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In this paper, the interplay of the non-Herimiticity and the cascade of delocalization transition in a quasiperi-
odic chain are studied. The study is applied in the non-Hermitian interpolating Aubry-André-Fibonacci (IAAF)
model, which combines the non-Hermitian Aubry-André (AA) model and the non-Hermitian Fibonacci model
through a varying parameter, and the non-Hermiticity in this model is introduced by nonreciprocal hopping. In
the non-Hermitian AA limit, the system undergoes a delocalization transition by tuning the potential strength.
At the critical point, the spatial distribution of the critical state shows a self-similar structure with the relative
distance between the peaks being the Fibonacci sequence, and the finite-size scaling of the inverse participation
ratios (IPRs) of the critical ground state with lattice size L shows that IPRg ∝ L−0.1189. In the non-Hermitian
Fibonacci limit, we find that the system is always in the extended phase. Along the continuous deformation
from the non-Hermitian AA model into the non-Hermitian Fibonacci model in the IAAF model, the cascade
of the delocalization transition is found, but only a few plateaux appear. Moreover, the self-similar structure of
spatial distribution for the critical modes along the cascade transition is also found. In addition, we find that
the delocalization transition and the real-complex transition for the excited states happen at almost the same
parameter. Our results show that the non-Hermiticity provides an additional knob to control the cascade of the
delocalization transition besides the on-site potential.
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I. INTRODUCTION

In a quasiperiodic system, unlike the periodic system,
the translational invariance is broken by the incommensu-
rate period, but unlike the disordered system, the long-range
correlation still persists. These special features make the
quasiperiodic system not only inherit the physics of both pe-
riodic and disordered systems, such as Anderson localization
[1–4], but also exhibit lots of novel phenomena, such as the
fractal eigenmodes [5–8].

Many theoretical quasiperiodic models [1–6], including the
bichromatic lattices [7], electronic materials in orthogonal
magnetic field [9], have been proposed to study the delocal-
ization transition and the critical behavior. In particular, many
one-dimensional models have been intensively studied due to
its simplicity and experimental realization [10–25]. Among
these models, the Aubry-André model (AA) [1,2,12–18] and
the Fibonacci model [6,19–24] are two of the most celebrated
examples. For the AA model, the quasiperiodicity enters in the
form of an on-site cosine modulation incommensurate with
the underlying periodic lattice spacing, and the delocaliza-
tion transition occurs at a critical value of the quasiperiodic
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potential [1]. For the Fibonacci model, the potential is a binary
chain, and it has a modulation with two discrete values that
appear interchangeably according to the Fibonacci sequence
[6,19–23]. Theoretical and experimental studies have shown
that the Fibonacci model always has critical wave functions
for any value of the quasiperiodic potential [6,21–25]. More-
over, recently it was shown that many exotic properties appear
in the interpolating Aubry-André-Fibonacci (IAAF) model,
which combines the AA model and the Fibonacci model
[11,25,26]. Based on the IAAF model, the AA model and
the Fibonacci model share the same topological properties and
belong to the same topological class [26]. Despite these two
limits, there is a wide range of parameter space unexplored in
the IAAF model. With both theoretical and experimental ef-
forts, Ref. [25] finds that a cascade of delocalization transition
occurs when the interpolating parameter runs from the limit of
AA model to the limit of the Fibonacci model.

On the other hand, the delocalization transition is also
found in the non-Hermitian disordered and quasiperiodic sys-
tems [27–45]. Due to the releasing of Hermiticity constrain,
non-Hermitian systems exhibit much richer phenomena than
their Hermitian counterparts [46–51], such as the topologi-
cal non-Hermitian skin effect under open boundary condition
(OBC) [52–64], exceptional points [65–69], etc. Many in-
teresting critical behaviors were found in the non-Hermitian
systems [70–73], and the fundamental concepts in the usual
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critical systems, such as, the band gaps and locality, have been
challenged [72,73]. Moreover, effects induced by the non-
Hermiticity in the delocalization transition have been studied
in different contexts [27–40].

Here we investigate the effect of non-Hermiticity in the
cascade of the delocalization transition in the IAAF model.
By introducing the nonreciprocal hopping term, we construct
a non-Hermitian IAAF model. In the non-Hermitian AA limit,
the system shows a delocalization transition by tuning the
strength of the quasiperiodic potential, while in the non-
Hermitian Fibonacci model limit, we find this model is always
in the extended phase. Along the continuous deformation from
the non-Hermitian AA limit into the non-Hermitian Fibonacci
limit, the cascade of the inverse participation ratios (IPRs) is
found, similar to its Hermitian counterpart [25]. However, we
find that for the non-Hermitian IAAF model, there are only
a few plateaux. This is quite different from the Hermitian
case [25]. Moreover, the critical properties of the delocaliza-
tion are also studied. In particular, the coincidence between
the delocalization transition and the real-complex transition
is verified. Our results demonstrate that the non-Hermiticity
provides an additional knob to control the cascade of the
delocalization transition.

The remainder of the paper is organized as follows. In
Sec. II, the non-Hermitian IAAF model is presented. In
Sec. III, the delocalization transition and critical behavior
of the non-Hermitian AA limit and the non-Hermitian Fi-
bonacci limit are studied. Then, the cascade of delocalization
transition along the continuous deformation from the non-
Hermitian AA model into the non-Hermitian Fibonacci model
is explored in Sec. IV. The experimental feasibility is dis-
cussed in Sec. V. A summary is given in Sec. VI. In the
Appendix, we show other indicators of the cascade of the
delocalization transition.

II. THE NON-HERMITIAN IAAF MODEL

In this paper, the non-Hermiticity is induced by nonrecip-
rocal hopping. The non-Hermitian IAAF model then reads

H =
L∑

j=1

(tegc+
j+1c j + te−gc+

j c j+1) + λVj (β )c+
j c j, (1)

where c+
j (c j ) are creation (annihilation) operators at site j,

λ measures the strength of the on-site potential, and L is the
lattice size; t and g label the nonreciprocal hopping between
nearest-neighbor sites. In the following, we assume t = 1 as
the unit of energy.

The on-site potential Vj (β ) is written as [25]

Vj (β ) = − tanh{β[cos(2πα j + φ) − cos(πα)]}
tanh β

, (2)

where φ is a random phase, and β is a tunable parame-
ter, and α is an irrational spatial modulation frequency. For
the infinity system, α is usually chosen to be the inverse
golden ratio (

√
5 − 1)/2, which can be approached by α =

limn→∞ Fn/Fn+1 with Fn being the nth Fibonacci number. For
the finite system with the periodic boundary condition (PBC),
the potential must be periodic and α has to be approximated
by a rational number Fn/Fn+1 with site number L = Fn+1.

FIG. 1. Evolution of the spatial on-site potential for several val-
ues of β. The discrete values of Vj (β ) are sampled. Here we set
φ = 0.

For very small β, like β = 10−10, the on-site potential
Vj (β ) reduces to Vj = cos (2πα j + φ) − cos (πb), which is
the AA modulation with a constant energy shift. With the
increase of β, the continuous function of Vj (β ) becomes
steeper as shown in Fig. 1, and the range of possible values
of Vj shrinks. For very large β, like β = 103, Vj (β ) be-
comes a step potential switching between ±1 according to
the Fibonacci sequence. As a result, the model (1) can be
continuously changed from the non-Hermitian AA model to
the non-Hermitian Fibonacci model by tuning β.

III. THE DELOCALIZATION TRANSITION AND
CRITICAL BEHAVIOR IN THE NON-HERMITIAN AA AND

THE NON-HERMITIAN FIBONACCI LIMIT

A. The non-Hermitian AA limit

For the Hermitian AA model, all states are extended for
λ/t < 2, and they are localized for λ/t > 2, and at λ/t = 2
all states are critical [1]. It was shown that the nonrecipro-
cal hopping changes the critical point between the extended
phases and the localization phase to be [34]

λc = 2teg. (3)

The phase diagram (g > 0) of the non-Hermitian AA model
is given in Fig. 2(a). When λ < 2teg, the non-Hermitian AA
model is in the extended phase. In this phase, the system has
an edge state under the OBC due to the non-Hermitian skin
effect [52]. When λ > 2teg, the non-Hermitian AA model is
in the localized phase, and the localized state has an asym-
metrical exponential decay under both the PBC and the OBC,
which demonstrates different localization lengths on differ-
ent sides from the localization center. Moreover, it has been
demonstrated that λc = 2teg is also the boundary between the
topologically trivial and the nontrivial phases [34], i.e., the
localization phase is also the topological trivial phase with
zero winding number, and the extended phase corresponds
to the topological nontrivial phase with the winding number
being 1 for g > 0. Due to the bulk-bulk correspondence [34],
the extended phase of g > 0 should have a right-skin edge
state under OBC.
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FIG. 2. (a) Phase diagram of the non-Hermitian AA model. The
blue region is the extended phase, and the yellow region is the
localized phase, and the red curve separating these two regions is the
critical line. Typical spatial distributions of the |�g( j)|2 in the critical
phase under (b) PBC and (c) OBC. In (b) and (c), we set g = 0.5,
φ = 0, L = 144, and β = 10−10 in the numerical calculation. Some
locations of the peaks of |�g( j)|2 are labeled. The inset in (b) shows
the spatial distribution of |�g( j)|2 between j = 55 and 88.

At λc = 2teg, the states of the system are all critical. A
significant feature of the critical state is the self-similar be-
havior in the spatial distribution. Here we use the right ground
state �g in the critical phase with L = 144 and φ = 0 as an
example to illustrate the self-similar structure. It should be
noted that the eigenstates are arranged in a descending order
of the real parts of the eigenenergies. Accordingly, the ground
state corresponds to the eigenstate with the lowest real part
of eigenenergy. As shown in Fig. 2(b), the typical spatial
distribution of the critical ground state under PBC is plotted. It
is found that the peaks of the spatial distribution always satisfy
the Fibonacci sequence, i.e., the locations of peak values are
1, 2, 3 . . . , 55, 89, 144 as labeled in Fig. 2(b). Moreover, the
relative distance between secondary peaks located between
the primary peaks also satisfy the Fibonacci sequence; for
example, the relative distance between the secondary peaks
ranging from 55 to 89 also satisfies the Fibonacci sequence
as shown in the inset of Fig. 2(b). This self-similar structure is
also verified for other lattice sizes and different φ. In Fig. 2(c),
the spatial distribution of the critical state under the OBC is
plotted. One finds that the wave function is localized near the
right side, but different from the skin effect, the wave function
is not localized on the boundary.

To further study the behavior of the critical mode, we
calculate the IPR of the right eigenstate �n of the Hamiltonian
[25,35],

IPRn =
∑L

j=1 |�n( j)|4∑L
j=1 |�n( j)|2 , (4)

where n labels the nth eigenstate of system according to the
real part of the eigenvalues. IPRn is usually used to detect the
delocalization transition in both the Hermitian and the non-
Hermitian systems [34,35,74,75]. For the extended state, IPRn

scales with L as IPRn ∝ L−1, while for the localized mode
IPRn scales as IPRn ∝ L0 [25,74].

FIG. 3. (a) Finite-size scaling of IPRg of the critical ground state
versus different lattice size L under PBC for various g. The dashed
lines are fitting lines. (b) IPRg versus λ for g = 0.5 under PBC and
OBC. Here we use L = 610 and β = 10−10, and thus the system is in
the AA model limit.

Moreover, it was shown that the IPR of the critical mode
also satisfies a power law with respect to L [74,75]. As shown
in Fig. 3(a), the L dependence of IPR of the critical ground
state (IPRg) for φ = 0 and different g are plotted. It is found
that curves of IPRg versus L are parallel straight lines in the
log-log scale, which demonstrates that IPRg scales as IPRg ∝
Lν for any g �= 0. By a linear fitting, the average ν is found to
be ν = −0.1189. Moreover, the IPRg versus L and the fitted
line for g = 0 is also plotted in Fig. 3(a) as a comparison,
and the fitted result shows ν = −0.2539, which demonstrates
that the non-Hermitian and Hermitian AA models belong to
different universal classes [76,77].

In addition, the averaged IPRg over 500 choices of φ as a
function of λ under the PBC and OBC is plotted in Fig. 3(b).
In the regime of localized phase, the IPRg under both the PBC
and the OBC is almost the same. In contrast, in the regime of
extended phase, the IPRg under OBC is larger than that under
PBC. This is because the boundary localization is induced
by the nonreciprocal hopping with the OBC [34,52]. More
interestingly, we find that under OBC a local minimum of
IPRg develops at λ ≈ 3.27, which is close to the theoretical
critical point with 2e0.5 ≈ 3.29. A possible reason for the
appearance of this local minimum is that in the hopping-
dominated extended phase, although the localization induced
by the quasiperiodic potential is weakened, the boundary lo-
calization induced by the asymmetric hopping is enhanced.
When the influence of the boundary localization is stronger
than that of the hopping-induced extension, IPRg increases
as λ decreases. This is just the case near the critical point.
In contrast, when the influence of the boundary localization
is weaker than that of the hopping-induced extension, IPRg

decreases as λ decreases. This is the case for much smaller λ.

B. The non-Hermitian Fibonacci limit

At g = 0, it is well known that all the eigenstates are always
critical at any λ/t > 0, and the spatial distribution of the
critical mode has a self-similar structure [22,25]. However, for
the non-Hermitian Fibonacci model, the eigenstates are in the
extended phase [24], and the self-similar structure is destroyed
by the non-Hermiticity.
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FIG. 4. (a) The phase diagram of the non-Hermitian Fibonacci
model. (L) and (R) represent the left-skin and right-skin extended
phase. Typical spatial distributions for the eigenstates of the non-
Hermitian Fibonacci model under PBC and OBC are shown in (b1),
(b2), (c1), and (c2). Here we use L = 144, λ = 5, β = 1010, φ = 0,
and g = 0.1 for (b1) and (b2) and g = 2 for (c1) and (c2).

The phase diagram of the non-Hermitian Fibonacci model
is sketched in Fig. 4(a). The typical spatial distributions of the
eigenstates with different g under PBC and OBC are plotted in
Figs. 4(b1), 4(b2), 4(c1), and 4(c2). Under the PBC, the spatial
distribution of the ground state has a self-similar structure for
small g, but it tilts owing to the effect of the nonreciprocal
hopping, as shown in Fig. 4(b1) for g = 0.1. In contrast, for
larger g, the self-similar structure fades away, as plotted in
Fig. 4(c1) for g = 2. In addition, the difference of the distri-
bution on different sites becomes smaller. Under OBC, as a
result of the skin effect [34], the edge states appear on the
right boundary for g > 0 as shown in Figs. 4(b2) and 4(c2).
For g < 0, similar behaviors of spatial distribution can also
be found, but the edge state should be localized on the left
boundary. Apparently, the non-Hermitian Fibonacci model
should undergo a transition between the left-skin extended
phase and the right-skin extended phase, when g varies from
negative to positive.

In Fig. 5(a), the behavior of IPRg versus L is studied for
different g. It is found that IPRg scales as IPRg ∝ Lν for
different g. A power-law fitting shows that the averaged ν is
−0.9932, close to −1, which means that the non-Hermitian

FIG. 5. (a) IPRg versus L for different g and β = 1010 (close to
the non-Hermitian Fibonacci limit). (b) IPRg versus g under PBC and
OBC for β = 1010; λ = 5 is used in the numerical calculation, and
the lattice size is L = 610 in (b). Both of the results in (a) and (b) are
averaged for 500 choices of φ.

FIG. 6. (a) IPRg under PBC as a function of β and g for λ = 5
and (b) IPRg under PBC as a function of β and λ for g = 0.5. The
system size is chosen as L = 610. IPRg is averaged for 100 choices
of φ.

Fibonacci model is in the extended phase for any g �= 0. The
IPRg under PBC and OBC as a function of g are also plotted
in Fig. 5(b), and the minimum of IPRg under OBC and the
peak of IPRg under PBC are found at g = 0, indicating that the
Hermitian Fibonacci model is in the critical phase separating
the left-skin and right-skin phases.

IV. CASCADE OF THE IPR ALONG THE TRANSITION
FROM THE AA MODEL TO THE FIBONACCI MODEL

Here we study the delocalization in the non-Hermitian
IAAF model (1).

A. Ground state

First, we show the cascade of IPR in the ground state.
In Fig. 6(a), the IPRg versus β and g for λ = 5 is plotted.
For small g, IPRg shows a cascade behavior, in which the
lobes of localization regions with large IPRg are separated
by the delocalization transitions with the minima of IPRg.
This phenomenon is similar to the Hermitian case [25]. But,
for large β, the localized regions shrink, since the Fibonacci
limit of the non-Hermitian IAAF is always in the extended
phase. This is different from the Hermitian case [25], in which
the extended region shrinks as β increases, since therein the
extended region is suppressed by the critical phase hosted by
the Fibonacci limit. For large g, one finds that the number
of plateaux of IPRg becomes small. Such behavior of IPRg

demonstrates that the nonreciprocal hopping tends to destroy
the localization. Then, the IPRg under PBC as a function of β

and λ at g = 0.5 is plotted in Fig. 6(b). The cascade behavior
also manifests itself in this case. For larger λ, the number of
plateaux increases.

From Figs. 6(a) and 6(b), one finds that the cascade be-
havior in the non-Hermitian IAAF model can be tuned by
g. For small g and large λ, the behavior is similar to the the
Hermitian case [25] when β is small. But for large β, the
cascade behavior disappears. This is quite different from the
Hermitian case, in which the cascade will continue to β → ∞
as long as the resolution for the IPRg is high enough.

The mechanism of the cascade behavior is similar to the
Hermitian case [25]. In the AA model limit, the ground eigen-
states of the strong localized mode are always localized at
a single site, and the value of IPRg is almost 1. With the
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FIG. 7. IPRg as a function of β for different λ and g under PBC
and OBC. Here we use λ = 5 in (a), λ = 10 in (b), λ = 20 in (c), and
λ = 50 in (d), and L = 610. The result is averaged for 500 choices
of φ. The inset in (a) shows the location of critical phase between the
first plateau and the transition region.

increase of β, the potential of the two-site pair, two neighbor
sites having almost the same potential goes down toward the
minimum of the potential, e.g., the sites 421 and 422 labeled
in Fig. 1. Thus, the energy of the two-site localized state
decreases and the two-site localized state becomes the new
ground state [25]. In the transition region between the single
site localization and the two-site localization, the system is
in the extended phase. The IPRg decreases suddenly once the
system enters into the transition region from the localized
phase and then increases when the two-site localized states be-
come the ground states. Similarly, with the further increase of
β, the potential values of higher-site groups, like the four-site
groups, eight-site groups, and so on, will become the lowest
potential, and the corresponding localized states turn into the
ground state successively. Therefore, the similar structure of
IPRg appears again. As a result, the IPRg shows the cascade
behavior with the increase of β.

FIG. 8. Typical spatial distribution of the two-site localization
state with g = 0, g = 0.1, and g = 0.5. Here we use λ = 10, β = 5,
L = 610, and φ = 0.

However, different from the Hermitian case, there is only
a few plateaux in the non-Hermitian IAAF model. To explore
the reason, we find that for the Hermitian IAAF model, by
increasing β → ∞, the IPR will display a series of plateaux
corresponding to the two-site localization mode, four-site
localization mode, eight-site localization mode, and so on.
Therefore, the localized modes gradually extend to critical in
the Fibonacci limit, where the eigenstates are self-similar [25].
But the non-Hermitian Fibonacci model is in the extended
states. The self-similarity is truncated for some energy levels.
This makes the number of the plateaux limited to a small
value.

To further explore the cascade of delocalization transitions,
the IPRg versus β under PBC and OBC for some fixed values
of λ and g is shown in Fig. 7. For small β, the values of the
IPRg under the PBC and the OBC coincide in the localized
plateaux. However, in the delocalization transition regions, the
IPRg under OBC is larger than that under PBC. The reason is
that for the OBC, the IPRg always has a larger finite value
as shown in Figs. 3 and 5, as a result of the skin effect. In
addition, Fig. 7(a) shows that, for λ = 5, the value of the IPRg

in the first plateaux decreases as g increases. The reason is that

FIG. 9. Typical spatial distribution of critical ground along the
transition from the AA model to the Fibonacci model under PBC
(a) and OBC (b). Here we use λ = 5, β = 0.85, L = 610, g = 0.5,
and φ = 0. These parameters correspond to the minimum of IPRg

under OBC as shown in the inset in Fig. 7(a).
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FIG. 10. (a) IPR of all eigenstates of Eq. (1) as a function of the
real part of the eigenenergy and λ in the non-Hermitian AA limit.
The dashed line is λc = 2eg. (b) IPR of all eigenstates of Eq. (1) as
a function of the real part of the eigenenergy and β; g = 0.5 is used
in (a); g = 0.5 and λ = 5 are used in (b). The lattice size is L = 610,
and the PBC is assumed.

for large g the hopping is enhanced while the localization is
suppressed. For the same reason, the transition region between
two plateaux is much broader for larger g. With the increase of
λ, one finds that first plateaux of g = 0.5 and g = 0.1 overlap
with each other and the transition region shrinks, as shown in
Figs. 7(b), 7(c), and 7(d).

Another interesting feature of the cascade behavior is that
the IPRg in the subsequent plateaux (if it exists) becomes
larger for larger g for any λ, in contrast to the case for the
first plateau. As noted above, these plateaux correspond to
the ground state with the two or higher-site localized modes.
For the Hermitian case, the eigenstate is equably distributed in
these sites [25]. However, for the non-Hermitian Hamiltonian,
the distribution weight is different for different sites [34]. As
shown in Fig. 8, the spatial distribution of ground states of the
two-site localized modes for g = 0, 0.1, and 0.5 are plotted.
Here we use λ = 10, φ = 0, and β = 5, and the sites 421
and 422 are the two-site pairs with the lowest potential. It is
clear the eigenstate is equally distributed on these two sites
for g = 0. However, with the growth of g, the distribution
weight on the right site 422 becomes greater than that of the
left site 421 owing to the nonreciprocal hopping. That is, the
distribution in one site will dominate the two-site localized
state in the non-Hermitian case. As a result, the IPRg increases
with g for the higher-site localized states.

Moreover, one finds that IPRg under OBC has a minimum
between the plateaux and the transition region, as shown in
the insert of Fig. 7(a). This indicates the appearance of the
critical phase. For these critical modes, we find that the self-
similar structure is still preserved under the PBC as shown
in Fig. 9(a). In addition, for the OBC, the wave function is
distributed in one side but not at the boundary, as shown in
Fig. 9(b).

B. Excited states

Besides IPRg, similar cascade structures can also be found
in the excited states. In the AA model limit, the localization
transition appears simultaneously at λc = 2eg, as shown in
Fig. 10(a). By continuously tuning β toward the Fibonacci

FIG. 11. IPRn versus β under PBC and OBC and Fn versus β

under PBC for nth excited states. Here we use λ = 5, g = 0.5, L =
610, and n = 100, 200, 300, 500 for (a), (b), (c), and (d), respectively.
IPRn and Fn are averaged for 500 choices of φ. The inset in (a) shows
the minimum of IPRn under OBC, indicating the critical point.

limit starting from the strongly localized AA model, we find
that the lowest set of eigenstates becomes delocalized first at
β ∼ 1 and then return to be localized at 2 < β < 10, as shown
in Fig. 10(b). In addition, for the higher sets of excited eigen-
states, the cascade behavior does not appear for the present
range of β as shown in Fig. 10(b).

It has been found that the localization transition can
be accompanied with the real-complex transition of the
eigenenergies in some non-Hermitian systems [39,40]. For
the non-Hermitian IAAF model (1), the ground state is real
since the time-reversal symmetry is still preserved. However,
for the excited states, we find that the real-complex transition
and the localization transition occur at almost the same point.
A function Fn, measuring the value of the imaginary part of
the energy, is defined as

Fn =
{

0, Im(En) = 0,

1, Im(En) �= 0.
(5)

In Fig. 11, curves of IPRn versus β under PBC and OBC and
Fn versus β under PBC for different excited states are plotted.
One finds that the cascade of the the delocalization transition
is accompanied by the cascade of the real-complex transition.
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FIG. 12. Typical spatial distribution of critical mode for the ex-
cited state under PBC (a) and OBC (b). Here we use β = 0.9311,
L = 610, g = 0.5, φ = 0 and λ = 5. These parameters correspond to
the critical point as shown in the inset in Fig. 11(a).

For the critical excited states, the spatial distribution also
has the self-similar structure similar to that of the ground
state. In Fig. 12, the spatial distribution of the critical mode
of the excited state under PBC and OBC is also plotted. One
finds that the relative distance between the peaks follows the
Fibonacci sequence under the PBC. For the OBC, the spatial
distribution localizes on one side but not at the boundary.

V. EXPERIMENT FEASIBILITY

Here we discuss possible experimental approaches to
detect the cascade of the delocalization transition in the non-
Hermitian IAAF model. On the one hand, the Hermitian IAAF
model has be experimentally realized in a photonic platform
[25]. By engineering the cavity-polariton samples, the cascade
of delocalization transition has been examined therein. On
the other hand, the experimental scheme of non-Hermiticity
has been proposed, e.g., the ultracold atomic system [49], the
RLC electronic circuit [34], and the photonic system [78]. In
paricular, the non-Hermiticity violating the left-right symme-
try has been observed in a PT-symmetric optical system [79].
Based on these experimental progressions, we expect that the
non-Hermitian IAAF could be realized in experiments. Our
theoretical results could be tested therein.

VI. SUMMARY

In this paper, we have studied the cascade of the delocal-
ization transition and the critical behavior in a non-Hermitian
IAAF model. In the non-Hermitian AA limit, the system un-
dergoes a delocalization transition at λc = 2eg. At the critical
point, the spatial distribution of ground state has a self-similar
structure under the PBC. Under the OBC, the wave function
of the critical mode in the non-Hermitian AA limit localizes
in one side but not at the boundary, which is different from
the non-Hermitian skin effect. By calculating the IPRg, we
find that the IPRg of the critical mode in non-Hermitian AA
limit scales as IPRg ∝ Lν with ν = −0.1189. This demon-

FIG. 13. Typical spatial distributions of |�L
g �g| and |�g|2 for

(a) the localized phase of the non-Hermitian AA limit, (b) the critical
phase of the non-Hermitian AA limit, and (c) the extended phase
of the non-Hermitian AA limit. Here we use L = 144, φ = 1.3090,
β = 10−10, g = 0.5 and λ = 5 in (a), λ = 2eg in (b), λ = 2 in (c).

strates that the non-Hermitian AA model and the Hermitian
AA model belong to different universality classes. In the
non-Hermitian Fibonacci limit, we find that the system is
always in the extended phase for any finite g and λ, since IPRg

scales as IPRg ∝ L−1. By tuning β continuously from the non-
Hermitian AA limit into the non-Hermitian Fibonacci limit,
the cascade of delocalization transition is found for both the
ground and the excited states, but only a few plateaux appear.
These results demonstrate that the nonreciprocal hopping can
drastically change the cascade behavior in the IAAF model.
In addition, we have shown that the spatial distributions of
the critical state between two plateaux still have a self-similar
structure. Moreover, we have found that the real-complex
transition also demonstrates cascade behavior, similar to the
delocalization transition for the excited states.

Besides the nonreciprocal hopping, the non-Hermiticity
can also be induced by the on-site gain/loss [31,39,78,80,81].
It should be interesting to study the delocalization transition
and the critical behavior in the IAAF model with on-site
gain/loss. For example, the AA model with a complex phase
φ = θ + ih has been explored in Ref. [31], which shows that
this model hosts a topological phase transition by tuning h.
Thus it is intriguing to explore the topological properties in
the cascade process of delocalization transition in the IAAF
model with this AA model limit. This work is still in process.
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FIG. 14. Typical spatial distributions of |�L
g �g| and |�g|2 for

[(a1) and (a2)] the localized phase, [(b1) and (b2)] the critical phase,
and [(c1) and (c2)] the extended phase along the transition from the
non-Hermitian AA limit to the non-Hermitian Fibonacci limit. Here
we use L = 610, λ = 5, g = 0.5, φ = 1.3090, and β = 0.2 in (a1)
and (a2), β = 0.85 in (b1) and (b2), and β = 1 in (c1) and (c2).

FIG. 15. Typical spatial distributions of |�n|2 and |�L
n �n| for

[(a1) and (a2)] the localized phase, [(b1) and (b2)] the critical phase,
and [(c1) and (c2)] the extended phase along the transition from the
non-Hermitian AA limit to the non-Hermitian Fibonacci limit. Here
we use L = 610, λ = 5, g = 0.5, φ = 1.3090, n = 100, and β = 0.2
in (a1) and (a2), β = 0.9311 in (b1) and (b2), and β = 2 in (c1) and
(c2). In b(2), the black and red labels correspond to two different
Fibonacci sequences.

FIG. 16. IPRLR and IPR as functions of β for (a) the ground state
and [(b) and (c)] two nth excited states. Here we use λ = 10, g = 0.5,
L = 610, and n = 100 and 300 for (b) and (c), respectively. IPRLR

and IPR are averaged over 500 choices of φ.
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APPENDIX: DIAGNOSING THE DELOCALIZATION
TRANSITION VIA MIXED WAVE FUNCTIONS

In Ref. [29], it was shown that the mixed production
|�L�|, in which �L(g) = �(−g)†, can provide more ap-
propriate information in diagnosing the delocalization phase
and the delocalization transition in non-Hermitian disordered
systems. In this Appendix, we show the behavior of |�L�| in
model (1) and compare the results from |�|2.

In Fig. 13, we show the distribution of |�L�| in dif-
ferent phases of the ground state of model (1) in its AA
limit and compare the distribution with |�|2. One finds that
in different phases, |�L�| and |�|2 demonstrate similar
characteristic behaviors, although the detailed information is

014202-8



CASCADE OF THE DELOCALIZATION TRANSITION IN A … PHYSICAL REVIEW B 104, 014202 (2021)

different. In the localized phase [Fig. 13(a)], both |�L�|
and |�|2 develop peaks at the same position; in the delocal-
ized phase [Fig. 13(c)], both |�L�| and |�|2 show uniform
distributions; at the critical point [Fig. 13(b)], both |�L�|
and |�|2 exhibit tips, whose distances obey the Fibonacci
sequence.

In addition, Fig. 14 shows the results in the ground state of
the IAAF model. As demonstrated in Fig. 6, the localization-
delocalization transition can be tuned by β. We show in
Fig. 14 that |�L�| and |�|2 show similar behaviors in
different phases for different β. Moreover, Fig. 15 shows
that similar behaviors also happen in the excited states, in
which the energy spectra are complex. Interestingly, here,
at the critical point, Fig. 15(b2) shows that the tips of
|�L�| are arranged according to two interlaced Fibonacci
sequences.

To further explore whether |�L�| can diagnose the cas-
cade of delocalization transitions, we define a modified IPR,

which reads

IPRLR
n =

∑L
j=1

∣∣�L
n ( j)�n( j)

∣∣2

∑L
j=1

∣∣�L
n ( j)�n( j)

∣∣ . (A1)

Figure 16 shows IPRLR in both the ground state and the
two excited states. By comparing with the results of IPR,
we find that both of them can characterize the cascade of
delocalization transitions.

Our results seem at variance with those reported in
Ref. [29], which reported that the delocalization phase for
the complex spectra should be characterized by |�L�|. A
possible reason is that the present model is a model with
quasiperiodic potential, rather than the random model studied
in Ref. [29]. If so, our results, combined with Ref. [29], show
that the disorder correlation can affect the indicator of the
delocalization transition.
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