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Strain-induced band modulation of thermal phonons in carbon nanotubes
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We show that carbon nanopeapods are an ideal artificial superlattice to induce band modulation of thermal
phonons. Based on spectral energy density analysis, we found that a periodic deformation in carbon nanotubes
induced by fullerene encapsulation leads to zone folding of phonon dispersions up to near the maximum
frequency. The zone-folding effect gives rise to phonon band gaps caused either by Bragg reflection or mode
hybridization, and this reduces group velocity. This was quantified to play the leading role in reduction of thermal
conductivity by the fullerene encapsulation. The strain modulation of thermal phonon bands opens a possibility
to control material thermal conductivity.
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Heat conduction can be manipulated by taking advantage
of the particle [1] and wave [2] nature of phonons [3]. When
a characteristic size of nanostructures such as grain size [1,4]
and distance between pores [5] is comparable with or less than
phonon mean-free-paths (MFPs), e.g., on the order of 10 nm
to 10 μm for silicon at room temperature [6], nanostructures
enhance phonon scattering and reduce thermal conductivity
of the materials. Another and more ambitious direction of
phonon manipulation is based on wave nature [2]. Periodic
structures can modulate phonon wave nature by, for example,
generating phonon gaps [7,8] and may realize low thermal
conductivity for thermoelectric devices and thermal insulators
or more advanced phonon engineering such as thermal rectifi-
cation [9] and thermal cloaking [10,11]. While a recent study
indicates that MFP is comparable with coherence length in
ideal systems [12] because phonons easily lose their phase
information due to disorders in materials such as surface
roughness and impurities [13–18], coherent phonon effects
can be observed only when a characteristic size of nanostruc-
tures reaches the order of phonon wavelength; that is to say,
effective coherence length is on the order of phonon wave-
length in practice. Therefore, the short wavelength of thermal
phonons, e.g., 1–10 nm in silicon at room temperature, has
made the fabrication of structures with a characteristic size
shorter than coherence length difficult and limited the ob-
servation of band modulation of thermal phonons to only
at low temperature (<10 K) [17] or at low frequency (<1
THz) [15]. While superlattices with a single-nanometer pe-
riod and atomic-scale roughness may enable modulation of
coherent wave nature of thermal phonons at room temperature
[19], the presence of heterointerfaces disturbs their mutual
adaptability, for instance, for electron transport for thermo-
electric application. Recently, local phenomena of coherent
phonons, resonance and hybridization in nanopillars or junc-
tions [20–23], and localization due to disordered structures
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[24,25] have been proposed as more robust strategies to con-
trol phonon wave nature. However, the fabrication of these
structures is also difficult [26] because their scale still needs
to be on the order of coherence length.

Carbon nanopeapods (or simply called peapods), fullerene-
encapsulated single-walled carbon nanotubes (SWNTs), may
overcome the above problems because of their short (≈1 nm)
periodicity, which is sufficiently shorter than wavelengths
of thermal phonons at room temperature, and the absence
of interface along the carrier transport direction. For elec-
tron transport, it has been suggested that nanopeapods act
as a superlattice generating electron gaps because of a peri-
odicity of encapsulated fullerenes [27]. On the other hand,
for thermal transport, underestimation of interlayer interac-
tion between encapsulated fullerenes and outer SWNTs have
misled the understanding of effects of the fullerene encapsu-
lation [28,29]. A recent measurement of thermal properties
of multiple SWNTs and peapods [30] has revealed that the
fullerene encapsulation significantly reduces thermal con-
ductivity of carbon nanotubes (CNTs) due to the interlayer
interaction. Reference [30] also showed that the reduction can
be attributed to radial expansion of outer SWNTs [27,30–32]
causing modulation in the phonon dispersion such as phonon
softening and zone folding, although the details are yet to be
understood. In this paper, we show how the periodic strain
field induced by the fullerene encapsulation modulates wave
nature of thermal phonons of SWNTs. Based on molecular
dynamics (MD) with spectral energy density (SED) analysis,
we reveal that thermal conductivity decreases mainly due to
wave interference effect, namely, zone-folding effect. The
zone-folding effect can be observed up to near the maxi-
mum frequency (≈40 THz), which is much higher than that
for nanopillars and junctions proposed in previous studies
(≈1 THz) [20–23]. The knowledge in how induced strain
can modulate phonon bands provides a way to tune thermal
phonon properties, strain engineering of wave nature of ther-
mal phonons.

In the MD calculations, (10, 10) SWNTs with the length
of ≈250 nm (1024 primitive unit cells of the SWNT) are
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FIG. 1. Phonon dispersion of (a) a (10, 10) SWNT and (b)–(e) C60@(10, 10) peapod; (b) axial modes, (c) radial modes, (d) axial modes
in low-frequency region, and (e) radial modes with qθ = 4. (a)–(c) Arrows and markers show a band edge of representative bands for axial
(yellow and orange) and radial (blue and black arrows) modes. (d) Symmetric bands due to a zone-folding effect can be clearly observed. (e)
Phonon gaps at symmetric and asymmetric points show Bragg gaps and hybridization gaps induced by the zone-folding effect, respectively.
Solid and dashed colored lines show, respectively, phonon bands tracing spectral energy density (SED) peaks and the corresponding folded
bands in the Brillouin zone of the peapod. Vertical white dashed lines show symmetric points.

used, and a C60 fullerene is encapsulated in every four prim-
itive unit cells of the SWNT (with ≈0.98 nm interval) in a
peapod. Optimized Tersoff potential [33] and 12–6 Lennard-
Jones potential are adopted to describe the covalent bonds and
the intermolecular van der Waals interactions, respectively.
The energy and length scales of the Lennard-Jones potential
2.4 meV and 5.0 Å have been determined to reproduce the ex-
perimentally observed deformation and reduction in thermal
conductivity of peapods [30]. After the energy minimization
with these interatomic potentials, the system is thermostated
and equilibrated at 300 K in a canonical ensemble for 1
ns under a periodic boundary condition. After reaching the
equilibrium state, velocities of individual atoms in the SWNT
are recorded every 8 fs for 32 768 steps (≈260 ps) in total
(see Table S1 in the Supplemental Material (SM) [34]). In
every calculation, the time step is set to be 0.5 fs, and the
temperature is controlled by Nosé-Hoover thermostat. By per-
forming spatial and temporal Fourier transform with respect
to the series of velocities taking advantage of the translational

and 10-fold rotational symmetries of the SWNT [35,36], we
obtained the SED of the SWNT and peapod. The translational
wave vector and rotational wave number are denoted by qz

(0 � qz < 2π/alat with alat = 2.5 Å being the length of the
primitive unit cell of the SWNT) and qθ (qθ = 0 to 9), re-
spectively. Forty independent simulations are performed with
different randomized initial conditions to obtain a statistical
average. It is worth mentioning that the MD method includes
full anharmonicity, and thus, the issue of finite coherence
length is intrinsically incorporated. Furthermore, it is suited
for calculating soft materials, where the lattice forms far away
from equilibrium positions, making perturbation analysis such
as lattice dynamics less relevant.

Figure 1 shows the SED of (a) the (10, 10) SWNT and (b)–
(e) the C60 peapod. The radial expansion due to the fullerene
encapsulation leads to softening of axial modes [Fig. 1(b)] and
hardening of radial modes [Fig. 1(c)], as indicated by mark-
ers in Figs. 1(a)–1(c) [30]. While softening of axial modes
naturally results in decrease in phonon group velocity, the
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hardening of radial modes also results in decrease of group
velocity because hardening is stronger for longer wavelength
phonons; the black arrows in Fig. 1(c) clearly show stronger
flattening for radial modes with longer wavelength. Because a
uniform radial expansion leads to a similar change in phonon
dispersions [30], we can regard such strain effects, softening
of axial modes and hardening of radial modes, as a uniform
strain effect [37].

Another consequence of the radial expansion is a zone
folding of phonon dispersion, a representative phenomenon of
coherent interference of phonons. Figure 1(d) clearly shows
that symmetric bands are generated by the zone-folding ef-
fect. Moreover, the zone-folding effect can be observed up
to ≈40 THz (e.g., see Figs. 1(c) and S1 in the SM [34]),
which is much higher frequency than for phonon resonance in
nanopillar or nanojunction structures (�1 THz) [21–23]. Note
that the coherence of phonons becomes more vulnerable to
roughness or anharmonicity as frequency increases, and thus,
the maximum frequency with zone-folding features is a mea-
sure of how fine the phonon interference has been realized. We
can, therefore, expect to modulate thermal properties of CNTs
by tuning phonon wave nature at room temperature with the
fullerene encapsulation. Interestingly, the zone-folding effect
induces two types of phonon gaps: gaps at symmetric points
(qzalat/π = 0.25i, i = 1, . . . , 4) and asymmetric points [see
blow-ups in Fig. 1(e)]. Gaps at symmetric points are due to the
Bragg effect. Particularly, phonon bands of long-wavelength
radial modes are heavily flattened at ω < 15 THz because of
large Bragg gaps (up to 1.6 THz), as indicated by arrows in
Figs. 1(c) and 1(e). While the zone-folding effect is remark-
able for long-wavelength phonons (qzalat/π = 0.25), Bragg
gaps are generated also for middle- and short-wavelength
phonons (qzalat/π = 0.5, 0.75, 1.0). In addition to the Bragg
gaps at symmetric points, we can find phonon gaps at asym-
metric points in Fig. 1(c) (at qzalat/π ≈ 0.5–1.0 and ω ≈
10–15 THz). To describe how these phonon gaps are gen-
erated, phonon dispersion of radial modes with qθ = 4 is
shown in Fig. 1(e) as a typical example. Two distinct separated
radial modes are present for each qθ except for qθ = n/2
(n = 10). These bands originally do not interact with each
other in the SWNT. The zone folding, however, makes them
hybridize with each other as denoted with dashed bands in
Fig. 1(e) and generate phonon gaps in both bands at the
same frequency as highlighted by white bands. Consequently,
because of the presence of Bragg gaps and hybridization gaps,
the zone-folding effect decreases group velocity not only at
long-wavelength phonons but also short-wavelength phonons.

Next, we extract relaxation time (τ ) by fitting Lorentzian
functions to the SED data. Figure 2 shows the obtained
frequency dependence of relaxation time of (a) transverse
acoustic (TA), (b) twisting acoustic (TW), (c) longitudinal
mode (LA) and radial breathing mode (RBM), and (d) optical
modes (also see Fig. S5 in the SM [34]). Detailed descriptions
of how to extract phonon branches and evaluate the error can
be found in Secs. 1 and 2 in the SM [34]. Because the total
simulation duration (260 ps) which determines the frequency
resolution of SED (3.8 GHz) is not sufficient for phonon
modes with large relaxation times, we have carefully analyzed
fitting errors with Lorentzian function. While details are de-
scribed in Sec. 2 in the SM [34], it is worth briefly mentioning

FIG. 2. Frequency dependence of phonon relaxation time of
carbon nanotubes (CNTs). The data are assigned to (a) transverse
acoustic (TA), (b) twisting acoustic (TW), (c) longitudinal acoustic
(LA) and radial breathing mode (RBM), and (d) optical modes. Black
and red markers are used for single-walled carbon nanotube (SWNT)
and peapod, respectively. Error bars are shown only for data obtained
with a local minimum of relaxation time (please see Sec. 2 in the
Supplemental Material [34] for details of the error of relaxation
time).

the process of the error analysis here. When the frequency
resolution of SED is sufficiently fine, the peak frequency of
the Lorentzian function can be determined by a coefficient
of determination R2 = 1− ∑

(yi − fi )2/
∑

(yi − ȳ)2, where
yi and fi are the values of the SED and the Lorentzian func-
tion at the ith frequency, and ȳ is the average value of the
SED used for the fitting (see Fig. S2(b-i) in the SM [34]).
However, determination of the peak frequency with R2 leads
to an extreme (a few orders of magnitude) overestimation of
relaxation time for some cases of large relaxation time. We,
therefore, employed a local minimum of relaxation times to
determine relaxation time in such cases, as shown in Fig.
S2(b-iii). In addition, we have estimated the error of extracted
relaxation time as a function of the relaxation time: |ε| =
0.38 log τ0 − 0.41, where ε = (τ − τ0)/τ0 with τ and τ0 being
the extracted relaxation time and the true value, respectively
(see Fig. S2(c) in the SM [34]). Note that τ0 is replaced by τ in
the following analysis because τ0 is unknown. In Fig. 2, error
bars obtained by this relation are shown only on data obtained
with the local minimum of τ for the simplicity.

It is also worth comparing the simulation duration of the
individual SED analysis, which is carried out under an equilib-
rium state, and the correlation time required in the framework
of equilibrium MD with Green-Kubo formula. While a recent
paper employed a long correlation time (2 ns), the thermal
conductivity converged to a value within the statistical error
in ∼250 ps [38]. The simulation duration in this analysis (260
ps) is reasonably long while an error analysis was required.
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As for the obtained phonon properties, it is interesting that the
relaxation time increases due to the fullerene encapsulation
for some modes (particularly for low-frequency LA modes
and high-frequency TA modes); although, as shown in Fig.
S5(b) in the SM [34] and will be quantified later, the extent
of increase is outcasted by the reduction in the group velocity.
While a detailed analysis is difficult with the SED analysis, it
may be possible to ascribe the increase in relaxation times to
the flexibility of SWNT. From the perspective of the phonon,
the flexibility of SWNT can be considered as long-wavelength
transverse modes with large amplitudes, which induce local
strain fields, as shown in Fig. S6 in the SM [34]. Because
the local strain field affects transport of short-wavelength
longitudinal modes, the flexibility finally results in interac-
tion between these transverse and longitudinal modes and to
reduction of their relaxation times. On the other hand, these
phonon modes do not significantly interact with each other
in the rigid system, peapod, and thus, their relaxation times
increase because of the fullerene encapsulation. More discus-
sion and Fig. S6 can be found in Sec. 4 in the SM [34].

Using extracted group velocity and relaxation time, we
calculate thermal conductivity with the Boltzmann transport
equation: κ = ∑

qz,s
κ (qz, s) = ( kB

V )
∑

qz,s
v2

g (qz, s)τ (qz, s),
where kB is Boltzmann constant, V is the CNT volume
with a hexagonal cross section [30], and s is phonon
branch. Thermal conductivity decreases from κsw = 2500
to κpea = 1800 Wm–1 K–1 (29%) due to the fullerene encap-
sulation, where “sw” and “pea” denote SWNT and peapod,
respectively. The errors of the calculated thermal conductivity
were estimated as 20 and 16% for the SWNT and peapod,
respectively, as discussed in Sec. 2 in the SM [34]. Thermal
conductivity obtained in this evaluation should be a length-
convergent value because it converges with the CNT length
of 10–20 nm in equilibrium MD simulations with the Green-
Kubo formula [39–41] (also see the discussion in Sec. 3 in the
SM [34]). The thermal conductivity of the SWNT obtained in
this paper (2500 Wm–1 K–1) was, indeed, in good agreement
with the converged value for the (10, 10) SWNT obtained
with the Green-Kubo formula (2200 Wm–1 K–1) [38].

It would also be worthwhile to compare with values in
the previous work [30]. While a thermal conductivity cal-
culated with a nonequilibrium MD (NEMD) simulation was
220 Wm–1 K–1 for (10, 10) SWNT, which is 10 times smaller
than the value obtained in this paper, the SWNT used in the
NEMD simulation contains adiabatic layers and thermostats
at both ends, resulting in phonon scattering. The SWNT used
in the NEMD simulation consists of a 40 nm center region
connected with 20 nm thermostats which are terminated by
adiabatic layers. Phonon MFPs in the SWNT for the NEMD
simulation are, therefore, limited at 40–80 nm. To include the
length effect, which is absent in the SED analysis, phonon
scattering rates were calculated by Matthiessen’s rule τ−1

tot =
τ−1

pp + τ−1
bdy, where phonon-phonon scattering rate (τ−1

pp ) was
obtained from the SED analysis, and boundary scattering
rate was calculated as τ−1

bdy = 2vg/Lcnt with Lcnt being the
CNT length. Finally, the estimated thermal conductivity was
200–350 Wm–1 K–1 for Lcnt = 40−80 nm, which is consistent
with the previous NEMD simulation.

We also compare the thermal conductivity obtained with
the SED analysis with an experimentally obtained value

FIG. 3. Thermal conductivity of the single-walled carbon nan-
otube (SWNT; black) and peapod (red) with respect to phonon (a)
wavelength and (b) frequency. The solid lines and filled curves show,
respectively, cumulative and spectral thermal conductivity.

200 Wm–1 K–1 for 1 μm SWNT bundles [30]. To additionally
consider the effect of interlayer interaction between tubes in a
CNT bundle, a term for phonon scattering between tubes τ−1

tt
was added in the above Matthiessen’s rule. This term was as-
sumed not to depend on the phonon mode (phonon frequency
and polarization) and was determined to reproduce the experi-
mental value. Finally, the experiment value of SWNT bundles
(200 Wm–1 K–1) could be reproduced with τ−1

tt = 0.41 THz,
which was in the same order of scattering rate due to silicon
substrate [36]. Furthermore, thermal conductivity of the pea-
pod estimated using the determined τ−1

tt was 125 Wm–1 K–1,
which is 37% smaller than that of the SWNT. This estimation
indicates that the reduction of thermal conductivity may ap-
pear stronger when other factors enhance phonon scattering in
both systems, SWNT and peapod. Finally, we would also like
to mention hydrodynamics phonon transport in SWNT. While
in carbon-based materials effects of hydrodynamic phonon
transport have nonnegligible contribution to heat transport
[42–45], its effect should be negligible in CNTs except for
CNTs with long length (>10 μm) and large diameter (>2.7
nm) below room temperature [46].

Cumulative and spectral thermal conductivity reflects fea-
tures of zone-folding effects. Figure 3(a) shows that thermal
conductivity decreases for longer wavelength; cumulative
thermal conductivities of the SWNT and peapod start to de-
viate when phonon wavelength >∼1 nm, which corresponds
to the interval of fullerenes in the peapod. The distinct reduc-
tion of thermal conductivity in wavelength region of 2–4 nm
corresponds to the strong flattening discussed with Fig. 1(e);
qzalat/π = 0.25 corresponds to the wavelength of 2.0 nm. As
for the frequency dependence, thermal conductivity of CNTs
decreases in a wide range of frequency except for 20–30 THz,
as shown in Fig. 3(b). While the reduction at around the
highest frequency corresponds to the softening of axial modes
shown in Fig. 1(b), the large reduction ∼10 THz corresponds
to the strong flattening of long-wavelength radial modes and
hybridization gaps of radial modes discussed with Fig. 1(e).
Unlike the impurities that are known to inhibit transport of
short-wavelength and high-frequency phonons, it can be ob-
served here that the zone folding of phonon dispersion reduces
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FIG. 4. Decrease in thermal conductivity due to the fullerene en-
capsulation. (a) Contribution of phonons along each direction, radial,
azimuthal, and axial, to thermal conductivity of the single-walled
carbon nanotube (SWNT) and peapod. (b) Relative magnitude of
influence of relaxation time (blue) and group velocity (orange) to
the change of thermal conductivity for phonons along each direction.

the heat transport of phonons with long wavelength and dif-
ferent frequencies including low frequencies.

Figure 4 shows contribution of phonons along each di-
rection: radial (r), azimuthal (θ ), and axial (z) direction.
To estimate their contribution, thermal conductivity κ (qz, s)
is weighted by mean squared displacement along the x di-
rection (x = r, θ, z) of each eigenvector of the SWNT esw,
d (qz, s; x) = ∑

i |esw(qz, s; i, x)|2 (see Sec. 5 in the SM [34]),
where i is atomic index, and esw is obtained with lattice dy-
namics. Figure 4(a) shows that phonons along each direction
contribute to heat transport equally for both the SWNT and
peapod. This result shows that the fullerene encapsulation
affects phonon transport independently of the polarization of
phonons.

We now compare the influences of variations in relax-
ation time and group velocity to the reduction of thermal
conductivity. For this, we calculate two different thermal
conductivities with either of the group velocity and relax-
ation time being that of the peapod: κτ (v)[vsw(pea), τpea(sw)] =
(kB/V )

∑
v2

g,sw(pea)τpea(sw). Consequently, we found that the
change in the group velocity decreases thermal conductivity
by 33%, while the change in the relaxation time increases
it by 6%. As shown in Fig. 4(b), the fullerene encapsula-
tion decreases group velocities for any phonon polarization.
We therefore conclude that the decrease in group velocity
dominates the reduction of thermal conductivity due to the
fullerene encapsulation.

We comment on possible issues leading to the discrepancy
in the magnitude of thermal conductivity reduction in exper-
iments [30] (≈50%) and our simulations (29%). The most
possible reason is the aperiodicity of encapsulated fullerenes
in peapods used in the experiment. While fullerenes are

encapsulated in every four primitive unit cells of the SWNT
in this paper to investigate zone-folding effects, randomness
is omnipresent in real materials. Because aperiodic structures,
i.e., deviation from the periodicity, leading to wave inter-
ference and/or localization can reduce thermal conductivity
by more than a few tens of percent compared with periodic
structures [47], the discrepancy could be explained with the
aperiodic structures in samples used in experiments. Another
issue is that, in MD simulations, all phonon modes are equally
excited because of the absence of quantum effects and, thus,
phonon occupancy cannot be reproduced accurately. Although
this is not an issue at room temperature in the case of materials
with low Debye temperature, in the case of CNTs whose
Debye temperature is much higher than the room tempera-
ture [48,49], the contribution of high-frequency phonons to
thermal conductivity may be overestimated, resulting in un-
derestimation of the thermal conductivity reduction due to
the zone-folding effect that is larger for phonons with lower
frequency [see Fig. 3(b)]. While further investigation may be
required to clarify this issue, the above issues do not affect our
claim; the strain-induced periodic deformation can modulate
phonon dispersion and significantly decrease thermal conduc-
tivity.

We next decompose the reduction in group velocity to
that caused by the uniform and periodic strains. We represent
the extent of uniform strain with the change in the differ-
ence between the maximum and minimum frequency of each
phonon branch �ω and estimate the group velocity change as
vg,uniform = (�ωpea/�ωsw) vg,sw. Using this group velocity,
the change of thermal conductivity due to the uniform strain
field is roughly estimated as �κuniform = κ (vg,uniform, τpea ) −
κsw, and the rest of the reduction of thermal conductiv-
ity �κperiod = (κpea − κsw) − �κuniform is attributed to the
periodic strain field. It is found that 12 and 88% of the
decrease in thermal conductivity due to group velocity is
attributed to the uniform and periodic strain, respectively.
We, thus, conclude that the periodic strain and the resulting
zone folding dominate the change of heat transport prop-
erties of CNTs at room temperature due to the fullerene
encapsulation.

In conclusion, we analyzed the strain effect due to the
fullerene encapsulation on phonon properties of CNTs. Our
results show that the strain field tunes the wave nature of
phonons at room temperature and decreases thermal conduc-
tivity of CNTs. The strain effect on group velocity can be
divided into the uniform and periodic strain effects. The latter,
which leads to zone-folding effects, induces two types of
phonons gaps, Bragg gap and hybridization gap, and dom-
inates the change of thermal properties of CNT. Because
carbon nanopeapods do not have interface and have a single-
nanometer period, they can be an ideal artificial superlattice
to tune phonon wave nature. We believe that further exper-
imental study can realize use of coherence wave nature for
advanced thermal devices such as thermal rectification [9] and
thermal cloaking [10,11].

This work is partially supported by JSPS KAKENHI Grant
No. 19H00744, and No. 20K14661 from Japan Society for
the Promotion of Science (JSPS), and CREST Grant No.
JPMJCR20Q3 and No. JPMJCR19Q3 from Japan Science
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