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Quantum cluster variational method and phase diagram of the quantum ferromagnetic J1-J2 model
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We exploit the quantum cluster variational method (QCVM) to study the J1-J2 model for quantum Ising spins.
We first describe the QCVM and discuss how it is related to other mean field approximations. The phase diagram
of the model is studied at the level of the Kikuchi approximation in square lattices as a function of the ratio
between g = J2/J1, the temperature and the longitudinal and transverse external fields. Our results show that
quantum fluctuations may change the order of the transition and induce a gap between the ferromagnetic and
the stripe phases. Moreover, when both longitudinal and transverse fields are present, thermal fluctuations and
quantum effects contribute to the appearance of a nematic phase.
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I. INTRODUCTION

In most cases of practical interest the solution of problems
involving many interacting quantum particles rests on some
kind of approximation [1–3]. It is not surprising then that
an important fraction of the theoretical work in condensed
matter physics is concerned with the development of such
approximations and the test of the predictions derived from
them. Many of these techniques are similar in spirit; they
improve over the simplest mean field approximation to the
problem including correlations, and/or interactions between
clusters of variables. Among the most celebrated approxima-
tions, although certainly not the only ones, we could mention,
the effective field theory (EFT) [4], the cluster mean field
(CMF) [5,6], and the correlated cluster mean field [7–9].
The quantum cluster variational method (QCVM) [10], inserts
into this family in a novel way: it allows the presence of
disorder in the model, establishing a clear distinction between
average case scenarios and computations on single instances,
and connecting with message passing algorithms developed in
computer science and information theory [11].

QCVM has its roots in previous results from Morita and
Tanaka [12,13] that starting from a pure variational approx-
imation to the free energy of finite dimensional systems
derived a set of closed equations for the order parameters
of a quantum problem defined by a Hamiltonian. Within this
formulation, the resulting set of equations is usually solved
assuming the existence of specific symmetries for the order
parameter of the model. QCVM goes a step further, extending
an approach previously developed for classical disordered
models [14–16] to connect these variational approximations
with message passing equations in finite dimensional sys-
tems. The solutions of these equations can be computed either
self-consistently in specific instances of the problem or on
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average over the disorder [10,16]. QCVM also generalizes
to finite dimensional lattices the work done by [17–24], that
used message passing algorithms to solve quantum disordered
problems in systems with treelike topologies.

In this work we exploit the QCVM to study the phase
diagram of the quantum J1-J2 model in the presence of ex-
ternal fields. This model belongs to an extensively studied
family of similar systems where competing interactions in-
duce exotic phases at low temperatures. This includes systems
with short range ferromagnetic and long range dipolar inter-
actions [25–32], long range Coulomb interactions [33], and
two-dimensional dipolar Fermi gases [34–36].

The J1-J2 model has captured special attention both
because of its apparent simplicity, and because of its re-
semblance to real materials. The classical version has been
studied extensively [37–45] but the quantum version has
turned out to be harder to crack. Mainly, because quantum
fluctuations add complexity to the inherent frustration of the
model inducing a zoology of exotic phases: stripelike phases,
columnar antiferromagnetic phases, Néel antiferromagnetic
phases, spin-liquid phases, and spin nematic phases have
been theoretically predicted [39,46–52]. Some of them, like
stripes and Néel antiferromagnets, have been experimentally
observed [53–55] while others, like the spin nematic phase
and the spin-liquid phase, lack conclusive experimental ob-
servations but keep the interest of experimentalists [47,56].

Our intention in this work is twofold. On one hand, to test
the quantum cluster variational method in a quantum model
with competing interactions. On the other, to unveil the effect
of quantum fluctuations on the phase diagram of the ferro-
magnetic J1-J2 model with competitive interactions. We study
this model extensively as a function of the ratio g = J2/J1, the
temperature T , and external fields. We show that the approx-
imation captures a rich phenomenology of phases and phase
transitions.

The work is organized as follows. In the next section we
present the model and summarize some of the known results
of the literature. We continue introducing the quantum cluster
variational method and how it applies to the J1-J2 model. In
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this section we also discuss how QCVM is connected with
other mean field methods in the literature. Then, we show and
discuss the results of our computations for the J1-J2 model. In
the last section we present the conclusions of our work.

II. THE MODEL

The quantum J1-J2 model is one of the most studied models
of magnetic materials displaying frustration and is defined by
the Hamiltonian

Ĥ = −
∑
〈i j〉

J1σ̂
x
i σ̂ x

j −
∑
〈〈i j〉〉

J2σ̂
x
i σ̂ x

j −
∑

(i)

�hi · �σi, (1)

where 〈i j〉 stand for the nearest neighbors in the square lattice
and 〈〈i j〉〉 for the next-nearest neighbors, and the external
field �hi may point to an arbitrary direction. Here we focus
our attention on the model with nearest-neighbor interaction
J1 greater than zero (ferromagnetic), and J2 � 0. The latter
induces the frustration into the model. Since the preferred
direction of the system is labeled x, quantum effects appear
when the transverse field hz is different from zero.

In the absence of a longitudinal field the model presents
invariance up to the simultaneous rotation of a sublattice and
the change of sign of the first neighbors interaction. So, the
phase diagrams that are obtained in this scenario (Secs. IV A
and IV B), are equivalent to the ones that may be obtained
for the antiferromagnetic realization of the model. Indeed,
references are mentioned in the Introduction in which indis-
tinctly one or the other realizations are used, this being not a
problem as long as they deal only with thermal fluctuation in
zero field scenario or transverse field quantum fluctuations.
Nevertheless, as soon as we tune a longitudinal field, this
symmetry is broken and disparate results can be observed for
both versions.

The classical model (hz = 0) has been largely stud-
ied [37–41,43–45]. However, also there are some questions
that remain open. For example, while for values of g = |J2|

J1
slightly greater than 0.5 the transition is discontinuous, Monte
Carlo studies [43,44] suggest a continuous transition for
g ∼ 1. In a paper by Jin et al. [45], the existence of a pseudo-
first-order transition in the range gc � g � 1 is reported, with
gc = 0.67. They found that the critical exponents vary contin-
uously between those of the four-state Potts model at g = gc

to those of the Ising model for g → ∞.
Recently, researchers paid attention also to the effect of

external magnetic fields and demonstrated the presence of a
nematic phase [39,40], with slight differences, at low tem-
peratures, between the two studies. This nematic phase is
characterized by the presence of orientational order and the
lack of positional order and has been reported experimen-
tally [56]. A word of caution here on the use of the term
nematic. Here we understand it as a phase where the rotational
symmetry is broken.

In the present work we report, exploiting QCVM, our own
perception of this problem, and show that there is no clear
separation between pseudo- and actual first-order behavior.
Moreover, we studied the combined effect of transverse and
longitudinal fields to understand the role played by quantum
or thermal fluctuations in the order of these transitions.

FIG. 1. Convention used in the definition of the order parameters.

We explore the behavior of three order parameters [39,40].
First, we define two positional order parameters which
measure the breaking in the translational symmetry of the
lattice in two possible directions:

Mx =
∣∣mx

1 − mx
4

∣∣
2

, (2)

My =
∣∣mx

1 − mx
2

∣∣
2

, (3)

where mx
i refers to the mean magnetization along the preferred

direction of the system, of the site i, inside a given plaquette,
following the convention shown in Fig. 1.

While translational order parameters are enough to deter-
mine the presence of stripes, they are not suited to detect
the breaking of the rotational symmetry of the lattice. They
take the same values in a paramagnetic and a nematic phase,
yet the nematic phase shows a structure of the correlations
similar to that of the stripes. This is natural if we think about
this phase as an intermediate one in between the completely
symmetric paramagnetic phase and the ordered stripes phase.
Therefore, to characterize the nematic behavior we introduced
an orientational order parameter defined as

Q = |l12 + l34 − l14 − l23|
4

, (4)

where li j represents the correlation between sites i and j in
the plaquette. All the order parameters are in the range 0 �
{Q, Mx, My} � 1.

III. MEAN FIELD APPROXIMATIONS AND QUANTUM
CLUSTER VARIATIONAL METHOD

In order to compute the order parameters relevant for the
J1-J2 model it is fundamental to obtain a good approximation
of at least local magnetizations and correlations of neighbor-
ing spins. These quantities can be found from a knowledge
of the local density matrices describing the joint statistics of
these spins.

With a cluster expansion the free energy is approximated
as a sum of contributions of selected regions or groups of
variables. Each term of the sum depends on the local density
matrix of the corresponding variables (spins). These regions
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are typically chosen to balance the accuracy and the compu-
tational cost of the calculations. The resulting approximated
expression is to be understood as variational in terms of the
local densities. The quality of the final results depends directly
on the choice of regions, their size in relation to the correlation
length, and how much mean field is put into the treatment of
effective interactions and correlation between regions.

Among the many cluster approximations appearing in the
literature, the approach known as cluster variational method
or CVM is remarkable because of the systematic treatment of
different levels of complexity [57,58]. In a natural way one
can choose free-energy expansions ranging from naive mean
field, a Bethe approximation, or more involved structures.
A quantum extension of such ideas, QCVM, was developed
in [12,13] and more recently expanded in [10]. In particular,
we are interested in a construction called Kikuchi approxima-
tion. The Kikuchi free energy FKik consists of a sum of local
free energies of all the square unit cells (p), the interacting
pairs (l) formed by the overlap of neighbor cells [59], and all
the contributions from single spins (s):

FKik =
∑

p

cpFp +
∑

l

clFl +
∑

s

csFs. (5)

The local free-energy terms are defined the usual way

Fr = Tr[Ĥr ρ̂r] + T Tr[ρ̂r ln ρ̂r], (6)

where r may label a plaquette, link, or spin region. The num-
bers cp, cl , cs are weight factors that compensate the effect
of overlap between regions. Due to overlaps, the contribution
of some variables might be under- or over-represented if the
weight factors were absent. For the case of interest here,
cp = 1, cl = −1, cs = 1.

The minimization of the functional FKik should be done
under certain constraints. In addition to the usual normaliza-
tion conditions, Tr[ρ̂r] = 1, the consistency between different
regions must be enforced explicitly. For all plaquettes p =
〈i jkm〉 and any of its forming links l = 〈i j〉 one could de-
mand that the partial trace over spins k and m equals the link
density ρ̂l :

Trp\l [ρ̂p] = ρ̂l . (7)

Moreover, every link distribution ρ̂l could be forced to
marginalize onto the corresponding spin densities ρ̂i and ρ̂ j :

Tr j[ρ̂l ] = ρ̂i; Tri[ρ̂l ] = ρ̂ j . (8)

However, numerical results [10] have shown that the above
constraint scheme is too restrictive. It turns out that the min-
imization gives much more accurate results if consistency is
enforced only in the direction of the spin-spin interactions. In
this model, where interactions exist only in the OX direction,
it amounts to relaxing (7) to the set of equations:

Tr
[
ρ̂pσ̂

x
i σ̂ x

j

] = Tr
[
ρ̂l σ̂

x
i σ̂ x

j

]
Tr

[
ρ̂pσ̂

x
i

] = Tr
[
ρ̂l σ̂

x
i

]
Tr

[
ρ̂pσ̂

x
j s

] = Tr
[
ρ̂l σ̂

x
j

]
⎫⎪⎬
⎪⎭ ∀ p,∀ l = 〈i j〉 ∈ p, (9)

Tr
[
ρ̂l σ̂

x
i

] = Tr
[
ρ̂iσ̂

x
i

]
Tr

[
ρ̂l σ̂

x
j

] = Tr
[
ρ̂ j σ̂

x
j

]
}

∀ye l = 〈i j〉. (10)

We are now in position to write a Lagrange function that
includes the conditions (9) and (10) by means of suitable
Lagrange multipliers λ̂, γ̂ :

L[{ρ̂p}, {ρ̂l}, {ρ̂s}] = FKik +
∑

p

∑
l∈p

Trl [λ̂p→l (ρ̂l − Trp\l [ρ̂p])]

+
∑

l

∑
s∈l

Trs[γ̂l→s(ρ̂s − Trl\s[ρ̂l ])]

+ normalization conditions. (11)

To conform to (9) and (10), it suffices to introduce the
parametrization [60]:

λ̂p→l = Cp→l σ̂
x
i σ̂ x

j + cp→iσ̂
x
i + cp→ j σ̂

x
j , (12)

γ̂l→i = dl→iσ̂
x
i . (13)

It is enough to make C, c, d all real to guarantee that λ̂ and γ̂

are Hermitian, and consequently, that L is real. Moreover, this
parametrization ensures that the operators ρ̂ that satisfy the
stationary condition are all positive, which is the fundamental
property of density matrices (in addition to a unit trace, of
course).

We will say that the value of the Lagrange function L[ρ̂r]
is stationary with respect to a change in the density ρ̂r if the
linear part of the expansion of L[ρ̂r + εδρ̂r], in powers of ε,
is zero. The operator δρ̂r is arbitrary but should be Hermitian,
traceless, and small enough to keep ρ̂r + εδρ̂r as a valid den-
sity operator. The Lagrange function will be stationary with
respect to the set of all densities {ρ̂p}, {ρ̂l}, {ρ̂s}, by definition,
if it is stationary in each one of them. The stationarity condi-
tion can be summarized in the following formula:

∂L[ρ̂r + εδρ̂r]

∂ε

∣∣∣∣
ε=0

= 0 ∀ region r. (14)

As an example, let us work out the form of the density
matrix of an arbitrary spin s0 at the stationary point. The part
of L that depends on a given ρ̂s0 is

Tr
[
ρ̂s0Ĥs0

] + T Tr
[
ρ̂s0 ln ρ̂s0

] + αs0

(
Tr

[
ρ̂s0

] − 1
)

+
∑
l
s0

Tr
[
γ̂l→s0

(
ρ̂s0 − Trl\s0 [ρ̂l ]

)
]. (15)

In (15) the only term that is somewhat involved to expand
to first order in ε, when evaluating L[ρ̂s0 + εδρ̂s0 ], is the one
with the logarithm. The trick is to use perturbation theory to
write the eigenvalues ri(ε) of ρ̂s0 + εδρ̂s0 using the eigenval-
ues and eigenvectors {ri, |ri〉} of ρ̂s0 :

ri(ε) = ri + ε
(
δρ̂s0

)
ii + o(ε), (16)(

δρ̂s0

)
ii = 〈ri|δρ̂s0 |ri〉. (17)

The trace with the logarithm is therefore written as

Tr
[(

ρ̂s0 + εδρ̂s0

)
ln

(
ρ̂s0 + εδρ̂s0

)] =
∑

i

ri(ε) ln ri(ε)

=
∑

i

ri ln ri + ε
∑

i

(
δρ̂s0

)
ii
(ln ri + 1) + o(ε)

= Tr
[
ρ̂s0 ln ρ̂s0

] + ε Tr
[
δρ̂s0 ln ρ̂s0

] + o(ε). (18)
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In (18) we used that δρ̂s0 has a null trace. From the re-
sults above it is not hard to deduce the linear expansion of
L[ρ̂s0 + εδρ̂s0 ]:

L
[
ρ̂s0 + εδρ̂s0

] = L
[
ρ̂s0

] + εTr
[
δρ̂s0Ĥs0

]
+ εTr

[
δρ̂s0

(
T ln ρ̂s0 +

∑
l
s0

γ̂l→s0

)]
+ o(ε).

(19)

The stationarity condition applied to (19) implies the fol-
lowing relation:

Tr

[
δρ̂s0

(
Ĥs0 + T ln ρ̂s0 +

∑
l
s0

γ̂l→s0

)]
= 0. (20)

Now we use that δρ̂s0 is an arbitrary traceless Hermitian
operator to state that the part in parentheses in (20) is at most
a constant times the identity, and therefore, ρ̂s0 must have the
form

ρ̂s0 = 1

Zs0

exp

(
−β

[
Ĥs0 +

∑
l
s0

γ̂l→s0

])
(21)

with β = 1/T . The condition Tr[ρ̂s0 ] = 1 determines the
value of Zs0 . The form of (21) resembles a Boltzmann dis-
tribution where an effective interaction given by the Lagrange
multipliers γ̂l→s0 is added to the original local Hamiltonian.

The same procedure that leads to (21) can be used to find
expressions for the rest of the density operators, that is, for
pair and plaquette densities. The general structure will be the
same: a Boltzmann distribution where the local Hamiltonian is
modified by a number of effective interactions. These appear
due to the consistency relations between regions and via the
corresponding Lagrange multipliers. We skip these deriva-
tions and only write the final expressions for the Kikuchi
approximation:

ρ̂s = 1

Zs
exp

(
−β

[
Ĥs +

∑
l
s

ûl→s

])
,

ρ̂l = 1

Zl
exp

⎛
⎜⎜⎜⎝−β

⎡
⎢⎢⎢⎣Ĥl +

∑
p
l

Ûp→l +
∑
l ′ 
 i
l ′ �= l

ûl ′→i+
∑
l ′ 
 j
l ′ �= l

ûl ′→ j

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠,

ρ̂p = 1

Zp
exp

⎛
⎜⎜⎜⎝−β

⎡
⎢⎢⎢⎣Ĥp+

∑
l∈p

∑
p′ 
 l
p′ �= p

Ûp′→l +
∑
i∈p

∑
l ′ 
 i
l ′ /∈ p

ûl ′→i

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠.

(22)

In (22) we used a linear transformation to write λ̂p→l

and γ̂l→i as a function of new parameters Ûp→l and ûp→i,
respectively. These changed variables will of course inherit
the structure of the originals [see (12) and (13)]:

Ûp→l = −Up→l σ̂
x
i σ̂ x

j − up→iσ̂
x
i − up→ j σ̂

x
j ,

ûl→s = −ul→sσ̂
x
s . (23)

FIG. 2. Effective fields involved in the computation of ρ̂p for
a plaquette p, according to formula (22). Diagonal interactions for
plaquettes other than p are not shown for simplicity.

The form of (12), (13), and (23) suggests that the Lagrange
multiplier can be interpreted as effective local fields and a
contribution to the interaction constants between spins when
their explicit form is put into Eqs. (22). The plaquette-to-pair
Ûp→l is composed of a term that adds to the J1σ̂

x
i σ̂ x

j part
of the original local Hamiltonian, and two effective fields
up→i, up→ j acting on the spins of the pair l = 〈i j〉. On the
other hand, the pair-to-spin ûl→s is formed by an effective
field on σ̂ x

s , for every spin s that belongs to l . The role of
these extra fields is to guarantee the consistency between
the distributions, according to the restrictions imposed to the
variational function.

The nature of the constraints directly implies that no effec-
tive fields (or modification to interaction constants) act in the
transverse (OZ) direction. The reason being that no consis-
tency is demanded on this axis. As a consequence, moments
and correlations in the OZ direction may differ if computed
from different local densities. Since all the observables we
study here are in OX , where consistency holds, this discrep-
ancy is not a serious complication.

A graphical representation of the effective fields entering
the formula (22) for the plaquette density operator ρ̂p is shown
in Fig. 2. Effective fields are drawn as arrows, placed ac-
cording to the regions they are related to. For example, the
arrows standing parallel to the edges of the lattice [nearest
neighbors (NN) interactions] correspond to ûl ′→i terms. The
arrows (triplet) pointing from the center of a square to a border
pair picture the Ûp′→l operators. In the same way, Figs. 3 and 4
provide the representation for distributions ρ̂l and ρ̂s.

The final step to determine the local distributions is to find
the value of the effective parameters. Their value is deter-
mined by the solution of the set of equations imposed by the
consistency relations (9) and (10). The numerical algorithm
used to solve these coupled equations is a fixed point iteration,
very similar to the classical generalization of the well known
belief propagation and is described in detail in [10].

The parameters Ûp′→l and ûl ′→i, regarded throughout this
paper as effective interactions, are in direct correspondence
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FIG. 3. Effective fields involved in the computation of ρ̂l for a
pair l , according to formula (22). Diagonal interactions are omitted
for simplicity.

to the so-called messages in the standard belief propagation
literature [57]. The messages incoming a region are consid-
ered to “inform” about the interaction of this region with the
surrounding ones and enforce the consistency between them.
The term message passing is commonly used for the process
of fixed point iterations, where one can think of information
being exchanged between regions until agreement (conver-
gence) is achieved.

The basic scheme of the algorithm is the following. All
effective fields are initialized in an arbitrary way (randomly,
uniform, following a certain pattern, etc.). Then, a series of
update steps are performed until convergence is achieved [61].
We understand convergence as the situation where the values
of the effective fields are such that all the consistency relations
are satisfied simultaneously.

Let us describe a typical iteration for the field Ûp→(14)

(upper triplet in Fig. 3). First, compute ρ̂p using the current
value of the fields depicted in Fig. 2. Then, from ρ̂p de-
termine the correlation c14 = 〈σ̂ x

1 σ̂ x
4 〉 and the magnetizations

m1 = 〈σ̂ x
1 〉, m4 = 〈σ̂ x

4 〉. The crucial part is to use the consis-
tency condition between ρ̂p and ρ̂14. We should find a value
for the three components of Ûp→(14) (this parameter enters
the formula for ρ̂14 and not ρ̂p) such that the observables

FIG. 4. Effective fields involved in the computation of ρ̂s for a
single spin s (s = 1 in this case), according to formula (22). Diagonal
interactions are represented only for reference, but no effective field
appears on these edges.

computed from the pair distribution ρ̂14 match the plaquette
predictions: 〈

σ̂ x
1 σ̂ x

4

〉
ρ̂14

= c14, (24)〈
σ̂ x

1

〉
ρ̂14

= m1, (25)〈
σ̂ x

1

〉
ρ̂14

= m4. (26)

The three equations above suffice to find the three parameters
Ûp→(14) ∼ (Up→(14), up→1, up→4). The newly found value of
Ûp→(14) is then updated in the lattice [62].

Updating a pair-to-spin field, for example û(14)→1, follows
a similar recipe. First compute ρ̂l=(14) using the fields of
Fig. 3. Then compute the spin 1 magnetization 〈σ̂ x

1 〉 using ρ̂l .
Finally, find a value u(14)→1 such that the same magnetization
computed with ρ̂1 matches the value computed with the pair
distribution.

The algorithm described here assumes that we are using
a given realization of the model, that is, that we are com-
puting all the effective fields for every region defined in
a N = L2 square lattice. The procedure is general and can
handle situations where the external fields applied may not
be homogeneous or the interactions change across the lat-
tice. However, since the model in question is translationally
invariant, it is reasonable to expect a simplification of the
calculations; one would hope this structure is reflected in a
translational symmetry of the effective fields. This is indeed
the case. If the same values repeat all over the lattice, it is
not necessary to solve O(N ) equations but only a reduced
set. The fields outside a certain region of the lattice can be
taken as the same computed inside that region. In this case the
numerical procedure looks like a self-consistent iteration. The
idea, though, is not that every site in the lattice is equivalent to
the rest; that is a too restrictive assumption that would allow
only homogeneous states. The correct procedure is to consider
the smallest possible structures that, by repetition, can create
the patterns observed experimentally. In practice, to generate
a pattern of stripes, or an antiferromagnetic checkerboard
design, it is enough to consider a square plaquette as the
elementary region. For the model studied here we followed
both approaches; a specific realization of the lattice solving
N equations and the more practical reduced version obtained
equivalent results. For generality we will present only simula-
tion results for the first method. On one hand it makes clearer
the strength of QCVM for more general situations, and on the
other, makes it more transparent when the algorithm does not
converge.

To close this section we would like to make a few com-
ments about our choice of the QCVM as the inference method
used to compute the local observables of the J1-J2 model.
Mean field cluster approximations frequently found in the
literature [4,63,64] are often based on some kind of variational
argument on single site spin magnetizations. In many cases
the effect is equivalent to factoring out the correlations as
products of single site moments. A more consistent treatment
is expected to take into account more structure in the relevant
correlations among the system variables. That is precisely
the formal advantage of QCVM: by means of the effective
interactions the correlations have extra parameters that can
be used for tuning. This can lead to more precision in the
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FIG. 5. In red, the standard plaquette region used in the Kikuchi
approximation. The rhombic region (2-4-5-6-8) (in blue) represents
an alternative choice of plaquette geometry that would generate di-
agonal pairwise regions and effective fields. Some interactions were
not represented in the figure for clarity.

prediction of system properties. A quick test, for example,
shows that the CMF of [63] applied to a classical Ising model
on a square lattice returns predictions for the para-ferro tran-
sition temperature, TCMF ≈ 3.5, which is closer to the naive
mean field (MF) prediction TMF = 4.0 than to the real value
Tc ≈ 2.26 [65]. Bethe-Peierls approximation or Kikuchi give
much more accurate estimates (2.89 and 2.423, respectively;
see [58,66,67]). At the plaquette level, the main difference
between QCVM and the CMF approximations already men-
tioned is the inclusion of effective correlation “fields” that
modify the spin-spin interaction constant. Also, CMF does
not treat all parts of the system on the same footing: inter-
cluster interactions are treated in a different manner than the
intracluster ones. The QCVM does not introduce an arbitrary
inhomogeneity in the formalism; it handles all interactions
and regions equally. Although our purpose is not a thorough
comparison, more numerical results for both approximations
are mentioned in the Results and Discussion section.

Mean field treatments usually replace real interactions by
the interaction with the mean value of certain variables. For
example, terms like J1σ̂

x
1 σ̂ x

2 might be roughly approximated
by J1σ̂

x
1 〈σ̂ x

2 〉 or something similar, which looks like an ef-
fective field acting on σ̂ x

1 . QCVM effective fields can be
understood in a similar way. With this in mind, we would
like to point to what might be a caveat in the choice of
regions used in the Kikuchi approximation. Since the overlap
of elementary plaquettes corresponds only to NN pairs, the
effective fields will only appear for those interactions. Notice,
for example, the scheme for the single site distribution ρ̂s

in Fig. 4, where no diagonal effective fields are present. It
would be desirable to have a setup where consistency is also
forced for diagonal distributions which would then appear as
diagonal effective fields. In Fig. 5 the square plaquette used
in the current approximation is shown in red. Such plaquettes
are formed by spins in a geometry similar to the (1-2-4-5)
set. The inclusion of diagonal regions could be achieved if the

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6  0.8  1

Stripes

Paramagnetic

Ferro

hz=0a

T

|J2/J1|

FIG. 6. T vs g phase diagram in the zero field scenario for the
J1-J2 frustrated ferromagnetic Ising model. Open squares represent
discontinuous transitions and filled squares continuous transitions.

basic plaquettes are selected with a rhombic shape, including
spins in sets like (2-4-5-6-8). This idea is not pursued further
in this contribution but we mention it as a possible path to
more accurate results.

IV. RESULTS AND DISCUSSION

A. Summary of the classical model

We start this section presenting the phase diagram of the
classical version of the model derived using the cluster vari-
ational method [40]. On one hand, it may help to understand
better the effects of quantum fluctuations, and on the other
it serves as a checking point to probe that the approximation
reproduces the known phenomenology of the model.

In short, as shown in Fig. 6, depending on the temperature
and the ratio |J2|/J1 the model may be in one of three phases:
ferromagnetic, stripes, or paramagnetic [45]. The lines are
guides to the eyes, and the symbols represent the predicted
order of the transition: continuous (closed), discontinuous
(open).

The ground state in the low |J2| regime is ferromagnetic,
and the system behaves essentially as an Ising ferromagnet
with a continuous phase transition between the ferromag-
netic and the paramagnetic phases. When J2 = 0 the critical
temperature predicted by the approximation is around T ∗

c =
2.425, which is close to the exact critical value Tc = 2.26 [65],
and represents an improvement with respect to predictions
done in the context of other mean field approximations [63].

On the other branch of the diagram g = |J2|
J1

� 0.5 the
system shows a high temperature paramagnetic phase and a
low temperature phase of stripes. However, the line dividing
the two phases is characterized by different kinds of phase
transitions. Notice that Jin et al., [45] predicted that below
gc = 0.67 the transition is discontinuous and above contin-
uous. QCVM provides a similar picture, but with a larger
gc = 0.86. Nevertheless we need to remark that the definition
of this critical point from numerical simulations is highly
nontrivial. For example, in Fig. 7, we show the behavior of
the free energy when the parameter g changes. At T = 1.2
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FIG. 7. Free-energy curve for two different temperatures, close
to the phase transition. In panel (a), T = 1.2, a hysteresis loop, is
observed. In panel (b), a well behaved line is observed for T = 2.2,
close to the transition, which occurs around g = −0.920.

[Fig. 7(a)], we find a very clear hysteresis loop, a signature
of a first order transition. On the other hand, for T = 2.2
[Fig. 7(b)], the free-energy dependence is flat, and there is no
evidence of any hysteresis. In the rest of the work the order
of the phase transitions was determined both by considering
the occurrence of hysteresis loops in the free energy and
by making an interpolation of the free energy and studying
the continuity of its derivative close to the transition as dis-
cussed in the previous sections. Results from both methods are
equivalent.

This phase diagram is in qualitative agreement with pre-
viously reported ones that consider either the ferromagnetic
or antiferromagnetic versions of the model [5,43,45,63]. It
also represents a quantitative improvement of the predictions
if compared with CMF approaches [63]. In particular, it can be
observed that the critical temperature in the J2 = 0 (TCVM =
2.425) is closer to the Monte Carlo result (Tc = 2.26) than
the CMF result: TCMF > 3. Also, for g = 1, the reported value
of the critical temperature (T ∗

CVM ≈ 2.5), compares better to
the Monte Carlo value T ∗

MC = 2.082 reported in [43] than the
result obtained by the CMF scheme (T ∗

CMF ≈ 4). On the other
hand, the definition of the order of the phase transition is a
more subtle issue, and there is an open debate in the literature.
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FIG. 8. Behavior of the order parameters at T = 1.2 [panel (a)],
and T = 2.2 [panel (b)], close to the phase transition (g∗ = 0.641
and g∗ = 0.920, respectively). Squares represent the orientational
order parameter. Circles and triangles stand for the positional order
parameters. There are two of them because stripes can form either
along the y axis or the x axis.

Our observations reinforce the widely accepted idea that the
transition line for g < 0.5, is a continuous one [5,43,45,63],
though some debate still remain on this due to MF and EFT
predictions [5,68]. The consensus about the g > 0.5 branch,
i.e., the stripes-paramagnetic transition, is less evident.
Jin et al. in [45], located it around gc = 0.67, by proving the
development of Ashkin-Teller criticality for g > gc. The same
authors report a pseudo-first-order behavior for gc < g � 0.9.
This behavior is characterized by the presence of first-order
features such as double piked energy histograms in finite
size systems, that tend to disappear in the thermodynamic
limit [5,45,69]. On the other hand, within the CMF tech-
nique [63] reported a critical point at gc

CMF ≈ 0.66 improving
previous determinations by effective field theory approaches
(gc

EFT ≈ 0.97). QCVM predicts a larger value, gc
CVM ≈ 0.87,

and is probably not suitable to distinguish between actual first-
order and pseudo-first-order phase transitions by considering
only the behavior of the observables.

In Fig. 8 we show the behavior of the orientational and
positional order parameters around the transition. For T =
1.2, Fig. 8(a), it can be observed a wide hysteresis loop
when J2 increases or decreases and a sharp jump in the order
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FIG. 9. hx vs T phase diagram for the classical J1-J2 frustrated
ferromagnetic Ising model with J1 = 1 and J2 = −1. A nematic
phase is present in a narrow region of the phase diagram for large
field, and relatively low values of temperature.

parameter, both indications of a discontinuous transition. On
the other hand [Fig. 8(b)], for T = 2.2 there is a continuous
change in the order parameter when J2 increases, suggesting
a continuous transition. However, there is also a small hys-
teresis loop suggesting a possible discontinuous transition.
We checked that it is rather a consequence of the stability
of the paramagnetic solution for this approximation, which is
always a valid solution of the fixed point equations.

The richness of this model becomes more evident in the
presence of a longitudinal field. In this case [see Fig. 9]
for proper values of the temperature and the field a nematic
phase separates the paramagnetic phase and the phase of
stripes [39,40].

Summarizing, in the absence of external fields the classical
J1-J2 model presents (depending on the value of J2) two low
temperature phases: ferromagnetic and stripes. Increasing T
the ferromagnet behaves essentially like an Ising ferromagnet
with a continuous transition to a paramagnetic phase. The
phase of stripes may have, depending on J2, a continuous or
discontinuous transition to the paramagnetic phase. On the
other hand, and depending on the temperature, in the presence
of a longitudinal field the stripes and paramagnetic phases
may be separated by a novel nematic region.

B. The role of quantum fluctuations

With the previous understanding of the classical model we
now concentrate our attention on the main motivation of our
work: the role of quantum fluctuations.

We first explore the behavior of the QCVM at low values
of the temperature, T = 0.1, and in the absence of the lon-
gitudinal field, hx = 0. In this regime, and in the absence of
quantum fluctuations, the system is either in a ferromagnetic
or in a stripe phase (see Fig. 6). Once the transverse external
field is turned on and increased, the system eventually turns
paramagnetic with both the orientational and positional order
falling to zero as is shown in Fig. 10.

An extensive study of the parameters of the model at low
temperatures allows the construction of the hz-g phase dia-
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FIG. 10. Behavior of the orientational and positional order pa-
rameters for T = 0.1, hx = 0, J2 = −0.72, close to a quantum phase
transition induced by a transverse field. The critical value of hz is
h∗

z = 1.945.

gram (see Fig. 11). Also in this case the ground state for g �
0.5 is a ferromagnet, and the phase transition is continuous.
Moreover, the predicted critical field at J2 = 0, corresponding
to the quantum ferromagnetic Ising model, is around h∗

z =
3.175 [10], which is close to the exact value hz(c) = 3.04 [70].
In the right branch of the diagram, the critical point, where
the discontinuous transition between the phase of stripes and
the paramagnetic phase becomes continuous, is around g∗

c ≈
0.64, with h∗

z = 1.590. This value is also similar to the one
reported by means of a cluster mean field approach in [63]
(gc = 0.56). On the other hand, QCVM for J2 = −1 predicts
a critical transverse field h∗

z = 3.025, much lower than the one
reported in [63], hz = 3.658. In short, we find a wide range of
parameters for which a continuous transition is observed, in
good agreement with the previous studies [4,63]. Moreover,
also the phenomenology of the stripes-paramagnetic transition
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FIG. 11. hz vs g phase diagram for T = 0.1 for the J1-J2

frustrated ferromagnetic Ising model. In the stripes-paramagnetic
transition a change in the nature of the phase transition occurs around
g∗

c = 0.64, hz = 1.59. The election of the symbols follows the same
convention as in Fig. 6. Triangles represent points in the edge of a
nonconvergence region.
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provided by the QCVM (g > 0.5) shows good qualitative and
quantitative agreement with the phenomenology discussed
in [63].

The effect of quantum fluctuations reshapes the classical
phase diagram T -g presented in Fig. 6. This is shown in
Fig. 12. At low values of hz, quantum fluctuations just extend
the range of values of the ratio |J2|/J1 at which the para-
magnetic to stripes transition is continuous i.e., in practice
shifting gc to the left. On the other hand, when the transverse
field is large enough (hz � 1), quantum fluctuations induce a
gap between the ferromagnetic and the phase of stripes that
is occupied by the paramagnetic phase. In this case, only
when the frustration is very small, J2 � J1, or when it is very
large, J2 ∼ J1, does the system exhibit actual order at low
temperatures.

In both Figs. 11 and 12 we can observe a gray zone sep-
arating the ferromagnetic and the paramagnetic phases for
the left branch g � 0.5. This is a zone of nonconvergence of
the algorithm associated with oscillations due to the existence
of two symmetric solutions of the ferromagnetic phase. This
zone is discussed in more detail in Appendix.

To summarize, we show in Fig. 13 the T vs hz phase dia-
grams for different values of the ratio J2/J1. The fact that the
thermal and quantum fluctuations driven critical points have
different roles makes it possible to characterize three different
scenarios. For example, if J2/J1 = −0.58, we find a full line
of discontinuous phase transitions. In the other extreme, when
J2/J1 = −1, there is only a continuous transition, while at
intermediate values of the frustration (e.g., J2/J1 = −0.80),
we can observe a line of mixed continuous and discontin-
uous phase transitions. In other words, in the presence of
quantum fluctuations, the frustration favors the occurrence of
continuous transitions. As also pointed out in [63], our results
support the idea that the intermediate scenario (g∗

hz
< g < g∗

T )
opens the gate for expecting experimental realizations of the
model to offer a natural benchmark for achieving quantum
annealed criticality [71], i.e., systems that exhibit first-order
phase transition at finite temperature but that display continu-
ous quantum phase transition in the quantum regime.

C. Quantum fluctuations in the presence of a longitudinal field

In this section we study the model in the presence of a
longitudinal field, hx. As we already discussed, in the absence
of the transverse field, the presence of a longitudinal field in-
duces a nematic phase that separates the paramagnetic and the
phase of stripes in a wide range of temperatures (see Fig. 9).
We will show that quantum fluctuations make this scenario
more plausible with a nematic phase that may penetrate the
phase of stripes.

To have a glance at the effect of the longitudinal field in
the picture discussed so far, in Fig. 14 we show the behavior
of the orientational and positional order parameters against the
transverse field for different values of the ratio g = J2/J1 and
the field hx. It can be observed that depending on the values of
g and hx the system may well have only orientational order but
lack translation order (Q > 0, M = 0) if hz is small enough
[panel (a)], or alternatively [panel (b)], a phase of stripes
for low values of hz in which both Q and Mx are different
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FIG. 12. g vs T phase diagrams in the presence of transverse
field. Only for large values of hz do differences in the phase
diagram become relevant. A gap paramagnetic region appears be-
tween ordered phases at zero temperature for larger transverse
fields. Triangles represent points in the edge of a nonconvergence
region.
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FIG. 13. T vs hz phase diagrams for different values of J2. For
J2 = −0.58, a line of first-order transition separates the stripes phase
from the paramagnetic one. For J2 = −1, a line of second-order
transition is observed. For J2 = −0.8, a line with both first- and
second-order transition is observed, with a critical point located
around hz = 1.7. First-order transition is represented with open
squares, and the continuous transition with filled squares.

from zero. The first is a signature of the nematic phase and
a transition from a nematic to a paramagnetic phase due to
quantum fluctuations. In the second case, a scenario like that
in panel (b) may take place in which, increasing hz, first the
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FIG. 14. Behavior of the orientational and positional order para-
maters against the transverse field, at the same temperature for two
different values of frustration and longitudinal fields. Panel (a) cor-
responds to the parameters J2/J1 = −0.624 and hx = 0.5. Panel
(b) corresponds to J2/J1 = −0.76, hx = 1.0.

FIG. 15. Magnetization (left) and correlation (right) structure for
different values of hz, with J2/J1 = −0.76, hx = 1.0, and T = 0.1
in a 16 × 16 lattice. The width of the lines representing the links
is proportional to the module of correlation between the sites it
joins. On the other hand, negative correlations are represented with
dashed lines and positive correlations with continuous lines. The
magnetization structure is represented in gray scale so that white
corresponds to 1 and black to −1.

magnetization structure homogenizes, continuously driving
the system into a nematic phase, and only later when hz �
0.56, the orientational order parameter (Q) drops abruptly to
zero.

A clearer picture of the situation appears studying the
evolution of the correlation and magnetization structure in the
lattice as in Fig. 15 for different values of hz. In this picture
the correlation structure is represented using solid (dashed)
lines to represent positive (negative) correlations, with a width
proportional to their modulus. In Fig. 15(a), we can observe a
clear structure of stripes, but with the subtle feature that the
global magnetization is not zero, as the sites with positive
magnetizations (white stripes) have a larger module than those
pointing in the opposite direction. This is a consequence of the
application of a field in a direction that breaks the symmetry
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FIG. 16. Phase diagrams (g, hz) in the presence of longitudinal
field. From the top, T = 0.1, hx = 0.5 [panel (a)], T = 0.1, hx = 1.5
[panel (b)], T = 0.8, hx = 0.5 [panel (c)], and hx = 1.5 [panel (d)].
Nematic phase is present in the gray filled regions of the diagram.
Nonconvergence occurs in the region filled with a square pattern.

between the two orientations, positive and negative. Another
remarkable feature is that the correlation between different
stripes (dashed lines) are lower compared to that between
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FIG. 17. Behavior of the orientational and translational order
parameters for hx = 2.0, hz = 0.1, J2/J1 = −1. A range of tempera-
tures where nematic order develops is observed. The latter certainly
begins in a finite temperature (T ≈ 0.4).

elements of the same stripes (solid lines). As the transverse
field increases, we approach the nematic phase, represented
in Fig. 15(b). There we can observe a homogeneous mag-
netization, yet a clear remainder of the stripes is observed
in the correlation structure. Even when both correlations are
positive we can clearly see that the line joining sites of the
same column are represented with wider lines than those
between different stripes. This nematic phase breaks the ro-
tational symmetry of the system and, in the case shown, it is
translationally uniform. That is not necessarily the case if a
larger system were considered, as randomly oriented nematic
domains might appear. This would be more in correspondence
with the use of the term nematic in quantum magnetism,
where it names a phase for which the SU(2) symmetry is
broken with no local order whatsoever.

Lastly, in Fig. 15(c) we observed the paramagnetic phase
corresponding to hz = 0.76, slightly beyond the transition
point. Clearly, this paramagnetic phase is “polarized”(i.e., no
zero net magnetization) due to the external magnetic field.

The behavior of the order parameters can be condensed in
the hz-g phase diagrams presented in Fig. 16 for different val-
ues of hx and T . At low temperatures, Figs. 16(a) and 16(b)],
it can be observed that the longitudinal field (hx) changes
the character of the transition. For example, in Fig. 16(a),
corresponding to a low longitudinal field, we have a line of
continuous and discontinuous transitions, with a critical point
separating the two behaviors while in panel (b) (larger longitu-
dinal field), all the transition line is discontinuous. So, we are
tempted to associate the application of a larger longitudinal
field with an increase in the discontinuous character of the
phase transition. On the other hand, at higher temperatures,
T = 0.8 [Figs. 16(c) and 16(d)], a nematic phase shows up
penetrating the phase of stripes. As can be easily observed,
this region broadens as we increase the value of the longitudi-
nal field. On the other hand, we can check that as frustration
increases (|J2/J1|), the longitudinal field required for the oc-
currence of the nematic phase is larger. Notice also that in
panel (d), we have a nonconvergence region due to numerical
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FIG. 18. hz vs hx phase diagram at low temperature (T = 0.1),
and J2/J1 = −1. No nematic phase is present in this scenario. A
critical point located around hz = 2.15, hx = 1.425 separates the
transition line into two parts with respect to the order of the phase
transition (first and second).

issues in the implementation, which is quite demanding in this
region of the phase diagram.

These results suggest that the nematic phase does not
appear in a low temperature scenario in agreement with re-
sults previously observed [40] in the classical model for
J2/J1 = −1. To further support this, in Fig. 17, we show the
behavior of the order parameters for hx = 2.0. There we can
clearly check that the nematic phase arises only after a certain
threshold in T .

Another feature of these phase diagrams that is worth
mentioning is the effect of hx in the continuity of the phase
transitions. The region in which first-order transitions occurs
widens as hx increases. This effect goes in the opposite di-
rection to the one we observe under the application of a
transverse field. In Fig. 18, we show the hz vs hx phase

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  1020  1040  1060  1080  1100

<
M

>
,m

i

t

FIG. 19. Oscillatory behavior of the local magnetization of a
single site (open squares), along with the global magnetization (open
circles), in a lattice of 32 × 32 sites. The plot corresponds to the
parameters hz = 0.8, T = 1.0, J2/J1 = −0.34, deep inside a noncon-
vergence region.

FIG. 20. Magnetization structure in a 32 × 32 lattice in a non-
convergence region for different time steps. The plot corresponds
to the parameters hz = 0.8, T = 1.0, J2/J1 = −0.34, deep inside a
nonconvergence region. In all the time steps a general arrangement
of the system favoring the mutual alignment of the spins is observed.
In panel (c), the latter is particularly clear, as most of the sites show
large positive magnetization. As in Fig. 15 we use a gray scale where
positive magnetization appears as white.

diagram for T = 0.1, J2/J1 = −1. The transition line is first
order at low values of the transverse field, and large longitu-
dinal one. In the other extreme case, a continuous transition
occurs. The critical point is located around hz = 2.15, hx =
1.425.

V. CONCLUSIONS

In this work we studied the quantum J1-J2 model with
nearest-neighbor ferromagnetic interactions (J1 � 0) and
next-nearest-neighbor antiferromagnetic interactions (J2 � 0)
in the presence of a transverse field using the quantum cluster
variational method. We analyzed the model in an extensive
lattice without particular assumptions about the symmetry
of the problem. Our results show that quantum fluctuations
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FIG. 21. Oscillatory behavior of the local magnetization of a
single site (open squares), along with the global magnetization (open
circles). The plot corresponds to the parameters hz = 0.8, T = 1.0,
J2/J1 = −0.34, deep inside a nonconvergence region in a lattice of
64 × 64 sites.

change the order of the transition; the larger the quantum
effects the wider is the range of parameters for which the
transition is continuous. Moreover, quantum fluctuations may
induce a gap between the ferromagnetic phase and the phase
of stripes and, in the presence of longitudinal fields, also a
pronounced nematic phase that penetrates the phase of stripes.
This nematic phase is characterized by the presence of orien-
tational order and the lack of translational order. The phase
diagrams presented in this paper in Secs. IV A and IV B are
in qualitative agreement with previous results presented in
literature [5,43,45,63]. In particular, numerical predictions of
critical lines are in better agreement with Monte Carlo simu-
lations than previous results obtained in the context of CMF
and EFT approaches [4,63,64,68]. However, we leave open
the definition of the critical point in the transition line between
stripes and paramagnetic phase, where the previously noticed
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FIG. 22. Oscillatory behavior of the local magnetization of four
sites close to one another, in a lattice of 64 × 64 sites. The plot
corresponds to the parameters hz = 0.8, T = 1.0, J2/J1 = −0.34,
deep inside a nonconvergence region.

FIG. 23. Cluster formation in a 64 × 64 lattice in a nonconver-
gence region for two different time steps. The plot corresponds to the
parameters hz = 0.8, T = 1.0, J2/J1 = −0.34, hx = 0 deep inside a
nonconvergence region.

pseudo-first-order behavior [5,45,69], hides the real physics
of the problem. On the other hand, we want to remark that
as far as we know these are the first reports in the literature
of the effect of a longitudinal field in the quantum version of
the J1-J2 model. A careful quantum Monte Carlo study of this
model, following the methods in [70,72] would help to eluci-
date these issues. Furthermore, similar results to those shown
in Figs. 11 and 12 have been obtained by QMC simulations for
a model of bosons in a frustrated lattice, which can be mapped
to a J1-J2 Ising Hamiltonian in some cases [73].

APPENDIX: ON THE CONVERGENCE OF QCVM NEAR
THE CONTINUOUS-DISCONTINUOUS TRANSITION

Wide nonconvergence regions are observed in some of
the T -|J2|/J1 phase diagrams in Fig. 12, as well as in the
hz-|J2|/J1 in Fig. 11. These nonconvergence regions are char-
acterized by an oscillatory behavior of the system, which
can be observed in Fig. 19. In this figure we show both the
behavior of a single site magnetization as well as the global
magnetization in a 32 × 32 lattice. Both values oscillate co-
herently, which is the signature of a global coordination rather
than the result of single site isolated variations. An important
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thing to notice is that there is a decrease in the amplitude of
the oscillations as we move from the ferromagnetic region to
the paramagnetic one.

Oscillations in these zones are observed irrespective of
the way in which we fill the initial conditions. Calculations
were done in different ways in order to test this. On one
hand, we perform the search for the equilibrium going from
a convergence zone by using as initial condition always the
previous equilibrium distributions of the effective fields. In
this way, oscillations do appear with increasing amplitude as
we move into the nonconvergence region until we approach
the ferromagnetic region. Other calculations involve, for ex-
ample, an initial breaking of the symmetry by applying an
initial stronger field in some direction, and then turning it off
after some iterations. In this way, a similar result is observed.
By varying the damping of the algorithm in a range of rea-
sonable values, only a change in the “period of oscillations”
is observed, as would clearly be expected.

Figure 20 displays the magnetization structure of a 32 × 32
lattice inside the nonconvergence region. According to what
was previously shown in Fig. 19, there is a large coordination
between most of the sites of the lattice.

For much larger regions, say L = 64, both the global and
local magnetization keep oscillating coherently, yet the global
magnetization does it with a smaller amplitude (Fig. 21). This
effect can be linked to the formation of clusters. In order to
further motivate this statement we first show in Fig. 22 the
oscillations of the magnetization of a site chosen randomly
and some of its neighbors. We can observe what can be
described as a local coordination. Finally, in Fig. 23, we
show the 64 × 64 lattice structure for two different time steps.
It can be directly observed in the two cases, the formation
of clusters of sites pointing in the same direction, which
visually shows what we supposed was the reason for the
apparent contradiction in the oscillation of the local and global
magnetization.
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