mT Nm + K1(m × n0)2

= K1 + (
1
2μ0M2

s − K1
)
(m · êz )2, (19)

where μ0 is the vacuum permeability, N = diag(0, 0, 1) is
the demagnetization tensor of thin films, and K1 the uniaxial
crystalline anisotropy constant. Here we adopt a perpendicu-
lar anisotropy axis n0 ‖ êz. We disregard surface anisotropies
which could pin the magnetization at the boundaries [43–45].
The uniform equilibrium magnetization is assumed to be par-
allel to a strong enough applied magnetic field H0. The Kittel
mode is excited by a weak AC magnetic field transverse to the
magnetization.

The equilibrium magnetization lies in the z-x plane
[Fig. 2(a)] at an angle θm with the z axis. The external field and
magnetization consist of static and dynamical components

Hext (t ) = Ry(θm)

⎛
⎝h‖(t )

h⊥(t )
H0

⎞
⎠, (20)

m(r, t ) � m(t ) � Ry(θm)

⎛
⎝m‖(t )

m⊥(t )
1

⎞
⎠, (21)

where

Ry =
⎛
⎝ cos θm 0 sin θm

0 1 0
− sin θm 0 cos θm

⎞
⎠ (22)

is the rotation matrix around the y axis. In Eq. (21), we have
assumed homogeneous and small magnetization amplitudes
m‖,⊥ � 1.

We expand the continuum MEC energy to linear order in
strain and rotation tensor elements,

Ume = mαmβ[bαβεαβ + Kαβωαβ], (23)

where bαβ = δαβb1 + (1 − δαβ )b2 and b1,2 are the MEC
parameters. The magnetorotation coupling arises from the
rotation of the hard anisotropy axis êz → êz + δn, where
δn = (∇ × u) × êz/2 = (ωxz, ωyz, 0) [15,33]. From Eq. (19)
we derive Kxz = Kyz = −K1 + μ0M2

s /2, Kzx = Kzy = K1 −
μ0M2

s /2, while the other components vanish.

B. Magnetization dynamics

We derive from Eqs. (19) and (23) the anisotropy and
effective fields:

γμ0HA = − γ

Ms

∂UA

∂m
= −(ωM − ωK )mzez, (24)

γμ0Hme = − γ

Ms

∂Ume

∂m
= −ΩmeRy

⎛
⎝m‖

m⊥
1

⎞
⎠, (25)

where ωK = γ 2K1/Ms, ωM = γμ0Ms and Ω
αβ
me =

2γ

Ms
[bαβεαβ + Kαβωαβ] are angular frequencies. From

Eqs. (11), (21), (24), and (25) we obtain the linearized

LLG equation in frequency domain:(
m‖
m⊥

)
(ω) = χFMR(ω, θm)

[(
h‖
h⊥

)
− 1

γμ0

(
�′13

me
�′23

me

)]
(ω),

(26)
where Ω′

me = R−1
y ΩmeRy represents the MEC, whereas the

susceptibility tensor

χFMR(ω, θm) = γμ0

�FMR

(
ω0

11 −iω

iω ω0
22

)
(27)

governs the pure FMR. The determinant �FMR =
ω0

11ω
0
22 − ω2 and the matrix elements ω0

11 = ωH − (ωM −
ωK ) cos2 θm − iαGω, ω0

22 = ωH − (ωM − ωK ) cos 2θm −
iαGω. For θm �= 0◦ the magnetization precession is elliptic.
The “tickle” field [46] in Eq. (26) is induced by the lattice
strains and rotations. For the present case u(r, ω) = u(z, ω)
and

�′13
me = ωc∂zux cos 2θm − ω�

c∂zuz sin 2θm,

�′23
me = ωc∂zuy cos θm,

(28)

where ωc = ωM/2 + γ (b2 − K1)/Ms and ω�
c = γ b1/Ms

parametrize the magnetostriction and magnetorotation
coupling.

C. Magnetoelastic surface stresses

Magnetization precession at frequency ω induces ac sur-
face stresses on the x − y plane. In frequency space, Eq. (10a)
reduces to⎛
⎜⎝

σ xz
me

σ
yz
me

σ zz
me

⎞
⎟⎠(ω) =

⎛
⎜⎝

(
b2 − K1 + 1

2μ0M2
s

)
m‖(ω) cos 2θm(

b2 − K1 + 1
2μ0M2

s

)
m⊥(ω) cos θm

−b1m‖(ω) sin 2θm

⎞
⎟⎠, (29)

where we discarded static (ω = 0) as well as higher order
terms in the transverse magnetization, implying that the stress
(not the strain) adiabatically follows the magnetization preces-
sion [55]. For YIG, K1/b2 = 0.0009, (μ0M2

s /2)/b2 = 0.02,
so b2 dominates [Eq. (29)]. In iron gallium alloy (Fe0.81Ga0.19,
Galfenol), K1/b2 = 0.005, (μ0M2

s /2)/b2 = 0.1, so the mag-
netorotation coupling due to dipolar anisotropy may become
significant.

The angular dependencies of the magnetoelastic stresses
Eq. (29) in YIG and Galfenol are plotted in Figs. 2(b) and 2(c),
respectively, for the Kittel mode excited by the pure FMR
(27). The shear stresses σ xz

me and σ
yz
me are maximal for θm = 0◦.

While the former remains finite at θm = 90◦, the latter van-
ishes, leading to less efficient pumping of linearly polarized
phonons [15]. The pressure force vanishes at θm = 0◦ and
90◦, but at intermediate angles pumps longitudinal phonons,
as discussed in the next subsection. For fixed microwave in-
tensity, the Kittel mode amplitude in Galfenol is smaller due to
the large Gilbert damping, which reduces the magnetoelastic
stresses despite its large MEC parameters.

D. 1D phonon pumping

The phonon pumping problem derived in Sec. II can be
solved analytically by a plane-wave ansatz. We first solve the
elastic EOM and substitute it into the BCs to find the relation
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between the elastic wave amplitudes and magnetization. The
strain effective field in Eq. (26) is then proportional to the
magnetization and affects the magnetic response. The imag-
inary part of the magnetic susceptibility is proportional to the
microwave power absorption.

The EOM (12) in M for sound waves propagating normal
to the film separates into three modes, two degenerate trans-
verse (α = x, y) and a longitudinal, which solve

∂2uα

∂z2
+ ω2

c̃2
t

(
1 + i

η̃el

ω

)
uα = 0, (30a)

∂2uz

∂z2
+ ω2

c̃2
�

(
1 + i

η̃el

ω

)
uz = 0. (30b)

Similar equations without tilde hold in NM. The sound
velocities and phenomenological ultrasonic attenuation pa-
rameters are summarized in Table I, where we assume the
same attenuation parameter for the magnetic film and the sub-
strate. The characteristic attenuation length of the TA modes
is δ = ct/ηel = 1.7 mm in GGG and 0.5 mm in GaAs. The
general solution to Eq. (30) is

uα (z, ω) = Ãαeik̃′
t z + B̃αe−ik̃′

t z,

k̃′
t = ω

c̃t

√
1 + i

ηel

ω
≈ k̃t + iκ̃t , (31)

where k̃t = ω/c̃t and the damping parameter κ̃t = η̃el/2c̃t .
The BCs Eq. (14) read for α = x, y, z,

uα (0−) = uα (0+)

σαz
el (−d ) + σαz

me(−d ) = 0

σαz
el (0−) + σαz

me(0−) = σαz
el (0+)

σαz
el (L) = 0

, (32)

which should be used with Eq. (29). Since the Kittel mode
feels only the spatial average of the effective field, we aver-
age the strain in Eq. (28) over the film thickness and rewrite
it in terms of transverse magnetization using Eq. (32) (see
Appendix B), such that(

m‖
m⊥

)
(ω) = χtot (ω, θm)

(
h‖
h⊥

)
(ω). (33)

The susceptibility tensor

χtot (ω, θm) = γμ0

�(ω, θm)

(
ω11 −iω
iω ω22

)
, (34)

where �(ω, θm) = ω11ω22 − ω2, includes the coupling to
the lattice. The matrix elements ω11 = ω0

11 − g(ω) cos2 θm

and ω22 = ω0
22 − g(ω) cos2 2θm − g�(ω) sin2 2θm are shifted

by the complex coupling strengths (in units of angular
frequency)

g(ω) = Ms

γ dρ̃c̃t

ω2
c

ω + iη̃el/2
F (ω), (35a)

g�(ω) = Ms

γ dρ̃c̃�

(
ω�

c

)2

ω + iη̃el/2
F �(ω), (35b)

and depend on magnetization orientation. The real and imagi-
nary part of Eq. (35) modify the anisotropy fields and damping

torques, respectively. F (ω) and F �(ω) are complex function
of system geometry and material parameters (Appendix B).
The coupling strengths in our microscopic theory includes
the effect of acoustic damping and scales as ∼ω−1, while
in the simple coupled oscillator models [16,56] the coupling
is independent of the damping and tends to ∼ω−1/2. These
differences may be important when a wider frequency range
is of interest and the frequency dependence of η̃el becomes
significant [38,57]. For the out-of-plane (θm = 0◦) configura-
tion χ11

tot = χ22
tot induces circular precession, whereas for other

angles the precession is elliptic. The microwave power ab-
sorption

Pabs(ω, θm) ∝ Im(hT m) = Imχ11
tot h

2
‖ + Imχ22

tot h
2
⊥ (36)

is the observable in FMR experiments.
The absorption spectrum Eq. (36) contains the resonances

sketched in Fig. 3. Figure 3(c1) illustrates the FMR frequency
dependence on magnetic anisotropies, external field, and mag-
netization orientation. The resonance Fig. 3(c2) occurs when
the magnetoelastic surface stresses acting in the opposite di-
rections on the two magnetic surfaces excite odd acoustic
waves, which requires that the magnetic film thickness fulfills
the stress-matching condition

k̃t d = π (2m − 1) (m = 1, 2, . . . ). (37)

Under this condition the lattice displacement and the ad-
ditional FMR broadening are maximized [15,17]. These
resonances are very broad for YIG|GGG because of the strong
coupling at the interface. In Fig. 3(c3), standing sound waves
form when

sin k̃t d cos kt L + ρct

ρ̃c̃t
cos k̃t d sin kt L = 0. (38)

The acoustic impedance mismatch ρct/(ρ̃c̃t ) = 1.27 between
YIG and GGG or 0.87 between Galfenol and GaAs (Table I)
is not important at GHz frequencies. The acoustic resonance
frequencies then simplify to

fnt = nt

2(d/c̃t + L/ct )
(nt = 1, 2, . . . ). (39)

The same equation holds for the pressure waves by replacing
the transverse by the longitudinal sound velocities. When the
film thickness exceeds the sound attenuation length δ the
back and forth reflected waves cannot interfere anymore and
the discrete spectrum is smeared out into a continuous one,
which is the regime considered by Streib et al. [15]. The
phase matching of the acoustic waves reflected by the two
boundaries z = −d and z = 0 may also enhance the phonon
pumping:

2k̃t d = π (2s − 1) (s = 1, 2, . . . ), (40)

which we call thin-film interference condition [Fig. 3(c4)].
We first focus on the normal (θm = 0◦) configuration, in

which the FMR excites only the transverse acoustic (TA)
modes (see Fig. 2). In Fig. 3(a) we plot the FMR spectrum
[Eq. (36)] of a YIG|GGG bilayer system with large thick-
ness L + d = 5 (mm) > δ/2. The external field of 0.3609 T
leads to the fFMR = 5.129 GHz. The horizontal axis is nor-
malized by half of the TA mode wavelength at fFMR, λ̃/2 =
c̃t/2 fFMR = 375 nm. When varying d while keeping L + d
constant we observe phonon-pumping increased linewidths at
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FIG. 3. Phonon pumping in a YIG|GGG bilayer. (a, b) FMR absorption spectrum [Eq. (36)] under a perpendicular static field μ0H0 =
0.3609 (T) that pulls the magnetization fully out of plane (θm = 0◦) as a function of the frequency of the microwave and magnetic film
thickness d for bilayer thickness of (a) 5 mm and (b) 0.5 mm, normalized by half of the TA phonon wavelength at the FMR frequency.
The red arrow indicates the film thickness d/(0.5λ̃) = 0.53 in the experiments [16]. White lines labeled by the mode index m indicate the
stress-matching conditions [Eq. (37)]. The ladder on the ordinate in (b) marks the eigenfrequencies [Eq. (39)] of the TA standing waves with
mode numbers from nt = 1430 (bottom) to 1443 (top) [see also panels (d) and (e)]. (c) Schematic of the resonances in M|NM bilayer. Green
curves represent acoustic waves. Panel (d) shows the absorption fine structure in the vicinity of the FMR frequency as a function of applied
static field for normal to and in-plane magnetization, respectively (d = 200 nm, L = 0.5 mm). (e) The corresponding plots for Galfenol|GaAs
bilayers. The contour color scales are normalized by the maximum values.

the resonances indicated by vertical white lines [the resonance
labeled (c2) in Fig. 3]. On the other hand, for thicknesses
d = λ̃, 2λ̃, . . . , the magnetic precession is out of phase with
the phonons and the coupling is suppressed.

When L + d = 0.5 (mm) < δ/2, clear standing waves
form by wave interference and the phonon spectrum is dis-
crete [Fig. 3(b)]. In addition to the resonance in Fig. 3(c2),
equidistant satellite peaks appear at the acoustic eigenfre-
quencies in Fig. 3(c3) indicated by the white ladder on the
ordinate. The effect of sound waves decreases for higher-
order stress-matching conditions m = 2, 3, . . . because of the
interference with the Kittel mode, but may couple stronger
to higher order perpendicular spin wave modes (R. Schlitz,
private communication). We observe clear avoided crossings
of the FMR with the acoustic resonance frequencies when
the three resonance conditions are simultaneously fulfilled.
In Fig. 3(b) we observed dips when the fFMR = 5.129 GHz
is tuned to the acoustic mode n = 1438 and m = 1, 2, 3. In
Fig. 3(d) we adopt the layer thicknesses of the sample used by
An et al. [16] [red arrow in Fig. 3(b)] and sweep the external
field for the out-of-plane (left) and in-plane (right) magnetiza-
tions. The Kittel mode in the in-plane configuration is shifted
to lower fields because of the thin-film shape anisotropy. The
anticrossing in the left panel indicates strong coupling be-
tween the magnetic and elastic excitations, as observed [16].
Our estimates of the Kittel frequencies are slightly shifted
from observed ones, which we tentatively attribute to residual
anisotropies not included in our model. The sample thickness
in the experiment deviates from the optimal stress-matching
condition m = 1, but the strong coupling is still achieved

because of the broadness of the m = 1 resonance, which
is effective for a wider range of the YIG thickness 0.5 �
d/(0.5λ̃) � 1.5. Note that the thin-film interference condi-
tion labeled (c4) in Fig. 3 [Eq. (40)] favors the half-integers
d/(0.5λ̃) = 0.5, 1.5, . . . . On the right panel we again observe
regularly spaced anticrossings, suggesting strong coupling be-
tween the Kittel and TA modes. The gap is, however, smaller
compared to the normal configuration due to the absence of
one of the transverse stresses, as shown in Fig. 2 (σ yz

me = 0 for
θm = 90◦). Physically, the phonon pumping is less efficient
because the emitted sound waves are now linearly polarized
[15]. The magnetoelastic stress does not rotate but oscillates
and no net angular momentum is pumped into the NM. Since
Galfenol and GaAs have larger elastic damping, we choose
for Fig. 3(e) a thin NM film with L = 0.15 mm (< δ/2 =
0.26 mm). The spectra are broad due to the large Gilbert
damping of Galfenol, yet exhibiting interaction with discrete
TA modes for the θm = 0◦ configuration (left). When θm =
90◦ (right), they are not resolved because the large thin-film
shape anisotropy significantly confines the precession within
the film, suppressing σ xz

me [see Eq. (29) and Fig. 2(c)].
The longitudinal waves interact with the dynamic

magnetization when 0◦ < θm < 90◦. The maximum coupling
is not universal but depends on the material parameters, found
at θm = 30◦ for YIG|GGG and at θm = 9◦ for Galfenol|GaAs
(Fig. 2). Figures 4(a) and 4(c) shows the resonance conditions
and Figs. 4(b) and 4(d) the FMR spectra at the magnetic film
thickness indicated with the red arrows on the left. Figure 4(b)
exhibits LA mode anticrossings. TA phonon features are
suppressed because the thickness d ∼ 513 nm of the ml = 1
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FIG. 4. Coupling to longitudinal phonons in different bilayers. (a,c) Acoustic eigenfrequencies (TA in gray and LA in red) and LA stress-
matching condition (green) against the magnetic film thickness. TA stress-matching is not achieved in the plotted parameter space. FMR
spectra on the right panels are for the film thicknesses indicated by the red arrows on the left panels and normalized (b) by the same factor as
in Fig. 3 and (d) by the maximum value.

resonance lies in the middle between mt = 1 and 2
resonances, so the TA mode destructively interfere with
the Kittel mode [see Fig. 3(b)]. The selective coupling is
possible in YIG|GGG bilayers because the transverse sound
velocity c̃t in YIG is about a half of c̃�. The anticrossing gap
is smaller, however, since it is governed by the longitudinal
MEC parameter b1 ∼ 0.5b2. Figure 4(d) exhibits avoided
crossings with not only TA but also LA phonons. At the
simultaneous crossing with nt = 320 and nl = 226 modes the
gap is large. We conclude that the Kittel mode can couple
to the faster pressure waves for appropriate magnetization
orientation and film thickness.

IV. APPLICATIONS: MAGNETIC GRAIN

Next we apply our formalism to a thin magnetic disk of
radius a embedded in a nonmagnetic film. The extension to,
e.g., a spherical magnetic grain in a nonmagnetic matrix is
straightforward. We focus on the regimes in which the film
thickness is much smaller than the wavelengths of sound at
frequencies up to several GHz, so the deformation is constant
over the film thickness (in z-direction). We consider an in-
finitely extended medium, which means that emitted waves
are not coming back. The MEC-BCs on the top and bottom
surfaces of the film only rigidly shift the spectra and are
therefore disregarded.

The dipolar interaction of thin magnetic films favors in-
plane magnetization. We define the x axis along an in-plane
external static magnetic field and introduce a cylindrical coor-
dinate system: x = R cos φ and y = R sin φ. Elastic waves are
excited coherently by uniform magnetization precession(

my

mz

)
= χFMR(ω, π/2)

(
hy

hz

)
, (41)

where the susceptibility tensor is defined in Eq. (27) and
hy,z are the magnetic fields of an applied microwave field at

frequency ω. The effect of strain in Eq. (26) represents the
back-action from the lattice and lead to the anticrossing spec-
tra in Sec. III. Here we focus on the propagation of pumped
sound waves and disregard the higher-order self-consistent
tickle fields in Eq. (41). The displacement field in terms of
scalar and vector displacement potentials read [36]

u(R, φ, t ) = ∇�(R, φ, t ) + ∇ × �(R, φ, t ). (42)

Equation (12) separates into dilatation and shear motions with
wave equations (in the absence of acoustic damping)

∇2� = �̈/c2
�, ∇2� = �̈/c2

t . (43)

The in- and out-of-plane motions decouple, which in the
cylindrical coordinate system leads to independent pair of
solutions (�,�z ) and (�R, �φ ), respectively, given by the
Bessel functions multiplied by sinusoidal angular dependence
(Appendix C):

� =
{

Ã�J2(k̃�R) sin 2φ

A�H (1)
2 (k�R) sin 2φ

, (44a)

�z =
{

Ãt J2(k̃t R) cos 2φ

At H
(1)
2 (kt R) cos 2φ

, (44b)

�R =
{

C̃J0(k̃t R) sin φ

CH (1)
0 (kt R) sin φ

, (44c)

�φ =
{

C̃J0(k̃t R) cos φ

CH (1)
0 (kt R) cos φ

. (44d)
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Here the upper rows hold for 0 < R < a (in M) and the second
for a < R (in NM). Jn and H (1)

n are the Bessel and Hankel
functions of the first kind, respectively. For this model, the
BCs Eq. (14) become

uα (a − 0, φ) = uα (a + 0, φ),

σ αR
el (a − 0, φ) + σαR

me (a − 0, φ) = σαR
el (a + 0, φ),

(45)

where φ ∈ [0, 2π ], α = R, φ, z, and⎛
⎜⎝

σ RR
me

σ
φR
me

σ zR
me

⎞
⎟⎠ =

⎛
⎜⎝

b2my sin 2φ

b2my cos 2φ

b2mz cos φ

⎞
⎟⎠. (46)

The angular dependence in Eq. (44) follows from the con-
straint that Eq. (45) holds for arbitrary φ. Eq. (45) then yields
two decoupled matrix equations for the coefficients:

⎛
⎜⎜⎜⎜⎝

Ã�

A�

Ãt

At

⎞
⎟⎟⎟⎟⎠ = b2a2my

⎛
⎜⎜⎜⎜⎝

k̃�aJ ′
2(k̃�a) −k�aH (1)′

2 (k�a) −2J2(k̃t a) 2H (1)
2 (kt a)

2J2(k̃�a) −2H (1)
2 (k�a) −k̃t aJ ′

2(k̃t a) kt aH (1)′
2 (kt a)

−M̃R
� MR

� M̃R
t −MR

t

−M̃φ

� Mφ

� −M̃φ
t Mφ

t

⎞
⎟⎟⎟⎟⎠

−1⎛
⎜⎝

0
0
1
1

⎞
⎟⎠, (47a)

(
C̃
C

)
= b2a2mz

(
k̃t aJ ′

0(k̃t a) −kt aH (1)′
0 (kt a)

−μ̃(k̃t a)2J ′′
0 (k̃t a) μ(kt a)2H (1)′′

0 (kt a)

)−1(
0
1

)
, (47b)

of in- and out-of-plane oscillations, respectively. The matrix elements

M̃R
� = 2μ̃(k̃�a)2J ′′

2 (k̃�a) − λ̃(k̃�a)2J2(k̃�a), M̃R
t = 4μ̃[k̃t aJ ′

2(k̃t a) − J2(k̃t a)],

M̃φ

� = 4μ̃[k̃�aJ ′
2(k̃�a) − J2(k̃�a)], M̃φ

t = μ̃[2k̃t aJ ′
2(k̃t a) + (k̃t a)2J2(k̃t a)],

(48)

depend on frequency. The other components are given by
removing tildes and replacing J2 with H (1)

2 .
Equations (47) and (41) determine the phonon pumping.

We consider a YIG nano-disk embedded in a GGG thin
film. For the in-plane static field μ0H0 = 0.3609 T and trans-
verse microwave field hy = hz = 5 A/m, the magnetization
amplitudes are |my(ω)| ≈ 0.05 and |mz(ω)| ≈ 0.04 at the
FMR frequency

√
ωH (ωH + ωM − ωK )/(2π ) = 12.6 GHz.

The disk radius a = 76.2 nm satisfies the first stress-matching
condition of the TA modes at this frequency. The numerical
solutions of Eqs. (47) for the displacement field at resonance
are depicted in Fig. 5(a). The anisotropy of the magnetoelastic
stress [Eq. (46)] generates the observed angular patterns. The
symmetry and location of the nodes do not depend on the
material parameters. The magnetization precession Eq. (41)
introduces a phase shift of π/2 between uφ and uz, i.e., ex-
cites rotational lattice motion in the vicinity of the x axis. In
the absence of damping, the elastic energy of the wavefront
∝ ∫ 2π

0 u(R, φ, ω)2dφ, decays as 1/R in the far field region by
geometrical spreading, so uz decreases as 1/

√
R. The ampli-

tudes of uR and uφ are coupled according to Eq. (47a), thereby
oscillating as a function of R by exchanging energy during
propagation. The linear-momentum current jαR

p follows the
angle dependence of uα (not shown).

In Fig. 5(b) we plot the associated phonon spin current
density in cylindrical coordinates (see Sec. II C),

jRR
S = −uz jφR

p + uφ jzR
p ,

jφR
S = uz jRR

p − uR jzR
p ,

jzR
S = −uφ jRR

p + uR jφR
p ,

(49)

where the indices α and β in jαβ
S refer to the phonon spin

polarization and current direction, respectively. The plots in
Fig. 5(b) represent the currents leaving the magnet in radial
directions that vanish at the nodes of the respective displace-
ment components, along which the sound waves are linearly
polarized. Even though the displacement fields oscillate in
time with the FMR frequency, jRR

S is a DC current, which is
ensured by the π/2 phase shift and similar wavelengths be-
tween uφ and uz. The amplitude are extreme along the x axis,
transporting phonon spins ‖ êR in the forward angles −π/4 <

φ < π/4 and spins ‖ −êR in the backward 3π/4 < φ < 5π/4
directions. The other two components are AC currents carried
dominantly by pressure waves �.

V. DISCUSSION

The stress tensors and the BCs derived in Sec. II are
applicable to a wide range of materials of any crystal sym-
metry and MEC as well as geometries. We focus in Secs. III
and IV on the Kittel mode excited by FMR in the presence
of uniaxial crystalline and dipolar shape anisotropies. We
can adopt MEC generated, e.g., by exchange [19] or inter-
facial Dzyaloshinskii-Moriya interaction [34,58] to address
phonon pumping by spin waves and magnetorotation coupling
in basically any material combination with ferromagnets. In
principle, the analysis can also be extended to antiferromag-
nets [59–63], but the MEC energy and its parameters are less
established. The magnon frequencies in antiferromagnets are
typically higher than that of ultrasound [19,62] and magnon-
phonon hybridization requires application of large magnetic
fields [63]. Large MEC coefficients and large magnetiza-
tion amplitudes are important for phonon pumping. Efficient
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FIG. 5. Spatial profile of the (a) displacement components and (b) phonon spin currents at the FMR frequency 12.6 GHz emitted from
a YIG disk of radius a = 76.2 nm at the center (white). Magnetization precesses around the positive x-axis. Illustrations in panel (b), left,
indicate the phonon spin orientation and propagation directions.

phonon pumping does not necessarily require matching of
wave numbers as demonstrated in Secs. III and IV, which
unlocks the possibility of magnon-phonon strong coupling
away from the intersections of their dispersion branches. More
research is required to identify the best material combinations
for an optimal sound generation by magnetization dynamics.

The BCs derived here allows deploying textbook knowl-
edge of elastic waves [35,36,64] to address various boundary
shapes. In Sec. III we computed the phonon pumping in
bilayers. M|NM|M phononic spin valves [16] can be cal-
culated by attaching another YIG layer to the free surface
of GGG. The transmission and reflection of sound waves
in the opposite sandwich, i.e., a thin magnetic film inserted
in an infinite nonmagnetic matrix [22], is a simple exten-
sion of our model as a function of magnetization angle. Our
BCs can also address the energy partition between surface
and bulk modes [65–67]. A magnetic stripline attached to a
nonmagnetic substrate [16,68,69] excites not only the bulk
phonons addressed here but also surface modes. Nonplanar
structures such as acoustic whispering gallery modes around a
sphere [70–73], or 3D ferromagnetic nanoparticles embedded
in nonmagnetic media, as well as evanescent acoustic waves
at interfaces with metamaterials [11], are within the scope
of our formalism. Multiple magnets in a nonmagnetic matrix
indirectly coupled via ultrasounds is a playground to study
collective magnonic excitations, viz. a phononic extension of
spin cavitronics [74,75].

A large magnetostriction constant should lead to efficient
phonon pumping, but may also induce a static deformation in
the ground state that depends on the magnetization direction.
For example, a magnetization m = (1, 0, 0) in the circular
YIG disk discussed in Sec. IV generates static magnetoelastic

stresses ⎛
⎝σ RR

me

σ
φR
me

σ zR
me

⎞
⎠

static

=
⎛
⎝ b1 cos2 φ

−b1 sin φ cos φ

0

⎞
⎠, (50)

that compresses the disk in the x direction via the BC, (σαR
el +

σαR
me )|M = σαR

el |NM. This is consistent to the conventional static
magnetostriction [42]. Other components of the magnetoelas-
tic stress are finite as well, but the strains vanish by symmetry.
The correction Eq. (50) modify the phonon dispersion and
the elastic constants [76]. The correction σme ∼ 105 Pa is,
however, much smaller than the Lamé parameters ∼1011 Pa
in YIG, justifying that we disregard this effect in Secs. III
and IV.

In Sec. IV we discuss phonon pumping in elastically
isotropic GGG, where the angular pattern solely originates
from the anisotropy of σme. In other single crystals, the elastic
anisotropy may further affect the angular dependence.

We focus here on microwave absorption experiments such
as carried out by An et al. [16]. However, all experiments sen-
sitive to the magnon polarons in YIG, such as pump and probe
spectroscopy [77,78], local and non-local spin Seebeck effect
[79,80], and Brillouin light scattering [81] are affected by the
phonon pumping into GGG substrates and can in principle test
our results.

VI. SUMMARY

We present the BCs of magnet-nonmagnet composite
systems for arbitrary interface geometries, magnetization ori-
entation, and magnetoelastic interactions, with a focus on
the consequences of MEC. Our formalism is tuned to FMR
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conditions or small magnets, in which spin waves have little
effect on the lattice and boundary dynamics becomes impor-
tant. This natural extension of continuum mechanics allows
transfer of knowledge from ultrasonics for a better under-
standing of the spintronics with phonons.

The phonon pumping scheme formulated here allows us
to magnetically activate phonon modes in nonmagnets. Mag-
netic elements and fields may therefore be a tool to study
quantum ground states of phonons and phononic computing
[82]. The magnetization-angle- and geometry dependence of
phonon pumping may be useful for engineering magnon-
photon-phonon hybrids [75,83,84]. A formulation of the
dynamics of magnetic core/shell type nanoparticles levitated
in traps may require extension of our BCs to include effects of
rigid body rotations [27,85] and oscillations [86].
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APPENDIX A: DEFINITION OF STRESS TENSORS

Our definition of the stress tensor Eq. (10a) deviates from
the conventional definition σ

αβ

old = ∂U/∂εαβ , where ε is the
strain tensor. The latter only holds for infinite media with
vanishing surface stresses [39], i.e., disregarding surfaces
and boundaries. The derivation of σold also postulates the
symmetry of the stress tensor to ensure angular-momentum
conservation [36,39]. In the presence of spin-lattice coupling,
magnetization can be a source of angular momentum either
in the bulk or at the boundaries, rendering the stress tensor
asymmetric [25,26,40], which is not reflected in σold. The
stress tensors defined here from the Lagrangian overcome
these issues [25,26,37,40].

We can clarify the relation between σ and σold by rewriting
Eq. (10a) in terms of strain and rotation tensors,

εαβ (r, t ) = 1
2 (∂βuα + ∂αuβ ),

ωαβ (r, t ) = 1
2 (∂βuα − ∂αuβ ),

(A1)

i.e., by switching from the nine variables {∂βuα}
to the set of independent tensor elements,
{εxx, εyy, εzz, εyz, εzx, εxy, ωyz, ωzx, ωxy}. The first six
components determines the elastic potential energy Eq. (3a)
[39], whereas the coupling Eq. (3c) in general depends on all
nine elements. The chain rule leads to

σel =

⎛
⎜⎝

∂
∂εxx

1
2

∂
∂εxy

1
2

∂
∂εzx

1
2

∂
∂εxy

∂
∂εyy

1
2

∂
∂εyz

1
2

∂
∂εzx

1
2

∂
∂εyz

∂
∂εzz

⎞
⎟⎠Uel, (A2a)

σme =

⎛
⎜⎝

∂
∂εxx

1
2

(
∂

∂εxy
+ ∂

∂ωxy

)
1
2

(
∂

∂εzx
− ∂

∂ωzx

)
1
2

(
∂

∂εxy
− ∂

∂ωxy

)
∂

∂εyy

1
2

(
∂

∂εyz
+ ∂

∂ωyz

)
1
2

(
∂

∂εzx
+ ∂

∂ωzx

)
1
2

(
∂

∂εyz
− ∂

∂ωyz

)
∂

∂εzz

⎞
⎟⎠Ume.

(A2b)

When calculating stress from σold, differentiations with re-
spect to off-diagonal strain components yield twice the correct
value, as pointed out in Ref. [39]. This is because εαβ ↔ εβα

and ωαβ ↔ −ωβα in the energy densities are not independent.
Not taking care of the degrees of freedom of the strain tensor
leads to a relation inconsistent with Eq. (A2a):

σ
αβ

el = ∂Uel

∂ (∂βuα )
= ∂ενη

∂ (∂βuα )

∂Uel

∂ενη

= 1

2
(δνβδηα + δηβδνα )

∂Uel

∂ενη

= ∂Uel

∂εαβ

, (A3)

where the summation over ν, η doubly adds the off-diagonal
elements. In our expression (A2), in contrast, the factor 1/2
appropriately compensates the doubled values in the off-
diagonal elements. Equation (A2a) implies that in the linear
regime the elastic stress tensor is symmetric for any crys-
tals whose elastic energy has the form Eq. (3a). Equation
(A2b) reveals that the symmetric part of the magnetoelas-
tic stress arises from magnetostriction (coupling to strain),
whereas its antisymmetric part originates from the magne-
torotation coupling. This implies that σme can differ from
the conventional form ∂Ume/∂εαβ when the magnetorotation
coupling is relevant. In YIG [19] and other ferromagnets
such as Galfenol [50,51], iron, and nickel [42] the effects of
crystalline anisotropy are orders of magnitude smaller than
that from the magnetostriction. However, the magnetorotation
coupling is significant in CoFeB or Ni/Ag films that are
thinner than acoustic wavelengths [34,87].

APPENDIX B: AVERAGE STRAIN IN 1D PROBLEM

The linearized LLG reads [Eq. (26)](
m‖
m⊥

)
(ω) = χFMR(ω, θm)

[(
h‖
h⊥

)
− 1

γμ0

(
�′13

me
�′23

me

)]
(ω),

(B1)
where χFMR reflects the purely magnetic response. We first
compute the average strain in the magnetic film induced by
MEC-BCs. For the one-dimensional problem, the components
of the tensor Ω′

me reads

�′13
me = ωc∂zux cos 2θm − ω�

c∂zuz sin 2θm,

�′23
me = ωc∂zuy cos θm,

(B2)

where ωc = ωM/2 + γ (b2 − K1)/Ms and ω�
c = γ b1/Ms

parametrize the magnetostriction and magnetorotation
coupling. The BCs determine the relation between the
complex acoustic wave amplitudes and magnetization. We
then find the average strain in the magnet from Eq. (31) and
write it in terms of magnetoelastic stress:

uα (0, ω) − uα (−d, ω)

d
= −σαz

me(θm)

dρ̃c̃t

F (ω)

ω + iη̃el/2
,

uz(0, ω) − uz(−d, ω)

d
= −σ zz

me(θm)

dρ̃c̃�

F �(ω)

ω + iη̃el/2
,

(B3)
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where α = x, y and

F (ω) = F3 + iF4

F1 + iF2
, F �(ω) = F �

3 + iF �
4

F �
1 + iF �

2

. (B4)

The real-valued functions are defined as

F1 = −ω(β11 sin k̃t d cos kt L + β22 cos k̃t d sin kt L)

+ η̃el

2
(β ′

21 cos k̃t d cos kt L − β ′
12 sin k̃t d sin kt L),

F2 = −ω(β21 cos k̃t d cos kt L − β12 sin k̃t d sin kt L)

− η̃el

2
(β ′

11 sin k̃t d cos kt L + β ′
22 cos k̃t d sin kt L),

F3 = ω[(C̃C + β11) cos k̃t d cos kt L

− (S̃S + β22) sin k̃t d sin kt L − 2C cos kt L]

+ η̃el

2
[(S̃C + β ′

21) sin k̃t d cos kt L

+ (C̃S + β ′
12) cos k̃t d sin kt L − 2S sin kt L],

F4 = −ω[(S̃C + β21) sin k̃t d cos kt L

+ (C̃S + β12) cos k̃t d sin kt L − 2S sin kt L]

+ η̃el

2
[(C̃C + β ′

11) cos k̃t d cos kt L − (S̃S

+β ′
22) sin k̃t d sin kt L − 2C cos kt L],

where

β11 = C̃C + ρct

ρ̃c̃t
S̃S, β12 = C̃S + ρct

ρ̃c̃t
S̃C,

β21 = S̃C + ρct

ρ̃c̃t
C̃S, β22 = S̃S + ρct

ρ̃c̃t
C̃C.

(B5)

C = cosh κt L and S = sinh κt L represent the wave attenuation
in NM, while C̃ = cosh κ̃t d and S̃ = sinh κ̃t d quantify the
attenuation in M. β ′

i j are given by multiplying ηel/η̃el to the
impedance ratios. F �(ω) in Eq. (B3) is defined with corre-
sponding longitudinal parameters.

Replacing the strains in Eq. (B2) with the average (B3),
and substituting the result into Eq. (B1) give Eq. (33) in
the main text. In the limit of vanishing acoustic damping
η̃el, ηel → 0, β is diagonal, F2, F4 → 0, and consequently the
coupling strength [Eq. (35a)] becomes real, i.e., magnetization
damping is not enhanced by phonon pumping. The theory by
Streib et al. [15] corresponds to the case η̃el = 0, ηel �= 0 and
L → ∞.

APPENDIX C: ELASTIC WAVES IN A DISK

The Helmholtz relation between the displacement vector
and potentials in cylindrical coordinates reads [36]

uR = ∂�

∂R
+ 1

R

∂�z

∂φ
− ∂�φ

∂z
,

uφ = 1

R

∂�

∂φ
− ∂�z

∂R
+ ∂�R

∂z
,

uz = 1

R

[
∂

∂R
(R�φ ) − ∂�R

∂φ

]
+ ∂�

∂z
,

(C1)

where the z derivatives vanish for thin films. The choice of the
gauge div� = ψ (r, t ), is a constraint on the four components
(�,�α ) so that the both sides of Eq. (C1) have the same de-
grees of freedom [36]. While ψ (r, t ) = 0 is suitable for planar
configurations, we chose a different one for the present system
as discussed below. The elastic strain tensor components read
[36]

εRR = ∂uR

∂R
, (C2a)

εφφ = 1

R

∂uφ

∂φ
+ uR

R
, (C2b)

εφz = 1

2R

∂uz

∂φ
, (C2c)

εzR = 1

2

∂uz

∂R
, (C2d)

εRφ = 1

2

(
1

R

∂uR

∂φ
+ ∂uφ

∂R
− uφ

R

)
. (C2e)

The stress tensors transform as σ = R−1
z σcarRz, where σcar is

the tensor in Cartesian coordinates and the matrix Rz rotates
the axes around the z axis,

Rz(φ) =
⎛
⎝cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎞
⎠. (C3)

The stress-strain relation takes the same form as in Carte-
sian coordinate systems since, using the property of the trace
tr[εcar] = tr[R−1

z εcarRz],

σ
αβ

el = (
R−1

z σel,carRz
)
αβ

= λδαβ tr[εcar] + 2μ
(
R−1

z εcarRz
)
αβ

= λδαβ tr[ε] + 2μεαβ, (C4)

for α, β ∈ {R, φ, z}. We then write the elastic stress within
NM in terms of displacement potentials:

σ RR
el = (

2μ∂2
R − λk2

�

)
� + 2μ

R
∂φ

(
∂R − 1

R

)
�z, (C5a)

σ
φR
el = μ

(
2

R
∂R + k2

t

)
�z + 2μ

R
∂φ

(
∂R − 1

R

)
�, (C5b)

σ zR
el = μ

[
−∂φ

R

(
∂R − 1

R

)
�R

+
(

∂2
R + 1

R
∂R − 1

R2

)
�φ

]
. (C5c)

The magnetoelastic stress tensor transforms analogously as
σme = R−1

z σme,carRz. The components relevant for the BCs
are, to linear order in transverse magnetization and for ω > 0,⎛

⎝σ RR
me

σ
φR
me

σ zR
me

⎞
⎠ =

⎛
⎝b2my sin 2φ

b2my cos 2φ

b2mz cos φ

⎞
⎠. (C6)

Magnetoelastic stress on a circular boundary does not depend
on the longitudinal coupling b1. In frequency domain the
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EOM for the deformation potentials Eq. (43) become[
∂2

R + 1

R
∂R + 1

R2
∂2
φ + k2

�

]
� = 0,

[
∂2

R + 1

R
∂R + 1

R2
∂2
φ + k2

t

]
�z = 0,

[
∂2

R + 1

R
∂R + k2

t + 1

R2

(
∂2
φ − 1

)]
�R − 2

R2

∂�φ

∂φ
= 0,

[
∂2

R + 1

R
∂R + k2

t + 1

R2

(
∂2
φ − 1

)]
�φ + 2

R2

∂�R

∂φ
= 0, (C7)

where k� = ωc�, kt = ω/ct . Equations (C5), (C7), and (C1)
with ∂z = 0 confirm that the in-plane and out-of-plane dy-
namics decouple. By the separation of variables �(R, φ) =
f (R)X (φ) and �α (R, φ) = fα (R)Xα (φ), the first two equa-
tions in Eq. (C7) reduce to the Bessel differential equations
for the radial component, whose solutions are given either by
a linear superposition of the Bessel function of the first and
second kind, AJm(kR) + BYm(kR), or by a combination of the
Hankel function of the first and second kind, AH (1)

m (kR) +
BH (2)

m (kR). Since the amplitudes must be finite in M and
backward waves represented by H (2)

m are not excited in the
infinite NM,

f (R) =
{

Ã�Jm(k̃�R)

A�H (1)
m (k�R)

, (C8)

fz(R) =
{

Ãt Jn(k̃t R)

At H
(1)
n (kt R)

, (C9)

where the first cases are for M (0 < R < a) and the second
for NM (a < R). X (φ) is then a superposition of cos mφ and
sin mφ and Xz(φ) a superposition of cos nφ and sin nφ, where
m, n are integers. It follows from Eqs. (C5) and (C6) that the
BCs Eq. (45) in the main text hold for all φ only if

X,
dXz

dφ
∝ sin 2φ, (C10)

dX

dφ
, Xz ∝ cos 2φ, (C11)

and thus we may assume X (φ) = sin 2φ and
Xz = cos 2φ.

We next consider out-of-plane oscillations. If the BCs
are to hold for arbitrary φ, then Xφ and dXR/dφ must be
proportional to cos φ, allowing us to assume XR = sin φ

and Xφ = cos φ. Out-of-plane dynamics in Eq. (C7) then
becomes[

∂2
R + 1

R
∂R + k2

t − 2

R2

]
fR + 2

R2
fφ = 0,

[
∂2

R + 1

R
∂R + k2

t − 2

R2

]
fφ + 2

R2
fR = 0.

(C12)

Addition and subtraction of these equations give the Bessel
differential equations[

∂2
R + 1

R
∂R + k2

t

]
( fR + fφ ) = 0,

[
∂2

R + 1

R
∂R + k2

t − 4

R2

]
( fR − fφ ) = 0.

(C13)

The general solutions are written as

fR + fφ =
{

2C̃J0(k̃t R)

2CH (1)
0 (kt R)

, (C14)

fR − fφ =
{

2C̃′J2(k̃t R)

2C′H (1)
2 (kt R)

, (C15)

where we again discarded the second kind of the Bessel and
Hankel functions. Equations (C8), (C9), (C14), and (C15)
contain eight coefficients to be determined. Choosing an ap-
propriate gauge ψ (r, t ), we may set C̃′ = C′ = 0 without loss
of generality [36], obtaining

fR(R) = fφ (R) =
{

C̃J0(k̃t R)

CH (1)
0 (kt R)

. (C16)

The remaining six coefficients are determined by the six BCs
in Eq. (45).
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