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Finding direct correlation functions for desired two-dimensional lattices with a phase-field crystal
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The phase-field crystal model is one of the most successful models with which to describe crystallization
at a near-atomic scale with a larger timescale compared with other atomistic methods when direct correlation
functions (DCFs) for the desired lattice are specified. However, the DCFs are, in general, not known and are
hard to obtain from essential material information, such as primitive lattice vectors and atom positions. In this
paper, we propose a method of obtaining two-point DCFs for desired two-dimensional lattices. The proposed
optimization scheme is simple in that it minimizes the temporal change in free energy with respect to the target
lattice using a gradient descent. In numerical experiments, we successfully obtained DCFs not only for well-
known two-dimensional lattices (i.e., triangular, square, rectangular, honeycomb, and kagome lattices) but also
for five nontrivial lattices (i.e., maple leaf, ladybug, trellis, Lieb, and CaVO lattices). We also show that these
five lattices can be simulated using a phase-field crystal with at least five modes.
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I. INTRODUCTION

Phase-field crystal (PFC) modeling [1–3] is one of the
most successful methods of representing the dynamics of
crystallization at a near-atomic scale with a larger timescale
compared with other atomistic methods, such as the use of
molecular dynamics. The PFC model was introduced as a
Swift–Hohenberg–type equation [1,2] and then connected the
classical density functional theory [3]. The governing equa-
tion of the PFC model, namely, the PFC equation, is a partial
differential equation derived by variational differentiation of
a free-energy functional that is parametrized by n-point direct
correlation functions (DCFs). Once DCFs are specified, the
crystallization can be simulated by solving the PFC equation.
In other words, the DCFs include all information about the
crystal lattice structure and its formation process. The method
is based on a free-energy principal, and the stabilities of
different crystals can thus be compared when deciding the
synthesizability of the crystals.

Previous studies showed that the PFC can represent
various three-dimensional (3D) and two-dimensional (2D)
crystal lattices, such as body-centered cubic, face-centered
cubic, simple cubic, and hexagonal close-packed [4,5] and
diamond-cubic [6] 3D lattices, and triangular and square [4],
rectangular, honeycomb and kagome [7], and graphene [8] 2D
lattices. Although the DCFs for simple lattices, such as the
triangular and square lattices, can be easily determined using
a method described in the literature [4,5], the atomic density
within the plane is required to determine the values of DCFs.
These values are easily calculated in the case of triangular and
square lattices because all the plane waves constructing these
lattices have peaks at the positions of atoms. In the case of the
triangular lattice, for example, the atomic density within the
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plane corresponding to the reciprocal lattice vector k1 is 1/A,
where A is the lattice constant. Figure 1 (left) clearly shows
that atoms are located at the peaks of the plane wave corre-
sponding to k1 and the spacing between the atoms is 1/A on
this plane. The atomic density within the plane in the case of
square lattices is easily calculated according to Fig. 1 (center).
In the case of other lattices (e.g., the honeycomb lattice), the
atomic density within each plane is hard to determine because
the atoms are not located on the peaks of the plane waves
[Fig. 1 (right)]. That is to say, there is no oracle in which DCFs
represent a more complicated crystal lattice. Such difficulty
limits the use of the PFC model for a wide range of crystal
lattice structures.

The problem considered here is stated as how to obtain
an optimal DCF for the desired lattice only from the crys-
tallographic information. We here define the crystallographic
information as primitive vectors and atom coordinates of the
lattice, which are included in a crystallographic information
file [9]. No other information is considered. One simple
approach adopted to solve this problem is minimizing the
mismatch between the target desired lattice and the generated
lattice, where the latter is obtained by time integrating the
PFC equation. Here, the time integration is carried out until a
steady state is reached. The optimal DCF is then defined as the
DCF that minimizes the mismatch. This approach seems well
suited to the problem considered but repeatedly calculating
both the steady state and the sensitivity of the DCF for the
mismatch during the optimization process requires extremely
large computational resources. Reduction of the computa-
tional cost is essential to obtaining a solution in reasonable
time.

In this paper, we convert the vanilla optimization prob-
lem mentioned above into a computationally less expensive
problem. For further cost reduction, we propose a method of
approximating target lattices using low-pass filtering. Adopt-
ing the proposed method, many types of 2D lattices, including
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FIG. 1. Triangular (left), square (center), and honeycomb (right)
lattices. The atoms are indicated by open circles. The peaks of the
constructed plane waves are indicated as a solid line. The correspond-
ing wave vector is written on each line.

some not previously reported, have been successfully repro-
duced.

The remainder of the paper is organized as follows: Sec-
tion II discusses the free-energy functional and the PFC
equation used in this paper. Section III defines the problem
to be solved in this paper and proposes its alternative. In
addition, the approximation of the target lattice is defined.
Section IV presents the experimental results. Section VI de-
scribes related works that follow a slightly different direction
compared with the work in the present paper. Section VII
concludes the paper.

II. PRELIMINARIES

Let ψ (r) ∈ R and C2(r, r′) ∈ R be an order parameter at
position r ∈ R2 and a two-point DCF between positions r
and r′, respectively. Assuming (i) the diffusion coefficient
does not depend on the particle density, (ii) DCFs higher than
third order are absent (i.e., the Ramakrishnan–Yussoff approx-
imation [10]), (iii) the two-point DCF only depends on the
distance between two locations, C2(r, r′) = C2(|r − r′|), and
(iv) O(ψ6) terms in the ideal-gas free-energy can be ignored,
a free-energy functional, F ∈ R, can be written as [11]

F [ψ] = Fideal[ψ] + Fexcess[ψ], (1)

where Fideal and Fexcess are, respectively, the ideal-gas energy
and excess energy, defined as

Fideal[ψ] =
∫

�

(
1

2
ψ2(r) − 1

6
ψ3(r) + 1

12
ψ4(r)

)
dr, (2)

Fexcess[ψ] = −1

2

∫
�

C2(|r − r′|)ψ (r)ψ (r′)dr′dr. (3)

Here, � is an unit-cell region. Assuming
∫
�

ψ (r)dr is con-
served during the processing, the time development equation
of ψ is derived as

∂ψ (r)

∂t
= ∇2 δF

δψ (r)
, (4)

where ∇ is a differential operator with respect to r. Substitut-
ing Eq. (1) into Eq. (4) gives

∂ψk

∂t
= −k2

(
(1 − C2,k )ψk − 1

2
(ψ2)k + 1

3
(ψ3)k

)
, (5)

where k ∈ R+ is the magnitude of a wave vector k ∈ R2 and
(•)k denotes a Fourier transformation of (•) at k in Fourier
space.

III. PROPOSED METHOD

A. Definitions of Problems

In this section, we first describe a problem to be solved
in this paper. An alternative that is computationally less ex-
pensive is then defined. We consider a lattice generated from
white noise by solving the PFC equation [Eq. (5)] as

ψgen(r;C2) := ψ0(r) +
∫ ∞

0

∂ψ

∂t
(r;C2)dt, (6)

where ψ0 is an initial condition defined as

ψ0 ∼ U ([m − η, m + η]D). (7)

Here, U is a uniform distribution, m is the noise mean, η

is the noise amplitude, and D is the number of cells for the
discretized ψ . Our final goal is to find the optimal DCF,
C2, which controls the crystallization dynamics of the target
lattice from white noise. The optimization problem is hence
written as

min
C2

d (ψgen(r,C2), f relax(ψ tgt (r))), (8)

where d (A, B) is a distance function that measures the mis-
match between A and B, ψ tgt is an approximated target lattice
defined in the next subsection, and f relax maps an arbitrary
pattern to the nearest PFC steady state. ψ tgt is just an approxi-
mation of the target lattice and is thus not guaranteed that ψ tgt

is included in a set of steady states of the PFC equation. This
is why f relax is needed. If ψ tgt is a good approximation of the
target lattice, f relax becomes an identity.

Solving the optimization problem, Eq. (8), is highly com-
putationally expensive because tens of thousands of time steps
are required to reach the steady state of the PFC equation
from white noise. In addition, there is the problem of how to
define an appropriate distance function d . To overcome these
difficulties, an alternative optimization problem is considered.

From a physical viewpoint, the steady state can be in-
terpreted as being energetically stable. This means that the
temporal change in the free energy of ψgen is zero at a steady
state. Therefore, the temporal change in the free energy of
f relax(ψ tgt ) is also required to be zero when the DCF is op-
timal. We thus propose an alternative optimization problem
defined as

min
C2

∣∣∣∣∂F [ f relax(ψ tgt )]

∂t

∣∣∣∣. (9)

Compared with the original problem [Eq. (8)], the alter-
native problem [Eq. (9)] is computationally less expensive
because the computation of ψgen is no longer required. We
argue that two issues remain in the problem expressed by
Eq. (9). One is that f relax is still unknown and the other is that
the optimal solution of Eq. (9) only guarantees that ψ tgt is a
metastable state. That is to say, there is no guarantee that ψ tgt

can be reached from white noise by solving the PFC equation.
For simplicity, f relax is assumed to be the identity in this study.
Despite these disadvantages, Eq. (9) empirically works well
for many desired 2D lattices as shown in Sec. IV.
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FIG. 2. Preparation steps for the target image. The rectangular supercell is extracted from an image drawn by repeatedly tiling the primitive
unit cell. Each atom position is represented as a single Gaussian. The approximated target image, ψ tgt , is defined as a low-pass filtered image
of the Gaussian blurred image.

B. Definitions of target images

This subsection describes the method of approximating
the target lattice, ψ tgt. Figure 2 depicts the procedure for
making the target image, ψ tgt. For simplicity, we consider
only the lattice whose supercell can be represented with a
rectangular shape. Fortunately, various types of 2D lattices
can be represented as a rectangular supercell. In addition, the
rectangular supercell has good computational properties as
described below.

Let a1 ∈ R2 and a2 ∈ R2 be the primitive vectors for
the desired 2D lattice. The lattice vector q is defined
as q(n1, n2) := n1a1 + n2a2 ∈ R2, where (n1, n2) ∈ Z2. In
defining the rectangular supercell, we aim to find integers
n1 and n2 that satisfy q(n1, n2) = q(n′

1, n′
2) + q(n′′

1, n′′
2 ) and

q(n′
1, n′

2) · q(n′′
1, n′′

2 ) = 0, where (n′
1, n′

2), (n′′
1, n′′

2 ) ∈ Z2 and
q(n′

1, n′
2), q(n′′

1, n′′
2 ) �= 0, (see Fig 3). The candidate set Q is

defined as a set of q(n1, n2) that satisfies these conditions. The
rectangular supercell is defined as having a diagonal along
which q∗ := argminq∈Q ‖q‖2 points, where ‖ • ‖2 denotes the
L2 norm of (•). Note that the 3D lattice whose supercell can
be represented with an orthorhombic shape can be treated in
the same way as mentioned above.

After defining the rectangular supercell, the atoms are lo-
cated in the cell at the atom coordinates. Here, the atoms
are represented as a density field with a finite width atom-
nonatom interface. Concretely speaking, a Gaussian with a
covariance of diag(σ 2) is overwrapped around the coordinates
of each atom,

ψ tgt (r) =
Naotms∑
j=1

a j

2πσ 2
j

exp

(
−|r − r j |2

2σ 2
j

)
∈ R, (10)

where r j ∈ R2 is the position of the jth atom. The coefficient
and standard deviation of each Gaussian, a j ∈ R and σ j ∈
R, are the hyperparameters. Representing the atom-nonatom
interface width as finite makes it easier to carry out nu-
merical simulations such as the finite differential simulation
conducted in this paper. This is because tracking the explicit
position of the interface is no longer required in this repre-
sentation. Instead, the position of the interface is implicitly
represented as a specific value or a specific range of the
density field.

In Fourier space, ψ tgt (r) with a periodic condition ψ tgt (r +
n1a1 + n2a2) = ψ tgt (r) can be written as

	 tgt (g) =

⎧⎪⎨
⎪⎩

Natoms∑
j=1

a j exp

(
−σ 2

j

2
g · g − ig · r j

)
, g = m1b1 + m2b2 ∈ R2, (m1, m2) ∈ Z2

0, else

⎫⎪⎬
⎪⎭ ∈ C, (11)

where b1 ∈ R2 and b2 ∈ R2 are the reciprocal primitive vec-
tors. As shown by Eq. (11), the representation of the Gaussian
approximated target lattice in the Fourier space is sparse.

Using the rectangular supercell, it is easily shown that for
all g with nonzero 	 tgt (g), there exists a corresponding grid
point when the Fourier space is appropriately discretized. This
indicates that 	 tgt (g) remains a sparse representation even
after the discretization. The proofs are as follows.

Remark 1. Let ai, j ∈ R be the jth component of the prim-
itive vector ai, where i ∈ {1, 2} and j ∈ {x, y}. Without loss
of generality, let a1,y = 0. When the supercell can be taken
as rectangular with a width W and height H , there exists

(m, n, p) ∈ Z3 such that W = ma1,x, H = na2,y, and pa1,x =
ma2,x.

Proof. W = ma1,x and H = na2,y are obvious. The x co-
ordinate of the lattice points at y = m2a2,y can be written
as m1a1,x + m2a2,x, where (m1, m2) ∈ Z2. When the super-
cell can be taken as rectangular, there exists m′

1 ∈ Z such
that m′

1a1,x = m1a1,x + m2a2,x. Dividing by a1,x on both sides
gives m2

a2,x

a1,x
= m′

1 − m1 ∈ Z. Satisfying m2
a2,x

a1,x
∈ Z requires

that there exists p ∈ Z such that pa1,x = m2a2,x. �
Remark 2. If there exists a rectangular supercell, then rect-

angular grids can be taken such that for all the reciprocal
lattice points, there exists a corresponding grid point.
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FIG. 3. Schematic illustration of the definition of the rectangular
supercell. Primitive vectors are shown as a1 and a2. In this figure,
q(3, 2) = q(2, 0) + q(1, 2) and q(2, 0) · q(1, 2) = 0. Hence, q(3, 2)
is an element of Q, which is a set of the candidate vectors point-
ing along the diagonal of the rectangular supercell. Note that the
supercell used in this study is defined by q∗ = q(2, 2) = q(1, 0) +
q(1, 2) ∈ Q, which indicates an upper-right lattice point.

Proof. Let a1,y = 0. In this case, b1,x = 2π/a1,x, b1,y =
−2πa2,x/(a1,xa2,y), b2,x = 0, and b2,y = 2π/a2,y, where
bi, j ∈ R is the jth component of the reciprocal prim-
itive vector bi. We define the wave vector at grid
point (p, q) ∈ Z2 as (2π p/W, 2πq/H ) := (p
kx, q
ky ).
Then, b1,x = (W/a1,x )
kx, b1,y = (−Ha2,x/(a1,xa2,y))
ky

and b2,y = (H/a2,y)
ky. From Remark 1, there exists
(m, n, p) ∈ Z3 such that W = ma1,x, H = na2,y, pa1,x =
na2,x. Hence, there exists (m, n, p) ∈ Z3 such that b1,x =
m
kx, b1,y = −p
ky, b2,y = n
ky. This means that when the
2D Fourier space is discretized with spacing (
kx,
ky) =
(2π/W, 2π/H ), there exists a corresponding grid point for
any bi. �

To show the sparsity of 	 tgt , an example of the power
spectrum for the honeycomb lattice is presented in Fig. 4. The
primitive vectors and atom positions for the honeycomb lattice
are illustrated on the left of Fig. 2. As shown in this example,
the Fourier representation of the target image is sparse.

The magnitudes of Fourier coefficients of ψ tgt rapidly de-
crease with an increasing magnitude of the wave vector as
shown by Eq. (11) and Fig. 4. Reflecting these properties,
only the first M peaks except for the first k = 0 peak are
considered in this paper. Such an approximation can be seen
as low-pass filtering of the Gaussian approximated target lat-
tice. The example of the low-pass filtered image obtained
by setting ψki>M = 0 is shown on the right of Fig. 2, where
M = 3. Despite only considering three Fourier coefficients,
the positions of atoms of the honeycomb lattice are well
represented. Reducing the number of Fourier coefficients of
the target lattice decreases the number of trainable parameters.
This is because the two-point DCF only appears in the form
C2,kψk as shown on the right-hand side of Eq. (5). That is to
say, the trainable parameter can be reduced from C2,k , k ∈ R+,
to

θ := [C2,k1 C2,k2 · · · C2,kM ] ∈ RM . (12)

In this paper, the number of trainable parameters, M, is treated
as a hyperparameter and varies for each desired lattice. In

FIG. 4. Example of the Fourier representation of the Gaussian
blurred honeycomb lattice. The red arrows indicate the positions
of the first three nonzero power spectra except for k = 0, where
the number three is a hyperparameter. In this case, the trainable
parameters are C2,k1 , C2,k2 , and C2,k3 . The target lattice is defined as a
Gaussian blurred image whose Fourier coefficient above k3 is ignored
(i.e., ψ>k3 = 0).

what follows, a set of DCFs, C2,k1 C2,k2 · · · C2,kM , is referred
to as correlation peaks and expressed as θ1, θ2, . . . , θM .

Treating a small number of correlation peaks suppresses
the representation power of the free energy that would provide
regularization. This is because a more complicated DCF re-
sults in a greater local minimum of the free energy. Restricting
the representation power to obtain a better solution is simi-
lar to the optimization strategy for the conventional machine
learning model [12].

C. Optimization scheme

The gradient descent is used to solve problem Eq. (9)
because the gradient of the temporal change in the target
free energy with respect to C2 is easily computed. The loss
function L(θ ) is defined as

L(θ ) =
∣∣∣∣∂F [ψ tgt; θ ]

∂t

∣∣∣∣. (13)

The trainable parameter, θ , is updated as

θ ← θ − λ
∂L(θ )

∂θ
, (14)

where λ is the learning rate. One can easily compute the
gradient of L appearing on the right-hand side of Eq. (14)
adopting automatic differentiation [13]. Although any type of
optimizer can be used, the simplest gradient descent, without
using any momentum, is adopted in this paper.

IV. RESULTS AND DISCUSSION

A. Experimental setup

For the target lattices, we used five well-known 2D lat-
tices (i.e., triangular, square, rectangular, honeycomb, and
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TABLE I. Primitive vectors and atom coordinates for the tar-
get 2D lattices. The space between the closest atoms listed here is
normalized to 1. In the experiments, all these values are multiplied

by 5
√

3. α and β for the ladybug lattice are α =
√

2 + √
3 and

β =
√

2 − √
3.

Lattice Primitive vectors Atom coordinates

Triangular (1,0)
(

1
4 ,

√
3

4

)
(− 1

2 ,
√

3
2

)
Square (1,0)

(
1
2 , 1

2

)
(0,1)

Rectangular (1,0) (0,0)
(0,4) (0,2)

Honeycomb (
√

3, 0)
(√

3
2 , 1

2

)
(−√

3
2 , 3

2

)
(0,1)

Kagome (2,0)
(− 1

2 ,
√

3
2

)
(−1,

√
3)

(
1
2 ,

√
3

2

)
(0,

√
3)

Maple leaf (
√

7, 0)
(

5
√

7
14 ,

√
21

14

)
(−√

7
2 ,

√
21
2

) (
5
√

7
7 ,

√
21
7

)
(√

7
14 , 3

√
21

7

)
(

3
√

7
7 , 2

√
21

7

)
(− 3

√
7

14 , 5
√

21
14

)
(√

7
7 , 3

√
21

7

)
Ladybug (α, 0)

(
α−β

4 ,
−α−β

4

)
(0, α)

(−α−β

4 ,
−α+β

4

)
(−α+β

4 ,
α+β

4

)
(

α+β

4 ,
α−β

4

)
Trellis (1,0)

(
1
2 , 1

2

)
(− 1

2 , 1 +
√

3
2

) (
0, 1

2 +
√

3
2

)
Lieb (2,0) (0,0)

(0,2) (1,0)

(0,1)

CaVO (1 + √
2, 0)

(
1+√

2
2 , 1

2

)
(0, 1 + √

2)
(

1
2 , 1+√

2
2

)
(

1
2 + √

2, 1+√
2

2

)
(

1+√
2

2 , 1
2 + √

2
)

kagome lattices) and five more 2D lattices (i.e., maple
leaf, ladybug, trellis, Lieb, and CaVO lattices). Real mate-
rials with more than two types of particle for the maple
leaf [14], ladybug [15], Lieb [16], and CaVO [17] lat-
tices have been reported. However, the DCFs for these
five lattices have not yet been reported. The primitive
vector and the atom coordinates for each lattice are
listed in Table I. The hyperparameters used are listed in
Table II.

The discretization was carried out as follows. The x and y
directions of the ψ tgt in the real space computational region

TABLE II. Hyperparameters used in the optimization.

Description Symbol Value

Spacing between nearest atoms – 5
√

3
Number of correlation peaks M Grid search
Coefficient of the Gaussian α j Grid search
Standard deviation of the Gaussian σ j 1.5
Mesh spacing h 0.4
Learning rate λ 10−3

are divided into Nx and Ny cells, respectively, where

Nx =
⌊W

h
+ 0.5

⌋
, Ny =

⌊H

h
+ 0.5

⌋
, (15)

and h is the mesh spacing. The (p, q) components of the wave
vector, (k)pq, are then defined as

(k)pq =
(

2π p

W
,

2πq

H

)
, (16)

where

p ∈
[
−Nx

2
,

Nx

2

]
⊂ Z, q ∈

[
−Ny

2
,

Ny

2

]
⊂ Z. (17)

After optimization, PFC simulation using the optimized
DCF was carried out. To make it easier to see the periodic
pattern, the simulations were carried out in a computational
region larger than that used in the optimization. The obtained
DCF was mapped to a region five times larger in width and
height than the original region. As an example, the computa-
tional region is 23
x × 37
y = a × √

3a in the case of the
optimization of the triangular lattice and 115
x × 185
y =
5a × 5

√
3a in the case of the pattern formation where 
x =

W/Nx and 
y = H/Ny. Time integration was carried out using
the semi-implicit Fourier spectral method [18] from the ini-
tial state sampled from U ([m − η, m + η]D) until the pattern
reached a steady state. The magnitude of the initial noise is
taken as η = 0.01, whereas the mean of the initial condition
is the same as the mean of ψ tgt.

In addition to the vanilla PFC simulation with the original
optimized DCFs, simulation with the modified DCF was car-
ried out because the original optimized sparse DCFs are not
physically valid. Figure 5 shows examples of one-dimensional
(1D) plots of the optimized DCF for the CaVO lattice in both
Fourier and real spaces. In the case of a sparse DCF, the spatial
distribution of the DCF in real space is physically unrealistic
[Figs. 5(a) and 5(b)]. A sparse DCF in Fourier space indicates
that the interaction force reaches an infinitely distant location
without decaying, which is not valid for the physical con-
sideration. In addition, an aliasing problem occurs when the
discrete 2D inverse Fourier transformation is applied to the
sparse DCF. To address these issues, the optimized DCF is
blurred using a Gaussian distribution, which is an approach
inspired by [4]

max
m

θm exp

(
− (k − km)2

2σ̄ 2

)
, (18)

where σ̄ is a blurring hyperparameter and {km, θm}M
m=1 is a

set of optimized nonzero C2,k and the corresponding k. Blur-
ring the DCF can reduce unrealistic artifacts of its real space
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(a) Optimized C2,k (b) Optimized C2(r) (c) Smoothed C2,k (d) Smoothed C2(r)

FIG. 5. Example of the optimized Ck and the corresponding smoothed version. (a) Optimized Ck for the CaVO lattice. (b) Real–space
distribution of Ck for the CaVO lattice. The 1D real–space DCF depicted here is obtained by (i) mapping the 1D Ck to 2D Fourier space, (ii)
adopting a discrete 2D inverse Fourier transformation, and (iii) mapping the result to one dimension. (c) Smoothed Ck for (a) obtained using
Eq. (18) with σ̄ = 0.03. (d) Real–space distribution of Ck corresponding to (c).

spatial distribution [see Figs. 5(c) and 5(d)] because blurring
peaks in Fourier space localizes the corresponding waves in
the real space.

We implemented our model with TensorFlow version
1.15.0 [19]. All experiments were carried out on a single
NVIDIA P100/V100/GV100 GPU (i.e., one of the GPUs was
used).

B. Results

The DCFs obtained adopting the proposed optimization
procedure and the corresponding hyperparameters used are
listed in Tables III and IV. The numbers of correlation peaks,
M, for the triangular, square, rectangular, honeycomb, and
kagome lattices are no more than three, which is consis-
tent with the results of a previous study [7], which used
a three-mode PFC. Meanwhile, we found that the remain-
ing five lattices (i.e., the maple leaf, ladybug, trellis, Lieb,
and CaVO lattices) require at least four correlation peaks.
Figures 6 and 7 show temporal changes in the patterns for
each lattice obtained using the blurred DCFs with σ̄ = 0.03.
The results without DCF blurring are abbreviated because
no appreciable difference is observed with and without DCF
blurring. As shown in Fig. 6, all five well-known lattices
(i.e., triangular, square, rectangular, honeycomb, and kagome
lattices) were successfully reproduced (Fig. 7). In addition,
the maple leaf, ladybug, trellis, Lieb, and CaVO lattices were

TABLE III. Results of the optimized C2,k for each lattice. The
hyperparameters, (M, aj ), determined by conducting a grid search,
and the corresponding spatial means of ψ tgt , ψ tgt , are also listed.

Lattice (M, aj ) ψ tgt (k,Ck )

Triangular (1,18.0) 0.278 060 54 (0.837 758 02, 0.828 741 35)
Square (2,18.0) 0.253 297 76 (0.725 519 74, 0.829 614 56),

(1.026 039 86, 0.821 743 03)
Rectangle (3,24.0) 0.169 725 40 (0.362 759 84, 0.843 812 20),

(0.725 519 74, 0.863 826 98),
(0.811 155 72, 0.844 408 59)

Honeycomb (3,19.8) 0.215 627 64 (0.483 679 85, 0.838 828 11),
(0.837 758 02, 0.837 090 48),
(0.967 359 65, 0.817 693 83)

Kagome (3,19.0) 0.232 780 04 (0.418 878 98, 0.848 152 33),
(0.725 519 74, 0.823 694 88),
(0.837 758 02, 0.833 521 75)

successfully reproduced (Fig. 7). The formation of the latter
five lattices has been simulated using the PFC model. As
mentioned, these lattices require at least four modes and they
have thus not been reported.

After optimization, we searched for the minimal number
of correlation peaks that represent each lattice as follows. The
idea is to remove the correlation peaks contributing less en-
ergy from the set of M peaks. The total excess energy defined
in Eq. (3) can be broken down to

M∑
i=1

−1

2

∫
�

ψ (r)F−1[C2,kiψki ](r)dr :=
M∑

i=1

Fi[ψ], (19)

where Fi[ψ] is the contribution of the ith correlation peak
to the total excess energy. This decomposition is inspired

TABLE IV. (Continued.)

Lattice (M, aj ) ψ tgt (k,Ck )

maple leaf (4,18.7) 0.261 801 49 (0.316 642 70, 0.865 382 22),
(0.548 441 34, 0.826 682 86),
(0.633 285 56, 0.838 602 21),
(0.837 758 02, 0.830 371 48)

ladybug (5,17.5) 0.263 993 48 (0.531 117 31, 0.819 610 60),
(0.751 113 31, 0.828 500 98),
(0.839 770 21, 0.825 121 89),
(1.062 234 63, 0.810 590 92),
(1.187 614 42, 0.807 061 13)

trellis (7,16.0) 0.241 349 64 (0.388 804 84, 0.703 379 36)†,

(0.751 113 31, 0.819 899 11),
(0.777 609 74, 0.827 470 31),
(0.930 864 97, 0.813 210 65),
(1.166 414 59, 0.810 038 76)†,

(1.212 924 77, 0.801 116 26),
(1.451 039 49, 0.777 333 36)

Lieb (5,19.4) 0.205 776 05 (0.362 759 84, 0.855 960 13),
(0.513 019 98, 0.838 192 11),
(0.725 519 74, 0.833 889 73),
(0.811 155 72, 0.816 962 07),
(1.026 039 86, 0.839 413 54)

CaVO (7,20.6) 0.199 975 51 (0.300 520 05, 0.844 352 21),
(0.424 999 65, 0.828 772 59)†,

(0.601 040 26, 0.769 595 32)†,

(0.671 983 41, 0.841 103 37),
(0.849 999 24, 0.845 262 56),
(0.901 560 37, 0.842 241 42),
(0.950 328 05, 0.785 774 41)†
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triangular

square

rectangular

honeycomb

kagome

FIG. 6. Snapshots of the pattern formation of the triangular,
square, rectangular, honeycomb, and kagome lattices obtained using
the optimized DCFs with σ̄ = 0.03 blurring for each lattice.

by Ref. [5]. We computed Fi[ψ tgt] and removed correlation
peaks that contribute less than other peaks to the total excess
energy. PFC simulations with the reduced DCFs were then
carried out. As a result, the numbers of correlation peaks
for the trellis and CaVO lattices were successfully reduced
to five and four, respectively. The reduction in the number
of correlation peaks failed for the remaining lattices. Total
reductions in the excess energy from Fexcess[ψ tgt] achieved by
removing correlation peaks are 1.8% and 9.2% for the trellis
and CaVO lattices, respectively. The smallest contributions of
Fi[ψ tgt] to the total excess energy for the triangular, square,
rectangular, honeycomb, kagome, maple leaf, ladybug, and
Lieb lattices are 100%, 23.3%, 24.9%, 7.7%, 10.6%, 4.4%,
3.8%, and 8.3%, respectively. The effect of the peak reduction
is small in the case of the trellis lattice compared with that of
the failed cases but is somewhat large in the case of the CaVO
lattice. To investigate the reason for this, we removed only
two of the seven peaks of the CaVO DCF, where these two
peaks made the first and second smallest contributions to the
total excess energy. PFC simulation was carried out with this
five-peaks CaVO DCF. We then computed Fi[ψgen], where

maple leaf

ladybug

trellis

Lieb

CaVO

FIG. 7. Snapshots of the pattern formation of the maple leaf, la-
dybug, trellis, Lieb, and CaVO lattices obtained using the optimized
DCFs with σ̄ = 0.03 blurring for each lattice.

ψgen is the pattern generated with the five correlation peaks.
The result shows that the smallest contribution of Fi[ψgen] to
the total excess energy is 2.4%, which is smaller than that
in all the failed cases. In summary, the correlation peaks can
be neglected if their contribution to the total excess energy
is sufficiently small; i.e., less than about 3%. The patterns
obtained using the reduced DCFs for the trellis and CaVO
lattices are shown in Fig. 8. We see that the patterns with
reduced DCFs are similar to the original patterns depicted on
the right of Fig. 7.

V. LIMITATION

Unfortunately, the fully optimized DCFs do not always
generate the desired pattern for some lattices. Figure 9
shows competitive patterns generated using a specific initial
condition for the maple leaf, ladybug, Lieb, and CaVO lat-
tices. Among these competitive patterns, we found that some
are energetically indistinguishable from the desired lattice.
Figure 10 compares Fi[ψgen] between the generated CaVO
pattern and its competitive patterns, where comp. represents

014112-7



RUHO KONDO PHYSICAL REVIEW B 104, 014112 (2021)

trellis CaVO

FIG. 8. Patterns generated with reduced DCFs. There are five and
four correlation peaks for the trellis and CaVO lattices, respectively.
The removed correlation peaks are indicated in Table III with super-
script daggers.

the competitive pattern. The difference in excess energy be-
tween CaVO and comp. 2 is clear whereas Fi[ψgen] for CaVO
and comp. 1 are almost the same for all peaks. This sug-
gests that CaVO and comp 2 are visibly different but hard
to distinguish from the viewpoint of the energy landscape.
The pattern formation is governed by the free energy in the
PFC, and the current simplified free–energy Eq. (1), which
includes assumptions (i)–(iv) described in Sec. II, should thus
be modified to avoid energetically similar competitive pat-
terns such as comp. 1. In Appendix A 1, we tried to find a
liquid-CaVO coexisting region adopting an analytic approach,
which obtains the phase diagram using approximated target
patterns, but it is difficult to determine such a region because
the calculated phase diagram has M + 1 dimensions. In ad-
dition, such a liquid-target phase coexisting region may be
narrow [see Fig. 12(e)], which suggests that a highly accurate
approximation for the target phase that actually appeared as
the stable solution of the PFC equation is required. The effects
of higher-order DCFs on suppressing the competitive patterns
are discussed in Appendix B. Note that for the other lattices
(i.e., the triangular, square, rectangular, honeycomb, kagome,
and trellis lattices), competitive patterns were not observed in
the present experiments.

Another remaining problem is the difficulty of the poly-
crystallization simulation. As discussed above, there are
competitive patterns that are energetically more stable than the
target pattern. This makes the polycrystallization simulation
difficult because the competitive patterns more likely form
during the crystallization. Figures 11(a) and 11(b) show the

maple leaf ladybug

Lieb CaVO

FIG. 9. Competitive patterns for each lattice. The name of the
desired lattice is given below the patterns. No competitive patterns
were found for the other lattices in the experiments.

FIG. 10. Comparison of excess energy between the generated
CaVO and competitive patterns. Two desired patterns, the CaVO
and CaVO (rotated) patterns, are depicted above because the desired
CaVO patterns can be rotated whenever the periodic boundary con-
dition is satisfied. Comp. 1 and comp. 2 are competitive patterns that
are different from the desired pattern. All patterns are generated with
the reduced DCF.

results of the polycrystallization simulation with the two point
nuclei in the case of the CaVO lattice. When σ = 0, the single
crystal of the CaVO lattice is generated but the crystallization
process is physically unnatural because the correlation force
reaches infinitely distant space and the crystallization occurs
simultaneously throughout the calculation region. Meanwhile,
in the case of σ = 0.3, the crystallization gradually occurs
from the nuclei. However, although the CaVO motif defined
in Fig. 11(a) appears locally in Fig. 11(b), the generated lattice
does not match the CaVO pattern.

Figure 11(c) shows the crystal growth from the existing
two CaVO crystals. The CaVO pattern gradually develops
from the initial crystals and a disturbed structure is seen be-
tween the crystals. This disturbed structure may be referred to
as crystal defects but one should carefully interpret the phys-
ical meaning of this structure because the present simulation
has the aforementioned problems.

VI. RELATED WORKS

The works most related to the present paper investigated
an inverse design of a pair potential in a particle system. Pair
potentials with a single type of particle for square [20–23],
rectangular [21], honeycomb [21–23], kagome [21–24], snub
square (ladybug) [24], truncated square (CaVO) [21,22,25],
truncated hexagonal [21,22,25,26], and trihexagonal [26] lat-
tices have been reported whereas more complex structures
have been successfully reproduced by allowing particle selec-
tivity [27] or using more than two types of particle [28–30].
Although the pair potential is strongly correlated to the two-
point DCF as mentioned below, obtaining the two-point DCF
from the pair potential is intractable.
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(a) σ = 0 with point nuclei

(b) σ = 0.3 with point nuclei

(c) σ = 0.3 with structured nuclei

FIG. 11. Results of the CaVO crystallization simulations: (a) σ = 0 with two point nuclei, (b) σ = 0.3 with the same initial conditions as
(a), (c) σ = 0.3 with crystalline nuclei. The crystalline nucleus is obtained by repeatedly arranging Fig. 8 (right) horizontally and vertically.
The yellow circles in (b) indicate the CaVO motif as illustrated in (a). The yellow rectangles in (c) are the initial boundaries of the crystalline
nuclei.

There are two existing approaches that can be adopted to
obtain the DCF. One is solving the Ornstein–Zernike (OZ)
equation and the closure [31] simultaneously using a given
potential. However, in general, an approximation is required
for the bridge function appearing in the closure because the
concrete representation of the bridge function is not known.
The molecular dynamics simulation approach is an alternative
to obtain the DCF. Instead of using the closure, a molecular
dynamic simulation is carried out using a given potential.
An n-particle density and a pair correlation function are
calculated in subsequent post-processing. The DCF is then
computed by solving the OZ equation. Note that in the case
of isotropic liquids, the OZ equation can be reduced to the
1D equation whereas it cannot in the case of a crystal. This is
because the pair correlation depends not only on the distance
but also the angle in the case of a crystal. This complicates the
solving of the OZ equation.

Compared with the existing methods, our approach is
straightforward in obtaining the DCF. Our ultimate goal is not
to obtain the potential but to get the DCF because the latter
is required for PFC simulation. This is the main difference
between the existing method and our approach.

In this paper, the DCFs are decomposed into each sepa-
rated modes, which is similar to the concept of an amplitude
equation [32–37]. In the amplitude equation, the time devel-
opment of the amplitude of each mode is calculated and the
original phase is then reconstructed using these amplitudes.
The difference is that the proposed model simply decomposes
the two-point DCF into each mode and does not decompose
the amplitudes.

VII. CONCLUSIONS

We proposed an optimization method to obtain a two-point
DCF, C2, corresponding to a desired lattice. Using the present
method, we found C2 not only for five well-known lattices
(i.e., triangular, square, rectangular, honeycomb, and kagome
lattices) but also for five nontrivial lattices (i.e., maple leaf,
ladybug, trellis, Lieb, and CaVO lattices). In addition, we
showed that these lattices can be simulated with a five-mode
PFC. The open question is how to stabilize these patterns and
what type of crystal defects can be generated. We hope that
the present paper will accelerate a wide range of applications
of the PFC.
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TABLE V. Parameters for the lattices appearing in the CaVO system. In all phases, (Lx, Ly ) = (ast
1,x, ast

2,y ).

Phase r j Km

CaVO r1 = 1
2 ast

1 +
√

2−1
2 ast

2 K1 = {(
kx, −γxy
kx ), (0,
ky )}
(sine terms cancel out) r2 =

√
2−1
2 ast

1 + 1
2 ast

2 K4 = {(
kx, 2
ky − γxy
kx ), (2
kx, 
ky − 2γxy
kx,
ky ),

(−
kx, 2
ky + γxy
kx ), (−2
kx, 
ky + 2γxy
kx, 
ky )}
r3 = 3−√

2
2 ast

1 + 1
2 ast

2 K5 = {(2
kx, 2
ky − 2γxy
kx ), (−2
kx, 2
ky + 2γxy
kx )}
r4 = 1

2 ast
1 + 3−√

2
2 ast

2 K6 = {(3
kx, −3γxy
kx ), (0, 3
ky )}
Zigzag r1 = 1

2 ast
1 + 1

4 ast
2 K1 = {(
kx, −γxy
kx )}

r2 = 1
2 ast

1 + 3
4 ast

2 K4 = {(
kx, 2
ky − γxy
kx ), (−
kx, 2
ky + γxy
kx )}
r3 = 3−√

2
2 ast

1 K5 = {(2
kx, 2
ky − 2γxy
kx ), (−2
kx, 2
ky + 2γxy
kx )}
r4 = 3−√

2
2 ast

1 + 1
2 ast

2 K6 = {(3
kx, −3γxy
kx )}
Oblique r1 = 1

6 ast
1 + 5

12 ast
2 K4 = {(
kx, 2
ky − γxy
kx )}

(sine terms cancel out) r2 = 1
6 ast

1 + 11
12 ast

2 K5 = {(−2
kx, 2
ky + 2γxy
kx )}
r3 = 1

2 ast
1 + 1

4 ast
2 K6 = {(3
kx, −3γxy
kx )}

r4 = 1
2 ast

1 + 3
4 ast

2

r5 = 5
6 ast

1 + 1
12 ast

2

r6 = 5
6 ast

1 + 7
12 ast

2

Stripe (sine terms cancel out) r1 = arbitrary K6 = {(3
kx, −3γxy
kx )}

APPENDIX A: ANALYSIS OF FREE ENERGY

In this Appendix, we discuss the phase diagram and the
elasticity induced by the present form of the free-energy
functional. The procedure to obtain the phase diagram and
the elastic constants is the same as that reported in the lit-
erature [2].

Without loss of generality, the ordered patterns are approx-
imately represented as

ψ (r; a, A, ψ̄, ε) = ψ̄ + a
M∑

m=1

∑
k∈Km (A,ε)

ψm(r; k, A, ε), (A1)

where

ψm(r; k, A, ε) =
Natoms∑
j=1

[cos(k · r j (A, ε)) cos(k · r)

+ sin(k · r j (A, ε)) sin(k · r)]. (A2)

Here, r denotes the coordinates, a the amplitude, A the
distance between the nearest-neighboring atoms, and ψ̄ the
spatial mean of ψ . ε = (εx, εy, γxy), where εx, εy, and γxy

are the normal strain along the x axis, the normal strain along
the y axis, and the shear strain along the x axis on the y plane,
respectively. r j denotes the jth atom coordinates and Km the
set of wave vectors corresponding to the mth correlation peak.
Note that ∀k ∈ Km(A, 0), |k| = km. Using this representation
and the smoothed version of C2 defined in Eq. (18), the term∫
�

C2(|r − r′|)ψ (r′)dr′ appearing in the present free-energy
functional is calculated as∫

�

C2(|r − r′|)ψ (r′)dr′

= a
M∑

m=1

θm

∑
k∈Km (A,ε)

e− (|k|−km )2

2σ̄2 ψm(r; k, A, ε). (A3)

Note that this expression is only valid in the limit of small
σ̄ that satisfies Ck ≈ ∑M

m=1 θm exp(−(|k| − km)2/(2σ̄ 2)). The
unit cell region is written as

�(A, ε) = [0, Lx(A, ε)] × [0, Ly(A, ε)], (A4)

where Lx(A, ε) and Ly(A, ε) are, respectively, the width and
height of the strained unit cell. The strained primitive vectors
are

ast
i (A, ε) =

[
(1 + εx )ai,x + γxy(1 + εy)ai,y

(1 + εy)ai,y

]
(A5)

for i = 1, 2.
In the case of the triangular lattice, sine terms in

Eq. (A2) cancel out owing to the geometric sym-
metry, N = M = 1, Lx(A, ε) = ast

1,x(A, ε), Ly(A, ε) =
2ast

2,y(A, ε), r1 = (ast
1 (A, ε) + ast

2 (A, ε))/2, K1(A, ε) =
{[0 2
ky(A, ε)]T, [
kx(A, ε) 
ky(A, ε) − γxy
kx(A, ε)]T,
and [−
kx(A, ε) 
ky(A, ε) + γxy
kx(A, ε)]T, where

kx(A, ε) = 2π/Lx(A, ε) and 
ky(A, ε) = 2π/Ly(A, ε).
We calculated the corresponding parameters for the CaVO
system and summarize them in Table V.

1. Phase diagram

Solving

a∗(ψ̄, θ1), A∗(ψ̄, θ1) = argmin
a,A

F [ψ (r; a, A, ψ̄, 0); θ1]

|�(A, 0)|
with Mathematica version 11.3 [38], we obtain a∗(ψ̄, θ1) =
(1 − 2ψ̄ +

√
−19 + 20θ1 + 16ψ̄ (1 − ψ̄ ))/5 for ψ̄ � 1

2 ,

a∗(ψ̄, θ1) = (1 − 2ψ̄ −
√

−19 + 20θ1 + 16ψ̄ (1 − ψ̄ ))/5 for
ψ̄ > 1

2 . A∗(ψ̄, θ1) is arbitrary because F/� does not depend
on A.
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(a) (b)

(c) (d)

(e)

FIG. 12. (a) Analytically obtained phase diagram of the triangular system, (b) simulation results of the triangular system, (c) analytically
obtained phase diagram of the CaVO system, (d) simulation results of the CaVO system, and (e) analytically obtained phase diagram of the
CaVO system excluding the zigzag phase. Gray regions in (a), (c), and (e) are the coexisting regions of neighboring phases.

In the case of the triangular lattice, the stripe pattern ap-
pears as a competitive pattern. The stripe pattern is expressed
as ψ (r; a, A, ψ̄, ε) = ψ̄ + aα1(k, A, ε) cos(k · r), where k ∈
K1(A, ε). The difference between the triangular and stripe lat-
tices is that the number of k ∈ K1 considered. All k ∈ K1 are
considered in the case of the triangular lattice whereas only
one of k ∈ K1 is considered in the case of the stripe lattice.

The region of liquid–solid coexistence can be determined
using the so-called tangent rule as [ψ1, ψ2] where ψ1 and ψ2

are the solutions to the equations

f�(ψ1) − ψ1
∂ f�
∂ψ

(ψ1) = fc(ψ2) − ψ2
∂ fc

∂ψ
(ψ2)

∂ f�
∂ψ

(ψ1) = ∂ fc

∂ψ
(ψ2),

⎫⎪⎪⎬
⎪⎪⎭ (A6)

where

f�(ψ ) := F [ψ (r; 0, A∗, ψ̄, 0); θ]

|�(A∗, 0)| ,

fc(ψ ) := F [ψ (r; a∗, A∗, ψ̄, 0); θ]

|�(A∗, 0)| (a∗ �= 0). (A7)

The triangular-stripe coexistence region can be obtained in the
same way described above. The resulting phase diagram is
illustrated as Fig. 12(a). This phase diagram is qualitatively
in good agreement with the existing result [2]. Numerical
simulations with varying ψ̄ and θ1 were carried out for the ver-
ification of the present analysis. For the entire set of (ψ̄, θ1),
the PFC equation is calculated for the 16 initial conditions
until the pattern reaches the steady state. The obtained patterns
are then recorded. The result shown in Fig. 12(b) is very
consistent with Fig. 12(a).

In the same way, the optimal amplitude of the four-
peaks CaVO is obtained as a∗

cavo(ψ̄, θ1, θ4, θ5, θ6) =
0.036 − 0.072ψ̄ + 0.053

√
−7.712 + � + 6.313ψ̄ (1 − ψ̄ )

for ψ̄ � 1/2, a∗
cavo(ψ̄, θ1, θ4, θ5, θ6) = 0.036 − 0.072ψ̄ −

0.053
√

−7.712 + � + 6.313ψ̄ (1−ψ̄ ) for ψ̄ > 1/2 where
� := 0.490θ1 + 2.302θ4 + 2.682θ5 + 2.704θ6 and A∗(ψ̄, θ1)
is arbitrary because F/� does not depend on A. Although
we obtained the analytic results of a∗, we only present the
numerically evaluated results owing to space limitations.

Analytically and numerically obtained phase diagrams of
the CaVO lattices are depicted in Figs. 12(c) and 12(d),
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respectively. Here, we assumed θ1 = θ4 = θ5 = θ6 for the 2D
visualization. The figure shows that the region of the stripe
and oblique phases are in good agreement but the CaVO phase
only appears in the numerical results. In the analytic phase
diagram, although the energy difference is very small, the
zigzag phase, which is the same as comp. 1 in Fig. 10, has
lower energy than the CaVO phase. The difference between
these diagrams is due to the approximation of the ordered
patterns described by Eq. (A1). For instance, a parameter σ

in Eq. (10) that controls the spatial size of the high–density
region is not considered for simplicity.

If the zigzag phase is successfully removed from Fig. 12(c),
Fig. 12(e) is obtained. This phase diagram is calculated with-
out considering the zigzag phase. The figure shows that there
exists a constant(liquid)-CaVO coexistence region. In other
words, to obtain the stable CaVO phase, suppressing the
zigzag phase by increasing the zigzag energy or by decreasing
the CaVO energy is essential.

2. Elasticity

Independent components of the elastic constants in the case
of 2D lattices are C11, C22, C66, C12, C16, and C26 where Ci j is
the component of the elastic coefficient matrix in the Voigt
notation. For generality, we did not assume any symmetry
(e.g., cubic symmetry) of the lattice. Following Ref. [2], the
elastic constants are calculated as

C11 = C(G(ε, 0, 0), ε2),

C22 = C(G(0, ε, 0), ε2),

C66 = C(G(0, 0, ε), ε2), (A8)

C12 = C(G(ε, ε, 0), ε2) − (C11 + C22)/2,

C16 = C(G(ε, 0, ε), ε2) − (C11 + C66)/2,

C26 = C(G(0, ε, ε), ε2) − (C22 + C66)/2,

where

G(εx, εy, γxy) = F [ψ (r; a∗, A∗, ψ̄, εx, εy, γxy); θ1]

|�(A, (εx, εy, γxy))| (A9)

and C(expr, x) indicates the coefficient of x in expr. Note that
Fideal does not contribute to the elasticity because it does not
include spatial gradient terms of ψ . The term Fideal can thus
be ignored in the calculation of the elastic constants. The
resulting elastic constants for the triangular lattice are

C11

3
= C22

3
= C12 = C66 = π2a∗2θ1

2A∗2σ̄ 2

and

C16 = C26 = 0.

In the same way, the elastic constants for the square, honey-
comb, and kagome lattices were calculated. The results are

θ2

θ1 + θ2
C11 = θ2

θ1 + θ2
C22 = C66 = C12 = π2a∗2

sq θ2

A∗2σ̄ 2
,

C11

3
= C22

3
= C66 = C12 = π2a∗2

hon(θ1 + 12θ2 + 4θ3)

6A∗2σ̄ 2
,

C11

3
= C22

3
= C66 = C12 = π2a∗2

kag(θ1 + 3θ2 + 36θ3)

8A∗2σ̄ 2
,

respectively, where a∗
sq = [1 − 2ψ̄ + ( − 17 + 9θ1 + 9θ2 +

14ψ̄ (1 − ψ̄ ))
1/2

]/9, a∗
hon = [15 − 30ψ̄ + ( − 3063 + 548θ1

+ 2192θ2 + 548θ3 + 2388ψ̄ (1 − ψ̄ ))
1/2

]/137 and a∗
kag =

[178−356ψ̄+2( − 136817+13158θ1 + 13158θ2+118422θ3

+ 113054ψ̄ (1 − ψ̄ ))
1/2

]/2193 for ψ̄ � 1/2. The elastic
constants for the four-peaks CaVO can be calculated in the
same way. The results are

C11 = C22 = 16(3 − 2
√

2)π2a∗2
cavo

5A∗2σ̄ 2

(
5 cos4

(
π√

2

)
θ1

+ 34(1 − 2 cos(
√

2π ))2 cos4

(
π√

2

)
θ4

+ 20 cos2(2
√

2π )θ5 + 45 cos4

(
3π√

2

)
θ6

)

C66 = C12 = 32(3 − 2
√

2)π2a∗2
cavo

5A∗2σ̄ 2

×
(

8 cos4

(
π√

2

)
θ4 + 10 cos2(2

√
2π )θ5

)
C16 = C26 = 0.

From these results, we obtain the relationships C22 = C11 and
C16 = C26 = 0 for all the above lattices and 2C66 = C11 − C12

for the triangular, honeycomb, and kagome lattices, which are
consistent with the relationships of the second-order elastic
constants [39]. In addition, we find that blurring the DCF
is essential to obtaining the finite elastic constants because
Ci j → ∞ when σ̄ → 0.

APPENDIX B: EFFECT OF NONLINEARITY

To discuss the effect of the nonlinearity of ψ in the
free–energy functional, assumptions (ii) and (iv) described in
Sec. II are modified. First, the DCFs higher than third order
are approximated as Ck ≈ c(k)

0

∏k
i=2 δ(r − ri ), which is known

as the local density approximation [11]. Second, O(ψN+1)
terms is ignored. Under these approximations, the free–energy
functional is written as

F [ψ] =
∫

dr
N∑

k=3

(
(−1)k+1

k
+ (−1)k

k − 1
− c̃(k)

)
ψk (r) + g(ψ ).

(B1)
Here, c̃(k) = ρ0c(k)

0 /(k − 1)!, where ρ0 is the reference

density, and g(ψ ) = ψ (r)(ψ (r) − ∫
dr′C2(|r − r′|)ψ (r′))/2.

Following Ref. [40], ψ (r) = ψ̄ + ∑
q �=0 aqeiq·r+φq is substi-

tuted into Eq. (B1), giving

F

[
ψ̄ +

∑
q �=0

aqeiq·r+φq

]

= F [ψ̄] + G +
N∑

j=3

α j

∑
q1,...,q j

βq1,...,q j δ(q1 + · · · + q j ),

(B2)
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where G = ∫
drg(ψ̄ + ∑

q �=0 aqeiq·r+φq ) − g(ψ̄ ),

α j =
N∑

k=max( j,3)

(
(−1)k+1

k
+ (−1)k

k − 1
− c̃(k)

)(
k
j

)
ψ̄k− j,

(B3)

and

βq1,...,q j = aq1 × · · · × aq j cos(φq1 + · · · + φq j ). (B4)

The last term on the right-hand side of Eq. (B2) is the
effect of the nonlinearity of ψ higher than ψ2 on the free-
energy functional. Equation (B2) indicates that only the set of
wave vectors that satisfy the resonance condition

∑
j q j = 0

contributes to the free energy functional. The controllable
parameters included in this nonlinear effect terms are the
correlation functions higher than third order, c̃(k).

According to Ref. [40] and Eqs. (B2)–(B4), j wave vectors
forming a closed loop contribute to the free-energy functional
through the ψ j term with parameter c̃(k)(k � j). This sug-
gests that controlling the higher order DCFs decreases the
free energy of the competitive patterns. Figure 13 shows the
dependency of c̃(3) and c̃(4) on the difference in free energy
between the CaVO and zigzag lattices in the case that N =
4, ψ̄ = 1/4 and θ1 = θ4 = θ5 = θ6 = 0.8. Unfortunately, in-
creasing c̃(3) (or c̃(4)) does not reduce the difference between
in free energy between the CaVO and the zigzag lattices.
Although decreasing c̃(3) (or c̃(4)) can reduce the difference
in free energy between the CaVO and zigzag lattices, the
minimum difference satisfying F [ψCaVO], F [ψzigzag] ∈ R is
greater than zero. The results obtained using another values of
(ψ̄, θ1 = θ4 = θ5 = θ6) have the same trend as seen in Fig. 13.
Consequently, suppressing the competitive patterns requires

FIG. 13. Analytical result of the dependency of c̃(3) and c̃(4) on
the difference in the free energy between the CaVO and the zigzag
lattices in the case that ψ̄ = 1/4 and θ1 = θ4 = θ5 = θ6 = 0.8. The
circles indicate the limit satisfying F [ψCaVO], F [ψzigzag] ∈ R.

N > 4 or a more sophisticated expression for the higher–order
DCFs than the local density approximation (e.g., Ref. [8]).
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