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Spacetime modulation in floating thin elastic plates
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We consider the propagation of flexural-gravity waves in thin elastic plates floating atop nonviscous fluids,
e.g., seawater, which are governed by a partial differential equation with Laplacian and tri-Laplacian terms. We
investigate the effect of time modulation as well as spacetime modulation on thin floating elastic plates and show
the peculiarity of the phenomena of the k-band gap and the rotated k-band gap in the context of flexural-gravity
waves. This makes possible floating plates with nonreciprocal features and behaving as elastodynamic analogs
of luminal electromagnetic metamaterials, with exotic applications in enhanced control of ocean waves, such
as filtering devices, unidirectional acoustic propagation, and isolation effects and energy harvesting in maritime
engineering.
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I. INTRODUCTION

Metamaterials and metasurfaces consist of a spatially peri-
odic arrangement of meta-atoms in three or two dimensions,
respectively [1,2]. These artificial materials were applied suc-
cessfully in the last two decades to obtain several exciting
applications, ranging from superlensing [3] to invisibility
cloaks [4], plasmonic waveguides [5], and computing [6].
Such a concept encompasses a broad range of disciplines,
including but not limited to acoustic [7], elastic [8], and
structural [9] waves, as well as engineering thermal properties
[10,11]. All these applications exploited only the space modu-
lation (generally subwavelength). Recently, time also emerged
as a promising parameter in designing more appealing meta-
surfaces. In fact, the place of time in physics is very special.
First, this parameter was assumed to be absolute in Newtonian
mechanics [12], until Einsteinian mechanics revolutionized
its very basic nature and showed that it has to be considered
on an equal footing with the remaining spatial variables, i.e.,
it undergoes changes when moving [13]. In the same vein,
there is no reason time cannot be considered in the design of
metamaterials. On the contrary, the use of time as a tunable
variable may open new vistas and applications not sought
before in many fields of applied physics. For instance, recent
works [14] have shown the importance of time modulation in
obtaining nonreciprocal effects of the so-called luminal meta-
materials in the context of electromagnetism. In fact, time
started recently to be considered, along with geometry [15], as
a design parameter for newly proposed spacetime metamate-
rials and metasurfaces, with many unprecedented applications
[16], such as Fresnel drag [17], signal amplification [18],
harmonic generation [19], and photonic circulators [20,21],
to name a few. Some earlier studies considered dispersion
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relations in spacetime periodic media [22,23] and the dy-
namics of light propagation in these structures [24,25].
Interestingly, similar effects have been observed in the context
of acoustic and mechanical waves in time-modulated struc-
tures [26,27].

On the other hand, flexural-gravity waves obey a sixth-
order partial differential equation (PDE) and describe the
flexural motion [28,29] in thin elastic plates floating atop
inviscid and incompressible fluids (e.g., water) [30]. For in-
stance, man-made engineered offshore structures, such as
airports or newly built floating islands [31,32], are considered
as thin-mat configurations where the horizontal dimensions
extend for a few kilometers and the thickness is around a
few meters. Moreover, these structures are usually located in
the offshore zone, where the depth of water is small, i.e., in
the range of 20 m (shallow-water approximation). Further-
more, both the wavelength and the lateral dimensions of the
plates (elastic structures) are much larger than its thickness
δ (see Fig. 1), so one can safely assume the thin-plate (bi-
harmonic) approximation [33–35] or the Kirchhoff-Love plate
theory [28]. Characterizing the scattering from such waves by
buoyant objects is an active topic of research [36–39] with
many applications, such as a dispersionless weakly nonlinear
flexural-gravity wave packet [40] or invisibility cloaking for
such waves using both transformation optics [41] and the
scattering cancellation technique, which was shown to possess
intriguing properties from simple cylindrical thin plates [42].

In this paper, we consider time modulation as well as
spacetime modulation in the realm of this peculiar type of
waves, which are intrinsically different from acoustics and
electromagnetism, due to the asymmetric role played by the
space and time variables (space of order 6 and time of order
2). This asymmetry will be shown to lead to some intriguing
properties of the band gap, not seen before for other wave
systems. The remainder of this paper is organized as fol-
lows: We start by formulating the problem with an adequate
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FIG. 1. Schematic of a floating thin plate of thickness δ atop shal-
low seawater of depth h, in the x-z plane. The thin plate is supposed
to be infinitely extended along the y direction. The parameters of
the plate are as follows: Young’s modulus E = 50 GPa, thickness
δ = 10 m, Poisson’s ratio ν = 0.34, and density of 900 kg/m3, to
make it float atop water.

governing equation and boundary conditions. Then, we fo-
cus on investigating the time modulation of flexural-gravity
waves by imposing either a time-varying flexural rigidity or
a spacetime modulation using an analytical model that results
in closed-form expressions by coupling two modes, to gain
insight into the underlying physical mechanisms. Next, we
solve numerically the full problem by coupling a higher num-
ber of modes and verifying the numerical convergence of the
results. The results feature a peculiar behavior of the k-band
gap. We discuss also the origin of this effect such as the non-
Hermiticity of the system by the spacetime modulation and
the appearance of exceptional points (EPs) at the edges of the
band gap as well as nonreciprocal wave propagation. We also
investigate the sensitivity of the EP on external parameters
and fit it analytically using the Puiseux series. Finally, we
summarize the obtained results and provide some derivations
and further discussion in Appendixes A–C.

II. PROBLEM SETUP

Flexural-gravity waves obey in the case of the approxi-
mations described above and for harmonic variation (in the
frequency domain) (see Appendix A) the sixth-order PDE,
i.e.,

D�3W + ρg�W + ρ

h
ω2W = 0, (1)

in terms of the water elevation (or plate vertical displacement
in the plate’s region) [or similarly in terms of the velocity
potential ϕ, related to W through ∂tW = −h�ϕ, as seen in
Eq. (A7)] and angular frequency of the water waves ω, with
ρ = 103 kg/m3 and h = 20 m being the density and depth
of water, respectively, g = 9.81 m/s2 being the acceleration
due to terrestrial gravity, and D = Eδ3/[12(1 − ν2)] being the
flexural rigidity of the plate (see Appendix A for a detailed
derivation of this PDE and justification of the approximations
used). The first term of Eq. (1) stands for the flexural effect
(flexural rigidity is driving the surface elevation and thus the
velocity potential), while the second term accounts for surface
gravity effects (waves, as suggested by the presence of the
Laplacian operator � and surface gravity g) [43].

Moreover, the dispersion relation of this kind of waves
is obtained by replacing � by (iβ1)2, with β1 being the
flexural-gravity wave number, i.e., ω2 = (hD/ρ)β6

1 + ghβ2
1 .

The interplay between surface gravity waves and flexural
waves is evidenced by the presence of both the classical
flexural-gravity wave number β6

1 = ρω2/(hD) and the surface
gravity wave number k0 = ω/

√
gh. Due to the coupling be-

tween flexural and water waves, the analysis of such a system
including the derivation of the transfer matrix requires some
specific treatment [44].

III. MODULATION FOR FLEXURAL-GRAVITY WAVES

A. Time modulation for flexural-gravity waves

Let us consider time modulation of a floating thin plate.
This is the analog of time modulation of the permittivity in
photonic crystals [45] by allowing a periodic evolution of
the flexural rigidity, i.e., D(t + T ) = D(t ), with a temporal
period T . Regarding a possible experiment, in order to change
the elastic parameters directly, one can add shunted external
circuits, with tunable electrical properties (resistance, capaci-
tance, and inductance) {see the Supplemental Material (SM)
[43] for more details on the piezoelectric potential modeling
[46–52]}. Equation (1) shall be rewritten in the time domain
and in the one-dimensional (1D) scenario

γ (t )
∂6W (x, t )

∂x6
+ γ1

∂2W (x, t )

∂x2
− ∂2W (x, t )

∂t2
= 0, (2)

with γ (t ) = hD(t )/ρ and γ1 = gh, by assuming that ρ and h
are time independent. The modulated parameter can be ex-
pressed as γ (t ) = γ0[1 + δmcos(�mt )], with δm = γm/γ0 and
γ0 = hD0/ρ being the nonmodulated parameter. Using the
Bloch theorem, applied to the time periodicity [53], we can
express the water elevation as

W (x, t ) = e−i(ωt−β1x)
∞∑

n=−∞
Ŵne−in�mt . (3)

By inserting Eq. (3) into Eq. (2) and by assuming δm = 0,
we can get the dispersion of plane waves in free space, shown
in Fig. 2(a). The free-space eigenmodes can be thus obtained
by finding the zeros of the determinant of the diagonal matrix
diag[γ0β

6
1 + γ1β

2
1 − (ω + n�m)2]. From this dispersion, its

high-order polynomial nature, which is completely different
from that of the acoustics or electromagnetism linear behavior,
can be clearly seen. This peculiarity is more apparent for low
wave numbers, when the dispersion is nearly flat.

In Fig. 2(a), we plot the dispersion at low frequency using
two different PDEs [one using Eq. (1) and the other one
omitting the second Laplacian operator]. Although the two
methods give similar results, the inset clearly displays certain
discrepancies and demonstrates the need for using the PDE
of Eq. (1). The interesting effects due to time modulation
take place when δm �= 0. Solving Eq. (2) by using a Fourier
expansion of W (x, t ) when δm �= 0 is generally not possible
analytically, as one has to consider an infinite number of
terms in the expansion, for finite coupling. So, numerically
this expansion is truncated and convergence is verified, in
order to obtain the dispersion diagrams. Yet, the coupling
between two bands (modes) is insightful and captures the
essence of the phenomena (as for the harmonic oscillator or
the two-level system in quantum physics [54]). We consider
the bands n = 0 and n = −1 [i.e., Ŵ0 and Ŵ−1; see Eq. (3)].
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FIG. 2. (a) Dispersion curves of free plane waves (i.e., δm = 0) in floating thin plates for N = 5 (i.e., considering 11 bands) and for �m = 10
rad/s. The inset shows an enlarged view at low frequency using two different PDEs (see Appendix A). (b) Dispersion curves for δm = 0.4,
where the inset shows the k-band gap around the angular frequency ω = �m/2. The number of bands and modulation frequency are the same
as in (a). The inset shows a magnified view around the second k-band gap. (c) Two-band dispersion curves for the case of δm = 1.75, i.e.,
considering only the bands n = 0 and n = −1. The width of the k-band gap ([β−, β+]) can be calculated analytically in this case. (d) Broader
domain for the dispersion similar to (b), i.e., with �m = 10 rad/s, but for δm = 1.9 and considering N = 10, i.e., 21 bands.

The characteristic equation of this coupled system is∣∣∣∣∣γ0β
6
1 + γ1β

2
1 − ω2 γ0δm

2 β6
1

γ0δm

2 β6
1 γ0β

6
1 + γ1β

2
1 − (ω − �m)2

∣∣∣∣∣ = 0. (4)

The solution of this characteristic equation gives the four eigenfrequencies, owing to the fourth power of ω in Eq. (4) i.e.,

ω j = 1
2

(
�m ±

√
�2

m + 4
(
γ0β

6
1 + γ1β

2
1

) ±
√

�2
m

(
γ0β

6
1 + γ1β

2
1

) + γ0δm/2β6
1

)
, (5)

with j = 1 · · · 4. Figure 2(c) shows the corresponding curves
(real and imaginary parts) versus the flexural-gravity wave
number β1. Interestingly, for ω = �m/2 one can notice the
emergence of a k-band gap, i.e., a band gap in the wave-
number axis with analogy to the ω-band gap when space
modulation is enforced, shown in Fig. 3(a). Figure 2(c) is
obtained for δm = 1.75. The emergence of this band gap (real
part of ω) is confirmed by the finite imaginary part of ω

[red curve in Fig. 2(c)], which shows that no propagation can
take place in the interval denoted [β−, β+]. The limits of this
interval in the k space are

β± =
(

�2
m

2γ0(2 ∓ δm)

)1/6

. (6)

Hence, when δm � 2, only one solution is positive, i.e.,
β−, and the band gap becomes of infinite extent, i.e., for
β1 > β− (see the SM for more details [43]). Next, to gain
more insight, we need to consider more bands to compute the
correct dispersion curves. By inserting the Fourier expansion
of the water elevation field in Eq. (2), we get ∀n ∈ Z,[

γ0β
6
1 + γ1β

2
1 − (ω + n�m)2

]
Ŵn

+ γ0δm

2
β6

1 (Ŵn−1 + Ŵn+1) = 0. (7)

In Fig. 2(b) we consider δm = 0.4 and �m = 10 rad/s, as well
as N = 5 (i.e., 11 bands). At frequencies (n + 1/2)�m, k-band
gaps can be observed at different β1 intervals, of different
width (the inset shows the narrow band gap at higher β1).
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FIG. 3. Two-band dispersion curves for the case of δm = 1.75 and considering only the bands n = 0 and n = −1, for (a) �m = 0 rad/s
and κm = 0.06 rad/m, i.e., classical space modulation with frequency band gap, (b) �m = 20 rad/s and κm = 0.06 rad/m, i.e., spacetime
modulation with an oblique (indirect) band gap, and (c) �m = 20 rad/s and κm = 0 rad/m, i.e., classical time modulation with k-band gap.

Figure 2(d) shows a broader interval of both β1 and ω,
by taking into account more bands (N = 10), demonstrat-
ing the peculiarity of time modulation in the framework of
flexural-gravity waves. An application of this concept would
be filtering and generation of ultranarrowband water-wave
signals.

For instance, the picture of the k-band gap can be seen
from another perspective, i.e., that of exceptional points of
degeneracy (EPs) [55–57]. The edges of the band gap corre-
spond also to EPs as these are induced by space, time, and/or
spacetime modulation. Physically, this is different from gain-
loss systems where the EPs are generated due to balanced gain
and loss and parity-time (PT ) symmetry breaking. In fact,
Eq. (7) (time modulation) or Eq. (9) (spacetime modulation
to be discussed in the next section) can be rearranged in a
matrix form by casting the terms with the wave number on the
left-hand side, and the problem can be seen as an eigenvalue
problem, i.e.,

T (β1)
 = ω
, (8)

with 
 = [Ŵ−N , . . . ,Ŵ0, . . . ,ŴN ]T by considering 2N + 1
harmonics. The matrix T is thus (2N + 1) × (2N + 1), and ω

is the eigenvalue (eigenfrequency) of the modulated system.
This means that the results in Fig. 2(c) could be interpreted
in a different but equivalent way. Explicitly, at low frequency
we have two eigenvalues [both real, i.e., the exact phase of the

system and imaginary part is zero as seen in Fig. 2(c)] that
evolve from zero to around β1 = 0.023 rad/m. At β1 = β−,
an EP takes place, and the PT symmetry is broken, so the
system switches to the broken phase. This is demonstrated
by the finite imaginary part of the eigenvalue [Im(ω)] (two
complex-conjugate eigenfrequencies). At β1 = β+, a second
EP occurs where the system switches back to the exact phase.
For spacetime modulation, the same reasoning can be em-
ployed with the only difference that along the broken phase
(i.e., interval [β−, β+]) the degenerate eigenfrequency is not
constant but varies linearly with β1 and results in the oblique
band gap as explained in the SM [43]. Further analysis of
the sensitivity of the EP is given in Appendix B and shows
the effect of various parameters on the EP location as well as
the analytical derivation based on the fractional Puiseux series
[58,59].

B. Spacetime modulation and nonreciprocity

1. Spacetime modulation

Let us move now to the modulation of the floating plate in
spacetime [23], i.e., γ (t ) = γ0[1 + δmcos(κmx − �mt )], with
κm being the space-modulation “frequency.” Here, we also
consider first the coupling between the bands n = 0 and n =
−1. It is straightforward to show that the dispersion relation is
obtained from Eq. (7) by replacing β1 by β̃n = β1 + nκm, i.e.,

[γ0(β1 + nκm)6 + γ1(β1 + nκm)2 − (ω + n�m)2]Ŵn + γ0δm

2
{[β1 + (n − 1)κm]6Ŵn−1 + [β1 + (n + 1)κm]6Ŵn+1} = 0. (9)

When only two modes are considered, a characteristic equation similar to Eq. (4) is obtained with the proper changes, i.e.,∣∣∣∣∣γ0β
6
1 + γ1β

2
1 − ω2 γ0δm

2 (β1 − κm)6

γ0δm

2 β6
1 γ0(β1 − κm)6 + γ1(β1 − κm)2 − (ω − �m)2

∣∣∣∣∣ = 0. (10)

In the case of spacetime modulation (or luminal floating
structures), the eigenfrequencies are solutions to a sixth-order
polynomial, and it is not possible to easily express them in a
simple closed form as before. Figure 3(a) shows first the space
modulation for comparison, by enforcing �m = 0 rad/s and
κm = 0.06 rad/m. In this scenario, a classical frequency band
gap can be observed and is highlighted in red. Figure 3(b)

gives the plot for �m = 20 rad/s, κm = 0.06 rad/m, and
δm = 0.4. Thus, for a finite value of κm�m, we can observe a
tilted band gap, towards the β1 axis, i.e., an intermediate state
between the ω-axis band gap [Fig. 3(a)] and the β1-axis band
gap [Fig. 3(c)]. The regions highlighted in color in Figs. 3(a)–
3(c) give the corresponding band gap for each modulation
type.
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FIG. 4. Top: Dispersion curves for N = 5, i.e., considering 11
bands for δm = 0.8, �m = 30 rad/s, and κm = 0.0065 rad/m, where
the inset (red curves) is a magnified view of the oblique (rotated) k-
band gap. Bottom: Imaginary part of the first eigenfrequency Im(ω)
in the same range of flexural-gravity wave numbers. The blue (green)
dots correspond to negative (positive) β1 = ∓0.034 rad/m.

For the complete treatment, we consider N = 5 (e.g., 2N +
1 = 11 bands) and plot in Fig. 4 the dispersion curves of this
luminal floating structure. In comparison with Fig. 2(b), we
can see the rotation of the band gap due to the additional space
modulation. In the limit where κm/�m → ∞ we can recover
a classical band gap in the frequency domain as demonstrated
in Appendix C, Figs. 8 and 9. However, these tilted band gaps
are a unique feature of spacetime-modulated thin plates and
are due to the fact that in electromagnetic or acoustic systems,
time and space have some sort of “duality,” i.e., they can
exchange their positions in the equation (up to the speed of the
wave) while still getting the same solution. However, in thin
plates, time and space are not interchangeable, as exemplified
by the governing PDE of Eq. (1) and the corresponding dis-
persion relation. In the SM, we show an investigation of the
role of this asymmetry between space and time in different
wave systems [e.g., acoustics (order 2), flexural (order 4), and
flexural-gravity (order 6)] as well as hypothetical PDEs. In
Fig. S3 of the SM [43], only the acoustic waves (equal order
between space and time) do not present an oblique band gap,
due to the symmetry between space and time. The other PDEs
have different space and time orders and thus possess tilted
band gaps, confirming thus the origin of the tilted band gap.
The same effect is also seen in Fig. 3(b) for the simple case of
coupling between two bands (see Appendix C for the progres-

sion of the band gap with varying space- and time-modulation
frequencies, showing a nontrivial dependence).

2. Nonreciprocity and unidirectionality

Figure 4 showcases another intriguing property directly
originating from spacetime modulation, i.e., nonreciprocity.
For instance, to grasp these nonreciprocal features, we plot
the eigenfrequencies (or dispersion relation) for a flexural-
gravity wave number β1 spanning the range [−0.045, 0.045]
rad/s. Due to the tilting of the band gaps (owing to spacetime
modulation) and the overall rotation of the band diagram, we
clearly observe a strong asymmetrical behavior for positive
and negative opposite values of β1. For example, the operation
point marked with a green dot (β1 = 0.034 rad/s) and the one
marked with a blue dot (β1 = −0.034 rad/s and opposite to the
green one) have markedly different properties. The blue point
lies in a band-gap region where no propagation is possible,
while the green point corresponds to the propagating regime
(this is confirmed by the observation of the imaginary part
of the eigenfrequencies: finite or zero, respectively). Hence
our spacetime metamaterial may be used for unidirectional
water-wave propagation (only right-direction propagation is
possible in this specific case). In a sense, our spacetime mod-
ulation plays the role of topologically nontrivial metal-metal
interfaces, where these structures were shown to result in
unidirectional propagation of plasmons due to the topology of
the band structure [60,61]. Here, we propose a unidirectional
device for flexural-gravity waves without the use of complex
strategies (such as the presence of a magnetic field in plas-
monics or the use of gain and loss systems).

On the application side, this idea may open avenues for
control and harvesting of water waves in floating thin elastic
systems. In fact, cities and critical infrastructure located near
coastlines are subject to flooding, and thus floating systems
might play a role in the near future by either replacing some
of the existing infrastructure (airports and artificial islands) or
helping to protect and isolate land from some ocean waves.
Our nonreciprocal floating metamaterial can be of use as it
will selectively stop water waves that are incoming from a
preferred direction.

IV. CONCLUDING REMARKS

To conclude, flexural-gravity waves are investigated, and
their scattering properties are quantified in the context of
spacetime modulation of floating plates. In this context, we
must handle the coupling between water waves and flexural
waves of thin floating plates. It is shown that these waves
possess one propagating and two evanescent solutions, re-
sponsible for the observed effects. As a potential application,
we consider a time modulation of the Young’s modulus both in
time and spacetime, and we show the emergence of a k-band
gap with peculiar properties as well as tilted band gaps. This
results, in particular, in nonreciprocal features with evident
use for unidirectional propagation of flexural-gravity waves.
The presented research may open vistas in manipulation and
harvesting of water waves in floating structures, with promis-
ing applications in maritime engineering.
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For instance, one intriguing application may be the rainbow
trapping of water waves by leveraging of spacetime modula-
tion in order to collect some of the ocean energy and then
convert it to useful electricity via piezoelectric materials, for
example. Thus it can be clearly seen that spacetime modula-
tion in the realm of floating thin plates can have a plethora
of intriguing applications and novel properties not found with
other classical waves (i.e., obeying the Helmholtz equation).

Regarding the issue of practical realization, if the goal
is to model and design spacetime metamaterials for floating
megastructures such as floating airports or artificial islands,
megastructures of sizes ranging from a few hundreds of me-
ters to kilometers have to be studied. Of course, this is a
long-term experiment that requires great accuracy in the mod-
eling. For instance, to model such megastructures, one cannot
consider a fixed height (or depth of water). Also, the thickness
of the plate and its material elastic properties (Young’s modu-
lus and Poisson’s ratio) may vary from one region to another
depending on the structure and the application being tackled.
Thus a more detailed numerical modeling needs to be de-
veloped and performed, for example, by using finite-element
methods devoted to fluid dynamics that would account for
various nonlinear effects beyond the scope of our study. Yet, it
should be emphasized that our concept is scalable and that it
can work efficiently for a much smaller scale that may be used,
for example, in other applications such as energy harvesting
(see the SM for some results [43]).
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APPENDIX A: FLEXURAL-GRAVITY GOVERNING
EQUATION

1. Derivation

The structures considered in this paper are thin elastic
plates floating atop water. The thickness δ of a given plate
is assumed to be very small in comparison to its lateral di-
mensions Lp and the wavelength of the water waves, i.e.,
0 < δ 	 L and 0 < δ 	 λ. Also, we assume that the depth
of water h is small in comparison to the wavelength, i.e.,
the shallow-water approximation, which is 0 < h 	 λ. Fur-
thermore, it is assumed that the flow of water is irrotational;
thus the velocity field can be expressed as v = ∇ϕ, with ϕ

being the velocity potential. The water elevation in the plate’s
region is denoted as W . Thanks to the shallow-water equation,
one has

∂W

∂t
+ h�ϕ = 0. (A1)

In the plate’s region, one can express the relationship between
the liquid elevation and pressure exerted by the thin plate
using the linearized Bernoulli equation, i.e.,

p = −ρgW − ρ
∂ϕ

∂t
, (A2)

where g = 9.81 m/s2 is the surface gravity of the Earth and ρ

is the mass density of water. Last, the pressure exerted by the
plate can also be expressed by the dynamic condition as

p = D�2W + M
∂2W

∂t2
, (A3)

where the Laplacian � is understood as operating in the
two-dimensional space, i.e., in the x-y plane. Moreover, M
is the surface density of the plate (i.e., unit of mass per
unit of surface), and D is its flexural rigidity. By combin-
ing Eqs. (A1)–(A3) and taking the time derivative of both
Eqs. (A2) and (A3), one can derive the equation obeyed by
the velocity potential in its domain of validity, in the case of
isotropic and homogeneous physical parameters, i.e., D, h, M,
and ρ, which is

D�3ϕ + M
∂2

∂t2
�ϕ + ρg�ϕ − ρ

h

∂2ϕ

∂t2
= 0. (A4)

Yet, in the case in which the flexural rigidity D depends on
time, it is more convenient to write the PDE in terms of W by
taking the Laplacian of Eqs. (A1)–(A3). This leads to

D�3W + M
∂2

∂t2
�W + ρg�W − ρ

h

∂2W

∂t2
= 0. (A5)

2. Approximations

Let us denote the terms of Eq. (A4) by

T1 = D�3ϕ, T2 = M∂2
t �ϕ,

and T3 = ρg�ϕ ≈ ρ/h∂2
t ϕ.

The second term, i.e., T2, of this equation can be shown to be
less significant than the remaining ones, so it can be ignored,
as with our set of approximations, this term is much smaller
than the remaining terms of the left-hand side of Eq. (A4).
Figure 5(a) compares the terms T2 and T3 versus the wave-
length of water waves. It shows that for most of the spectrum,
the term T2 can be safely ignored. The exception occurs only
for small wavelengths. However, since we are working in the
shallow-water approximation, we do not consider these wave-
lengths, and hence T2 can be neglected. Thus the equation
satisfied in the plate’s region is

D�3ϕ + ρg�ϕ − ρ

h

∂2ϕ

∂t2
= 0. (A6)

In the frequency domain, when we assume a time-harmonic
dependence, i.e., ∂/∂t = −iω, we obtain (by uniformly and
interchangeably denoting the velocity potential and its har-
monic component by ϕ)

�3ϕ + ρg

D
�ϕ + ρ

hD
ω2ϕ = 0. (A7)

Evidently, the same approximations apply to Eq. (A5), i.e.,

�3W + ρg

D
�W + ρ

hD
ω2W = 0. (A8)
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FIG. 5. (a) Comparison of the strength of the terms T2 and T3, using dimensional analysis, normalized by the first term T1, vs the water
wavelength λ0 = 2π/k0. (b) Dispersion relation (flexural wavelength vs water wavelength) of flexural-gravity waves, using the PDE of Eq. (A7)
and the other PDE [same as in Eq. (A7) without the term T2]. (c) Two-band dispersion curves in free space, i.e., no coupling, δm = 0. (d) Two-
band dispersion considering only the bands n = 0 and n = −1, for �m = 20 rad/s, κm = 0.06 rad/m [spacetime modulation with an oblique
(indirect) band gap], and δm = 1.75.

FIG. 6. Variation of the eigenfrequencies ω vs the normalized
perturbation parameter � computed numerically for � = �m, � =
γ0, � = δm, and � = γ1 reading from top to bottom, respectively.
The parameters of the spacetime modulation are �m = 10 rad/s and
δm = 1.75, while the other parameters are the same as in the main
text.

Figure 5(b) plots the dispersion relation of Eq. (A7) and that
of the other PDE, where the term T3 = ρg� is neglected. The
two PDEs coincide at small wavelengths, but as the wave-
length increases, the mismatch increases considerably.

FIG. 7. Analytical (blue dashed line) and numerical (black
squares) calculation of the variation of the eigenvalues vs the normal-
ized perturbation parameter �, with the remaining properties being
the same as in Fig. 6.
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FIG. 8. Two-band dispersion curves for the case of δm = 1 and considering only the bands n = 0 and n = −1, for �m = 20 rad/s and for
varying κm from 0 to 0.05 rad/m (spacetime modulation with an oblique, i.e., indirect, band gap). The black curves show the real part of the
eigenfrequencies, while the red curves show their imaginary part. The remaining physical parameters of the elastic plate and liquid are the
same as those defined in Sec. II of the main text.

3. Boundary conditions

In order to solve a scattering problem involving Eqs. (A7)
or (A8), we need to supply the boundary conditions, which
in the case of a plate-plate boundary, consists in ensuring
the continuity of the six parameters ∂tϕ, ∂nϕ, �ϕ, ∂n(�ϕ),
Mn(�ϕ), and Vn(�ϕ), corresponding to the six unknowns (see
Fig. 1 of Ref. [32]), with n being the normal to the boundary
and s being the tangential coordinate, i.e.,

Mn(�ϕ) = −D

(
∂2�ϕ

∂n2
+ ν

∂2�ϕ

∂s2

)
,

Vn(�ϕ) = ∂Mn(�ϕ)

∂n
− 2

∂Mns(�ϕ)

∂s
,

where the operator Mns = D(1 − ν)∂2/∂n∂s and where ∂t , ∂n,
and ∂s denote the partial derivative with respect to time, the
normal component, and the tangent component, respectively.
For a plate-water boundary, we have instead four boundary
conditions, which are continuity of ∂tϕ as well as ∂nϕ and
Mn = Vn = 0 [32]. In the case of a layered structure such as
the one shown in Fig. 1 of the main text, these conditions
simplify greatly as can be shown easily.

4. Evanescent waves

We wish to emphasize here that flexural-gravity waves
propagating within a floating thin plate are shown to obey the
sixth-order PDE [Eq. (1) of the main text] in the frequency
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FIG. 9. Two-band dispersion curves for the case of δm = 1 and considering only the bands n = 0 and n = −1, for �m = 20 rad/s and for
varying κm from 0.06 to 0.25 rad/m [spacetime modulation with an oblique (indirect) band gap]. The black curves show the real parts of the
eigenfrequencies, while the red curves show their imaginary parts. The remaining physical parameters of the elastic plate and liquid are the
same as those defined in Sec. II of the main text.

domain; in addition to propagating flexural-gravity waves,
i.e., e±iβ1x, there exist evanescent (inhomogeneous) flexural-
gravity-wave solutions, differentiating the floating plate from
its acoustic counterpart (see the SM [43]), in which only
propagating waves are considered. In the free propagating
domain, only the propagating component survives; as the
evanescent wave is proportional to e±β1x and since these
evanescent waves decay exponentially as they travel away
from their corresponding interfaces, they do not contribute
to the scattering coefficients, which are measured in the far
field. However, importantly, in order to fully characterize the
scattering of flexural-gravity waves, we have to take into ac-
count the contribution of all waves at the inner interfaces of
the metamaterial. This is exactly what we do in our treatment,

where these waves (coupled to the other propagating ones)
implicitly influence the physics of the spacetime modulation.
Hence it should be understood that these waves are present at
all steps of the calculation on an equal footing with the prop-
agating ones; in a sense, we solve the full problem without
approximation.

APPENDIX B: SENSITIVITY OF THE EP AND
ANALYTICAL MODELING VIA PUISEUX FRACTIONAL

POWER SERIES

The solution of Eq. (8) shows that our problem can be
thought of as an eigenvalue problem and that the k-band gap is
reminiscent of EP and parity-time symmetry breaking as dis-
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cussed in Sec. III. In the following we analyze the sensitivity
of the EP and band gap with respect to small perturbation on
the physical parameters of the structure and show the extreme
sensitivity of the spacetime-modulation scheme that further
demonstrates its inner relation with EPs. Let us consider any
parameter that we want to perturb and denote its perturbed
value by �p and its value at the EP by �EP. Hence the rel-
ative perturbation can be given by � = (�p − �EP)/�EP or
equivalently �p = �EP(1 + �). � can thus assume positive
or negative values, and in Fig. 6 we plot the effect of this per-
turbation on the eigenfrequencies for different scenarios, i.e.,
� = (�m, δm, γ0, γ1). We notice that for � = �m the splitting
in the eigenfrequencies occurs for � > 0, whereas for the
other scenarios this occurs for � < 0, showing the peculiar
role of perturbing the modulation frequency. Note also that
the lower panel corresponding to � = γ1 has a different scale
in the x axis, as it is two orders of magnitude less sensitive to
perturbation than the remaining parameters.

We go one step further and use the Puiseux series, which
is a fractional power series used to fit the observed behavior
of the eigenfrequencies’ variation versus the perturbation �

[58,59,62]. As in our case the eigenvalue is ω as given by
Eq. (8), it can be shown that the eigenvalues are (here, we have
a doubly degenerate EP, so we expect to have two eigenvalues)

ω±(�) = ωEP ± τ1

√
�, (B1)

where

τ1 = i

√√√√ ∂L
∂�

(�,ω)
1
2

∂2L
∂ω2 (�,ω)

∣∣∣∣∣∣
�=0,ω=ωEP

, (B2)

with L = |T (�) − ω1|, where 1 denotes the identity matrix
of the same dimension as T . The sensitivity of the device is
demonstrated by the fact that the eigenfrequencies vary as the
square root of the perturbation �, meaning that a small value

of � can still result in a dramatic effect on ω±. Figure 7 plots
the comparison between the analytical and numerical calcu-
lations of the eigenvalues when � = δm, i.e., we perturb the
modulation amplitude. In this case, we compute τ1 = 1.87i
from Eq. (B2). An excellent agreement is observed for small
values of � demonstrating thus the validity of the analytical
method as well as the sensitivity of the spacetime-modulation
effect.

APPENDIX C: TILTED BAND GAP

Here, we wish to understand the origin and variation of
the tilted band gap due to spacetime modulation of flexural-
gravity waves. Figures 5(c) and 5(d) show the comparison
between the two bands in free space and in the case of space-
time modulation, showing how the band gap appears due to
coupling.

Band-gap variation with modulation

Figures 8 and 9 show the dependence of the oblique
(tilted) band gap for a time-modulation frequency �m = 20
rad/s and for a varying space-modulation frequency κm rang-
ing from 0 to 0.25 rad/m. These two figures show how
the band gap is gradually transformed from horizontal to
vertical, via an oblique band gap of various angles with in-
creasing values of κm. These figures show, for instance, a
nontrivial behavior (i.e., a nonlinear variation of the band-gap
rotation) as the oblique band gap first disappears for κm =
0.03, 0.04 rad/m and then reappears before transforming into
a classical (frequency) band gap when the spatial modulation
becomes strong enough (i.e., for κm � 0.1 rad/m). Hence
this progression shows that we can get all band-gap types
by controlling the spatial-modulation frequency and keeping
the time modulation constant or equivalently by sweeping the
time modulation for a constant spatial modulation: k-band gap
for κm = 0 for the first plot in Fig. 8, oblique band gap, and
frequency band gap for the remaining plots in Fig. 9.
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