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Effective site energy and cluster expansion approaches for the study of phase diagrams
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We apply the cluster expansion (CE) method to determine the effective cluster interactions (ECIs) from a
simple energetic model that depends on both local and global composition. This model is defined by the site
energies of random solid solutions of a one-dimensional alloy Co-Pt. We explore how these local and global
dependencies are reflected on the cluster interactions. The energies of the structures are not well reproduced with
concentration-independent interactions. Moreover, the interactions have a larger range than the energetic model
which is limited to the nearest neighbors. By fitting the ECIs on the site energies, we suggest a mean-field-type
weighting of the excess variables present in clusters of large size. We show that the site energy formalism
controls the size of the clusters required for CE convergence and their concentration dependence. Finally,
we take advantage of the site energy formalism to describe the elastic and chemical effects that control the
thermodynamics of the alloy as a function of the ECIs.
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I. INTRODUCTION

The determination of phase diagrams is a preliminary step
which is essential for the study of alloys. A first method
consists of describing alloys from a generalized Ising model
based on effective cluster interactions (ECIs) [1–5]. The clus-
ter interactions are determined from the energy of many
ordered structures issued from ab initio calculations [6,7].
This approach is known as cluster expansion (CE). A second
method consists of the definition of interatomic potentials to
perform atomic simulations with relaxations. However, sim-
ulations with semi-empirical interatomic potentials have two
drawbacks: the reliability of these potentials and their lack of
transparency regarding the physics they contain.

CE has already been used to construct interatomic po-
tentials [8–10]. In the same spirit, we propose to determine
the effective interactions between clusters contained in inter-
atomic potentials, thanks to the CE method, to have a better
understanding of these potentials and then to improve them.
Among the known interatomic potentials, we use N-body
interatomic potentials derived from the second-moment ap-
proximation (SMA) of the tight-binding scheme [11,12]. It
has been shown that these potentials are relevant for both bulk
and surface studies [13–17]. N-body interatomic potentials
lead to a good description of surface relaxations as compared
with pair potentials and are therefore well suited for surface
segregation studies. Although very efficient, these potentials
do not allow simultaneous adjustment of the order/disorder or
demixing/disorder critical temperature of the system and the
solution energies of dilute systems [18]. The analysis of the
ECIs obtained by CE from ab initio calculations and by SMA
potentials should lead to the determination of the interactions
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that are missing in these potentials and that are quantifiable
only by advanced analyses such as the one we propose.

CE is a powerful tool for the analysis of alloy thermody-
namics and is widely used to study bimetallic alloys [19–26],
high entropy alloys [27], semiconductors, and oxides [28–33].
However, its application to real systems is often question-
able and remains a topical issue even before considering the
difficulties associated with complex structures such as in-
homogeneous systems. CE consists of fitting the values of
cluster interactions of a rigid-lattice Hamiltonian from the
configurational energies of a set of ordered structures. Its re-
alization requires different steps beforehand such as choosing
the number of structures and the structures themselves and
choosing the range and type of cluster interactions (pairs,
triplets, … n-tuples). Once the ECIs are estimated by mini-
mization, the predictive ability is then tested on a set of new
configurations, and the procedure is repeated by increasing the
range of cluster interactions until satisfactory prediction qual-
ity is obtained. The accuracy of CE predictions depends on all
these choices. Since the initial founding papers, algorithms
have been developed [19,34,35] and several improvements
and efficient methods have been proposed to assess the quality
of the fit and to select clusters [36–43]. Note, for example, that
the cluster interactions are generally independent of concen-
tration, while the configurations that allow one to determine
them have different compositions. The implementation of
CE with concentration-dependent interactions enables us
to consider volume variations linked to composition varia-
tions. Despite concentration-dependent CE converges much
faster and is more accurate, only a few studies address
concentration-dependent interactions [36,37,39,44,45].

We propose a detailed CE analysis using the effective site
energies (ESEs) description [46–48]. Let us recall the princi-
ples of this approach. The energies of each atom of random
solid solutions (RSSs) are determined and sorted according
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to both the local composition (restricted to first neighbors)
and the nominal concentration. RSSs are relaxed by molecular
static simulations using SMA interatomic potentials. These
site energies are averaged and introduced in a rigid-lattice
Hamiltonian. Therefore, the Hamiltonian, which is a combi-
natorial summation of the ESEs, depends both on the local
composition and on the nominal concentration. This descrip-
tion allowed us to highlight the role of first-neighborhood
triplet interactions in thermodynamic properties [47].

In this paper, we propose a theoretical study using an
energetic model with a known range of interactions. This
energetic model is a simplified expression of site energies
calculated from a one-dimensional (1D) CocPt1−c system. The
great advantage is to know the range of the interactions con-
tained in this energetic model since its dependency with local
environment is limited to the nearest-neighboring shell. This
poses a problem rarely addressed so far in the literature of the
introduction into CE via the ECIs of a phantom dependency
with the local environment, i.e., with further neighbors than
those considered in the initial model. These clusters couple
configuration variables that are not in the original model and
that need to be treated in a specific way.

The analysis is then extended to ECIs which are fitted on
the site energies instead of the energy of a set of ordered
structures. The site energies fix the number of equations to
be considered to fit the interactions, unlike the fit on the
structures. The energies of site, and thus the ECIs, allow one to
decompose the mixing and permutation enthalpies into chem-
ical contribution [related to local effects that drive short-range
order (SRO)] and elastic contribution (related to the variation
of the volume with the concentration). This analysis gives a
physical content to Calphad-type empirical methods [49,50].

This paper is organized as follows. The energetic model
is introduced in Sec. II A, followed by the CE approach in
Sec. II B 1. Results obtained with concentration-independent
and concentration-dependent interactions are presented in
Sec. II B 2. Section III is devoted to the development of
CE from the site energies. We first present the formal-
ism (Sec. III A ) and then the results (Sec. III B) with
concentration-independent (Sec. III B 1) and concentration-
dependent interactions (Sec. III B 2), followed by a discussion
in Sec. III B 3. The analysis of the mixing and permutation en-
thalpies in terms of elastic and chemical contributions is then
described in Sec. IV. After a discussion about the possible
extensions of the approach (SEC. V), we conclude in Sec. VI.

II. ECIs FROM CE

A. Energetic model

To focus the discussion on the coherence between the
range of interactions of the energetic model and the length
of n-tuples involved in CE, the energetic model is expressed
in terms of site energies whose dependency range with the
local composition can be chosen. Site energies are obtained
from RSSs by molecular static simulations using interatomic
potentials [46–48]. The site energy is the average of all en-
ergies of sites which are occupied by an atom of the same
type and which have the same local environment. For an
AcB1−c alloy, the site energies therefore depend both upon the

local composition and the nominal concentration. The local
environment is characterized by the numbers p1, p2, . . . pi

of A atoms (but it would also be B) in the first, second, …
ith-neighboring shells. For the sake of simplicity, the length
of interactions is restricted hereafter to the first-neighboring
shell, and we consider a 1D system. If this simplification has
a theoretical motivation, 1D alloys can occur along the steps
of a surface, the edges of a cluster, or in the core of dislocation.
The site energies are written E p

I with I = A or B and p = p1.
For a 1D system, p varies from 0 to 2. We have determined
the ESEs of a CocPt1−c linear chain to define our energetic
model using interatomic potentials already considered in the
literature for their abilities to reproduce bulk and surfaces
properties [51,52]. CoPt is a well-known alloy, which has
often been studied both in bulk and in two-dimensions (2D)
[26,53–55]; this paper is an extension to 1D. Note that the
purpose of this paper is not the alloy itself. The alloy is only
used to define the energetic model. Moreover, both the SMA
and the analytical model derived from it cannot include the
contributions from configurational effects of partial order on
the electronic structure [56]. This energetic model is simple
but raises important questions that are not often stated and
helps to capture general trends.

These energies can be written in a simplified way as

E p
A (c) = −3.24 − 0.74 c + 0.8 c2

+ 1
2 (0.8 + 0.4 c − 0.87 c2) p

+ (−0.07 − 0.04 c2) (2 − p) p,

E p
B (c) = −3.67 + 1

2 (0.26) p. (1)

The dependence on concentration of site energies is illus-
trated in Fig. 1 for (a) A atoms and (b) B atoms and for p = 0,
1, or 2. Here, E p

A is a second-order function in c, while E p
B is

concentration independent.
These site energies are expressed as the sum of a main

linear term in p and a complementary quadratic term in

E p
I (c) = E0

I (c) + p

Z

[
EZ

I (c) − E0
I (c)

] + κI (c) p (Z − p),

(2)

with Z the coordination number (Z = 2 at 1D) and κ1(c) the
curvatures with I = A or B. In the present case, κB(c) = 0∀c.
The curvature is nonzero for A. At 1D, the curvature occurs
only for p = 1.

The matching between the site energies and a generalized
Ising model allows one to relate the linear term to pair inter-
actions. The complementary quadratic term, which represents
the excess energy as compared with pair interactions, cor-
responds to the contribution of triplets [47]. Contrary to a
generalized Ising model, pair and triplet interactions depend
on the nominal concentration c.

This model clearly separates the dependence with the local
chemical composition p and the nominal composition c. This
allows us to easily separate the elastic effects (related to a
variation of site energies with concentration at a given local
composition) from the chemical effects (related to a variation
of site energies with local composition at a given nominal
concentration). This point is detailed in Appendix A.
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FIG. 1. Site energy of an atom (a) A and (b) B as a function of the nominal concentration c in AcB1−c alloy for a number p of A neighbors
equals to 0 (black), 1 (red), and 2 (blue) with A = Co and B = Pt.

B. CE method

1. Formalism

CE is based on the calculation of the energy of many
ordered phases at different concentrations to find the best
ECI values to describe the energies accurately. The energy
dataset is most often obtained by ab initio calculations, but
we can also get it by using interatomic potentials adjusted
from experimental data or from ab initio calculations. In this
paper, instead of ab initio calculations, we use the energetic
model defined by Eq. (1) to calculate the energy of a given
configuration.

In a rigid-lattice approximation, the total energy of a linear
chain with periodic boundary conditions for an AcB1−c alloy
is then given by

E =
N∑

j=1

qI
j E

qA
j−1+qA

j+1

I (c), (3)

where qI
j is the occupation number which equals 1 if the

site j is occupied by an atom I , and 0 otherwise. The local
composition p depends on the occupation number of the two
adjacent sites (p = qA

j−1 + qA
j+1). Here, N is the total number

of sites.
By setting q j = qA

j , Eq. (3) becomes

E =
N∑

j=1

[
q j E

qj−1+q j+1

A (c) + (1 − q j ) E
qj−1+q j+1

B (c)
]
. (4)

Equation (4) gives the energy of a configuration that we
subsequently use as the basis for ECI calculations.

The energy of a configuration can also be described using
a Hamiltonian written as a linear combination of n-tuple in-
teractions:

H = 1

2!

∑
IJ

∑
l,m �=l

qI
l q

J
mV IJ

lm + 1

3!

∑
IJK

∑
l,mnm

qI
l q

J
mqK

n V IJK
lmn + . . . ,

(5)

where the expansion coefficients V IJ
lm , V IJK

lmn , . . . are the ECIs
of pairs, triplets, … to be identified. At 1D, an n-tuple is a
chain of n successive atoms; it has a unique form and depends
on its length and on the type of atoms.

In practice, the Hamiltonian is truncated because it is not
possible to consider all the clusters, but it must remain pre-
dictive. The main task of the CE method is to determine the

preponderant ECIs by least square fitting of the total energy
of a set of structures (called the training set). A truncation of
the summation of the Hamiltonian to pair interactions yields
the Ising model. The short-range interactions as pairs, triplets,
and quadruplets are generally preponderant ECIs. To measure
the accuracy of the fit, we calculate the root mean square
error (RMSE) of the predictions for all configurations. The
ability to reproduce the system is then tested on new structures
(named the test set).

As stated previously in the introduction, in most of this
literature, ECIs are calculated in the grand-canonical ensem-
ble and so are independent of nominal concentration, while
the composition of the structures varies. Asta et al. [36] and
Wolverton et al. [37] have shown that CE is more accurate in
the canonical ensemble with concentration-dependent ECIs.
The two cases are presented below.

2. Results

We consider 33 concentration values between 0 and 1. In
total, the set of structures is composed of 355 chains of 120
sites with periodic boundary conditions. For each concentra-
tion, 10 configurations are randomly generated. We add the 25
possible ordered configurations for this chain length.

First, we determine concentration-independent ECIs.
The Hamiltonian summation is successively restricted to
pairs, triplets, … until the sextuples. The mixing enthalpy
�Hmix(c) = H (c) − [cEZ

A (c = 1) + (1−c)E0
B (c = 0)], cal-

culated from Eq. (5) with ECIs issued from the CE, is
compared with the direct mixing enthalpy given by Eq. (4).
Figure 2(a) shows a weak agreement between the two
quantities. The fitting error, quantified by the RMSE,
decreases slowly as the length of the n-tuple increases
[Fig. 2(b)]. This result confirms that, when the energy of
formation of random alloy depends quadratically on the
concentration, the decay of the root mean square is slow
[45,57].

We then investigated concentration-dependent ECIs from
the same set of training configurations. To capture the concen-
tration dependence without searching for long-range tuples, it
is necessary to implement concentration-based CE to obtain
ECIs for each nominal concentration. Then the agreement
is excellent with only pairs and triplets (Fig. 3). CE really
converges faster with concentration-dependent ECIs than with
concentration-independent ECIs, and the fitting error is much
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FIG. 2. (a) Evolution as a function of the concentration c of �Hmix calculated from the energetic model (random solid configurations: red
points, ordered configurations: green squares) and with concentration-independent effective cluster interactions (ECIs) until sextuples issued
from the cluster expansion (CE; blue diamonds). (b) Evolution of the root-mean-square error as a function of the length of n-tuples.

smaller ∼10−13 (see Table I). This result confirms those of the
literature [25,39,44,45,57].

As can be seen in Fig. 4, the ECIs depend strongly on the
concentration. The heteroatomic pairs [in Fig. 4(a)] are equal
(VAB = VBA) on the whole range of concentration. Symmet-
rical relationships are also observed [Fig. 4(d)] for triplets
(VABB = VBBA, VAAB = VBAA).

This raises the question of whether these ECIs can re-
produce the original energetic model. We therefore calculate
the energies of each site for each structure from the ECIs
and deduce the average site energies as a function of the
concentration and of the first-neighboring local environment.
We also calculate the site energies without using the struc-
tures, but by considering the value of p which characterizes
the local chemical composition of the two nearest neighbors.
For example, the site energy of an atom A surrounded by
two atoms A (see Fig. 5) E2

A is easily written according
to the pair interactions E2

A = 1
2 (2 VAA). With triplet interac-

tions, it is less obvious since the central atom A belongs
to three triplets, and atoms of the second-neighboring shell
are involved for two of them. The chemical nature of these
atoms is unknown since the site energies are limited to the

FIG. 3. Evolution as a function of the concentration c of �Hmix

calculated from the energetic model (random solid configura-
tions: red points, ordered configurations: green squares) and with
concentration-dependent effective cluster interactions (ECIs) until
triplets issued from the cluster expansion (CE; blue diamonds).

first neighbors. The site energy is thus 1
3 (VIAA + VAAA + VAAJ )

with I, J = A or B, and four values are possible. The two
methods give consistent results but are far from the energetic
model (Fig. 6).

Thus, although CE leads to a very good fit of the total
energies, the ECIs do not reproduce the site energies that
are contained in the total energies. This result shows that
two different energetic models can lead to identical structure
energies.

III. DETERMINATION OF ECIs FROM SITE ENERGIES

A. Formalism

Instead of fitting as best as possible the ECIs from the
total energy of several structures, we propose to determine
them from the site energies. If ECIs reproduce the site en-
ergies, then they should also reproduce the energies of the
structures. We therefore first optimize the ECIs starting from
the site energy functions and then crosscheck these fittings on
the configurations. While the number of structures needed to
accurately determine ECIs from the total energy is unknown,
the number of site energies to be fitted is well known. Thus,
for a 1D system with Z = 2, the ECIs are identified through
six relations [E p

I (c) with I = A or B and p = 0, 1, or 2].
This approach allows one to control the conditions necessary
for a CE.

Another great advantage of this approach is to highlight
the problem of inconsistency between the length of the n-
tuples and the range of the energetic model. When the size
of the n-tuples is greater than the range of the site energies,

TABLE I. Comparison of root mean square for the different
approximations of CE as a function of the tuple length for the 355
structures in the training set. CE of structures (a) and (b) and of site
energies (c) and (d) with concentration-independent ECIs (a) and (c)
and concentration dependent ECIs (b) and (d).

Method n = 2 n = 3 n = 4 n = 5 n = 6

(a) 8.8 10−3 7.4 10−3 5.5 10−3 4.3 10−3 3.5 10−3

(b) 2.2 10−3 8.4 10−14

(c) 7.0 10−2 2.0 10−2 1.7 10−2 1.1 10−3 1.4 10−5

(d) 1.6 10−2 9.4 10−11
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FIG. 4. Evolution as a function of the concentration c of concentration-dependent effective cluster interactions (ECIs) issued from the
cluster expansion (CE): (a) pairs, (b) effective alloy pair interaction V = (VAA + VBB − VAB − VBA)/2, (c) and (d) triplets. (a) Green squares:
VAA, blue rectangles: VBB, red points: VAB, black circles: VBA. (c) Green squares: VAAA, blue rectangles: VBBB. (d) Red squares: VAAB, black empty
squares: VBAA, cyan points: VBBA, blue circles: VABB, magenta rectangles: VABA, green diamonds: VBAB.

some phantom interactions are introduced, i.e., interactions
that are not in the model itself. The site energies depend on
the concentration and on the first-neighboring atoms, while
the n-tuple interactions do not depend on the concentration
(for the concentration-independent CE case) and depend on
the environment up to the nth neighboring shell. Compared
with a standard fit where the range of ECIs is not related to
an underlying Hamiltonian [58], fitting ECIs to site energies
imposes a special treatment of excess variables to limit the
range of ECIs to the range of the energetic model. Thus, we
introduce into the tuple interactions the concentration depen-
dency to reconstruct the site energies. If we take again the
example of an atom A surrounded on both sides by an atom
A, two triplets involve second-neighboring atoms (see Fig. 5).
These two triplets provide information that is not included
in the initial energetic model. Interactions involving sites
other than the nearest neighbors (the only sites considered in
the site energies) are replaced by a mean-field development:
VIAA = c VAAA + (1−c)VBAA and VAAJ = c VAAA + (1−c)VAAB.
This development can be extended to the other triplets and to
n-tuples.

The site energies can be written as a sum over the n-tuple
site energies:

E p
I (n) =

∑
j=2,...,n

EV p
I ( j), (6)

with the n-tuple site energies in the form of

EV p
I (n) = 1

n

∑
k=1,...,n

V k
n (Ik−1, Ik, Ik+1). (7)

Here, V k
n (Ik−1, Ik, Ik+1) represents the n-tuple with the central

atom Ik located at the kth site of the n-chain. The chemical
nature of the first-neighboring atoms of the atom Ik , Ik−1, and
Ik+1 is given by the value of p: Ik−1 and Ik+1 are two atoms
B (respectively A) for p = 0 (respectively p = 2), one atom
A and one atom B for p = 1. The set of all possible n-tuples
is defined by the value of k which varies from 1, when the
atom I is located at the left end of the chain, to n, when it
is at the right end. Each excess variable, i.e., each interaction
involving sites beyond the first neighbors of I , is weighted by
the probability to be occupied by an atom A or B:

V k
n (Ik−1, Ik, Ik+1) =

mk∑
j=0

c j (1 − c)mk− j

[∑
σ

Ṽ k, j
n (Ik−1, Ik, Ik+1)

]
with mk = max(n − k − 1, k − 2), (8)

with σ the set of all possible n-tuples Ṽ k, j
n (Ik−1, Ik, Ik+1), with

Ik on the kth site, j atoms A, and (mk − j) atoms B on the

excess sites. For a better understanding, the cases of pairs and
triplets are detailed in Appendix B.
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FIG. 5. Schematic representation of triplets involved for a central
atom A (arrow up) surrounded by two atoms A (arrows down). Atoms
I and J (blue) are unknown.

Here, n-tuple site energies EV p
I (n) are thus polynomial in

c of order (n−2).
Recall now that the Hamiltonian of a RSS binary alloy can

be written in the following form:

H (c) = Nat

Z∑
p=0

Cp
Z cp(1 − c)Z−p

[
cE p

A (c) + (1 − c)E p
B (c)

]
.

(9)
Here, Cp

Z is the number of ways that p A neighbors can
be chosen among Z neighbors independently of their order.

Equation (9) enables us to predict the order of H (c) from
the order of site energies. Table II presents examples of the
relationship between the highest terms of H (c) as a function
of the highest term of site energy.

For site energies that do not depend on p and that are
described by a polynomial of order X in c, H (c) is of order
X + 1. For site energies that are univariate polynomials in p,
of order Y , H (c) is also a univariate polynomial but in c and of
order Y + 1. In other words, the dependency of site energies
on local concentration (in p) is transformed into a dependency
in c of order Y + 1. This general rule has some exceptions due
to accidental cancellation of the highest term as a function of
Z , as Table II shows, for Y = 3, the order of H (c) is 3 (and
not 4) for Z = 2. In general, when the highest term of the site
energies is cX pY , the Hamiltonian order in c is X + Y + 1.

On the other hand, since the n-tuples of site energies with
constant ECIs are c polynomials of order (n−2), EQS. (6)–(9)
yield a Hamiltonian of order (n−1), and thus, n = X + Y + 2.
For concentration-dependent ECIs, the mean-field approxi-
mation of a disordered solid solution (see Appendix C of
Ref. [47]) gives the length of n-tuples: n = Y + 1.

FIG. 6. Evolution as a function of the concentration c of effective site energies (ESEs) (a)–(f) issued from the energetic model (continuous
lines) and calculated with concentration-dependent effective cluster interactions (ECIs) issued from the cluster expansion (CE) from the average
of all configurations (dashed lines) and with unknown sites occupied by A or B (symbols).
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TABLE II. Highest term of H (c) [Eq. (9)] as a function of the highest term of the site energy E p
I (c) (I = A or B).

E p
I (c) cte c c2 p p2 p3

H (c) c c2 c3 Zc2 Z (Z−1)c3 Z (Z2 − 3Z + 2)c4 + 3Z (Z−1)c3

E p
I (c) p c p2c p2c2 p2c3

H (c) Zc3 Z (Z−1)c4 Z (Z−1)c5 Z (Z2 − 3Z + 2)c5 + 3Z (Z−1)c4

To summarize, when the highest term of the site energies is
cX pY , the Hamiltonian order is X + Y + 1, and the length of
n-tuples independent of concentration is n = X + Y + 2, and
n = Y + 1 for concentration-dependent n-tuples.

For the chosen energetic model [Eq. (1)], X = 2 and
Y = 2, we therefore expect to reproduce site energies
with concentration-independent ECIs extending up to sex-
tuples (X + Y + 2), and triplets (Y + 1) for concentration-
dependent interactions.

B. ECIs fitting from site energies

1. Concentration-independent ECIs

Pair, triplet, quadruplet, etc. interactions were determined
by a least square fit from the site energies given by Eq. (1) for
values of c between 0 and 1 with a step of 0.02. The range of
n-tuples is gradually enlarged until a satisfactory agreement
is reached. Figure 7 shows the resulting site energies by con-
sidering all n-tuples up to 6-tuples as expected. Note that the
order of the 6-tuple interactions V k

6 (I−1, I, I1) in c being 4, and
those of site energies being 2, the highest coefficients must be
nil to have agreement. Numerically, these terms are very small
∼10−12.

The RMSE decreases with the n-tuple increase (Fig. 8,
Table I). We now use these interactions to predict the total
energy of structures. The number of structures being larger
than the number of site energy values used for fitting the ECIs,
the RMSE is lower than for the site energies (Fig. 8, Table I).
We thus show that sextuple interactions enable us to fit both
the site energies and the total energy of configurations.

2. Concentration-dependent ECIs

We determine then the weighted concentration-dependent
ECIs from values of the site energies. As predicted by the
Hamiltonian order analysis, pairs and triplets are sufficient

to reproduce the site energies in the whole range of concen-
tration. The interactions provide a perfect estimation of the
total energy of the different configurations for both random
and ordered configurations (see Table I). Remember that the
definition of site energies [Eq. (2)] assumes that the quadratic
term is an additional energy to the linear term. The linear term
corresponds to the pair interactions, and the quadratic terms
can be considered as the contribution of triplets. To be consis-
tent with this definition, it is necessary to adjust first the pairs
and then the triplets. Hence, the site energies are well fitted
with the pairs for p = 0 and Z . For the other values of p (only
p = 1 for the 1D case), triplets are necessary to reproduce the
curvature of the site energies. In this way, triplets reflect an ex-
cess energy as compared with the pair interactions. Of course,
a simultaneous adjustment would have given other ECIs, we
know that the adjustment procedure has a definite effect on
CE [41]. Let us emphasize that, for any given concentration,
the four unknown pair interactions are determined from four
site energies (E p

I with p = 0 and Z), so the pair interactions
have only one solution. The number of triplets to be estimated
is 8. The six equations (see Appendix B) show that VAAA, VBBB,
VABA, and VBAB can be determined without ambiguity. The
sums (VAAB + VBAA) and (VABB + VBBA) can also be identified,
but not the triplets individually. Therefore, the triplets are only
locally identifiable from the site energies whatever the value
of concentration considered [59–61].

The evolution of pair and triplet interactions with con-
centration (Fig. 9) is very different from that obtained with
concentration-dependent ECIs from the structures (Fig. 4).
This result is not surprising because the ECIs are determined
from site energies rather than configuration energies, and
all excess variables are weighted by the mean-field approx-
imation. The mixed pair interactions are not symmetrical
[Fig. 9(a)], in accordance with the definition of site energies.
The pair interactions being adjusted to the extreme values of

FIG. 7. Evolution of the effective site energies (ESEs) of an atom (a) A and (b) B as a function of c. Comparison between the fit by
concentration-independent effective cluster interactions (ECIs) until sextuples (points) and the energetic model (continuous lines). The number
p of A neighbors is equal to 0 (black), 1 (red), and 2 (blue).
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FIG. 8. Evolution of the root-mean-square error of the site en-
ergies (red squares) and of the energy of structures (blue points) as
a function of the length of n-tuples. The concentration-independent
n-tuples are fitted from the site energies.

the site energies (i.e., for p = 0 and Z) and the slopes for A and
B corresponding, respectively, to VAA − VAB and VBA − VBB,
there is no reason for VAB to be equal to VBA. Two symmetrical
relationships VABB = VBBA and VAAB = VBAA are observed for
the triplets [Fig. 9(c)], but other sets of values could have
been obtained leading to the same sums (VAAB + VBAA) and
(VABB + VBBA).

Figure 10(a) shows that the alloy pair interaction
Vp(c) = {VAA(c) + VBB(c) − [VAB(c) + VBA(c)]}/2 is in per-
fect agreement with that given by the site energy model
[(EZ

A −E0
A ) − (EZ

B −E0
B )]/2. Here, Vp is positive throughout the

concentration range. That means that the pair interactions
tend to form heteroatomic bonds. The curvatures of the site

energies of A and B atoms are also well reproduced by the
triplet site energy EV 1

A (n = 3) [Fig. 10(b)] and EV 1
B (n = 3)

[Fig. 10(c)].
The successive optimization of n-tuple interactions from

site energies allows one to take advantage of the formalism
developed to express the thermodynamic driving forces of the
1D alloy via ECIs.

3. Discussion

The adjustment of the n-tuple interactions on the local
energies shows the presence of additional variables that are
not included in the initial energetic model. This raises the
question of the physical meaning of the parameters obtained
in the CE on the structure energies. Different sets of interac-
tions, with different ranges, may be obtained in classic CE
[58]. It is therefore not possible that all sets are compati-
ble with the range of the original model (which is usually
unknown). CE with concentration-independent ECIs leads to
n-tuples that are considerably more extended than the orig-
inal energetic model since site energies are restricted to the
nearest neighbors. It means that CE adds artificial depen-
dencies that do not exist. These ECIs are coefficients useful
to describe the system but which do not have the physical
meaning of interactions. This formal study, which is based on
a well-defined model, shows that CE can lead to misleading
meanings. We believe this is a recurring problem because
there is always the risk of introducing excess variables into
the n-tuples that are not in the original energetic model. In the
case of concentration-dependent ECIs, the dataset of energies
is perfectly reproduced with pairs and triplets. Some triplets
involve second neighbors that are not in the initial model.

FIG. 9. Evolution as a function of the concentration c of concentration-dependent effective cluster interactions (ECIs) issued from the site
energies: (a) pairs, (b) and (c) triplets. (a) Green squares: VAA, blue rectangles: VBB, red points: VAB, black circles: VBA. (b) Green squares: VAAA,
blue rectangles: VBBB. (c) Red squares: VAAB, black empty squares: VBAA, cyan points: VBBA, blue circles: VABB, magenta rectangles: VABA, green
diamonds: VBAB.
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FIG. 10. (a) Effective alloy pair interaction V = (VAA + VBB − VAB − VBA)/2 and (b) curvatures of A and (c) B site energies calculated from
concentration-dependent effective cluster interactions (ECIs) issued from the site energies (points) and the energetic model (continuous lines).
(b) and (c) The number p of A neighbors is equal to 0 (black), 1 (red), and 2 (blue).

The fact that CE does not reproduce local energies while it
reproduces global energies very well may be problematic for
the study of point defects. Fitting tuple interactions to local
energies should instead make sense.

IV. THERMODYNAMIC DRIVING FORCES OF ALLOYS

The ESEs allow one to decompose the mixing enthalpy and
permutation enthalpy into chemical and elastic contributions.
This analysis provides insight into the interplay between com-
peting SRO and long-range order interactions, which give rise
to complex phase diagrams. In this section, we express this
decomposition in terms of pair and triplet interactions that
have been optimized to reproduce site energies.

The Hamiltonian contains pair and triplet contributions:

H (c) = Hpairs(c) + Htriplets(c), (10)

with

Hpairs(c)/Nat = Z

2
VBB(c) + Z

2
[VAA(c) − VBB(c)]c

− Z c(1 − c) Vp(c), (11)

and

Htriplets(c)/Nat = Z (Z − 1)c(1 − c)
[
c EV 1

A (n = 3)

+ (1 − c) EV 1
B (n = 3)

]
. (12)

Triplet site energies EV 1
A (n = 3) and EV 1

B (n = 3) are detailed
in Appendix B.

The mixing enthalpy corresponds to the formation energy
of a RSS:

�Hmix
RSS(c) = H (c)/Nat − [

c EA
Coh + (1 − c) EB

Coh

]
(13)

with EA
Coh = EZ

A (c = 1) = Z
2 VAA(c = 1) and EB

Coh =
E0

B (c = 0) = Z
2 VBB(c = 0), which is then written as the sum

of the chemical �Hmix
Chem(c) and elastic or size contributions

�Hmix
Size(c):

�Hmix
RSS(c) = �Hmix

Chem(c) + �Hmix
Size(c), (14)

where the chemical contribution depends on the pair and the
triplet contributions

�Hmix
Chem(c) = �Hmix

pairs(c) + �Hmix
triplets(c). (15)

The different terms have the following expressions:

�Hmix
pairs(c) = −Z c(1 − c) Vp(c), (16a)

�Hmix
triplets(c) = Z (Z − 1)c(1 − c)

[
c EV 1

A (n = 3)

+ (1 − c) EV 1
B (n = 3)

]
, (16b)

�Hmix
Size(c) = Z

2
{c [VAA(c) − VAA(1)]

+ (1 − c)[VBB(c) − VBB(0)]}. (16c)

In the size contribution, VAA(c) − VAA(c = 1) and VBB(c) −
VBB(c = 0) correspond to the variation of AA and BB in-
teractions with the concentration relative to respective pure
constituent. This dependence on concentration comes essen-
tially from elastic effect.

The mixing enthalpy and its contributions can be seen in
Fig. 11(a). The mixing enthalpies directly calculated for each
configuration are dispersed around the mean field mixing en-
thalpy values [Eqs. (14)–(16)]. Here, �Hmix

RSS(c) is negative for
c � 0.8 and slightly positive for c � 0.8. Elastic and chemical
effects are in competition. The chemical contribution tends to
form heteroatomic bonds since the chemical contribution is
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FIG. 11. (a) �Hmix and (b) �H perm and evolution as a function of the concentration c (in black) and decomposition of the different
contributions: �Hperm

Coh (in blue), �Hperm/mix
Size (in red), �Hperm/mix

Chem (in green), �Hperm/mix
Pairs (dashed green), �Hperm/mix

Triplets (dotted green) with

�H perm/mix
Chem = �H perm/mix

Pairs + �H perm/mix
Triplets . Blue points are the results of direct calculations for all configurations with the concentration-

dependent pairs and triplets issued from the fit of the site energies.

negative. Let us detail the chemistry effect. The contribution
of the triplets is slightly negative, almost nil, whatever the
concentration. That of pairs is much more important. The
SRO parameter is therefore mainly driven by the pairs. On the
contrary, the size contribution is positive over the whole range
of concentration. That means that the size effect favors the
demixtion. While at low concentration the main contribution
is chemistry, the size effect becomes predominant for c � 0.8.
At the highest concentrations, the size contribution leads to a
long-range order to phase separation.

The ESE model also provides the analysis of the permu-
tation enthalpy �Hperm

RSS (the enthalpy change when turning
an atom B to A), which is the key quantity that controls the
composition of equilibrium configurations. The enthalpy of
permutation is derived from either the Hamiltonian or the
mixing enthalpy. It can be expressed as a function of the
ECIs as well as the contributions according to the three effects
rule in cohesive �Hperm

Coh , chemical �Hperm
Chem, and size �Hperm

Size
effects:

�Hperm
RSS (c) = �Hperm

Coh (c) + �Hperm
Chem(c) + �Hperm

Size (c). (17)

For the sake of brevity, all details are given in Appendix C.
The mixing enthalpy and the permutation enthalpy pro-

vide the same information but in different ways. Whereas
the sign of the mixing enthalpy indicates that the alloy tends
to phase separation (�Hmix

RSS > 0) or to form ordered struc-
tures (�Hmix

RSS < 0), the sign of the slope of the permutation
enthalpy gives the tendency of the alloys since the permu-
tation enthalpy is the derivative of the mixing enthalpy [see
Eq. (B1)]. A positive (respectively negative) slope character-
izes a tendency to form ordered structures (respectively to
phase separation).

The enthalpy of permutation and the cohesive, chemical,
and elastic contributions are shown in Fig. 11(b). The permu-
tation enthalpy is also determined for each configuration. It
corresponds to the change in energy when a random B atom
of a given configuration is replaced by an A atom. The di-
rect values are consistent with �Hperm

RSS (c) but quite scattered.
Here, �Hperm

RSS (c) has a nonmonotonic behavior. For c < 0.8,
when �Hmix

RSS is negative, the slope of �Hperm
RSS (c) is positive;

it becomes negative for c > 0.8, when �Hmix
RSS is positive. The

slope of the triplet contribution is close to 0; the slope of the
chemical contribution is thus given by the slope of the pairs,
and it is positive. Conversely, the slope of �Hperm

Size is negative.

At high concentration, the variation of �Hperm
Size with c is the

leading contribution.
The same decomposition is obtained from CE on structure

energies with concentration-dependent ECIs. The formulas
are given in Appendix D. CE that depends on c gives access
to the decomposition.

Determining the ECIs from site energies thus provides
a clear distinction between the chemical and elastic driving
forces that control the phase diagrams. This is a great advan-
tage compared with Calphad, which consists of writing the
mixing enthalpy as a polynomial function and determining the
coefficients from thermodynamic, experimental, or ab initio
data [49,50].

V. DISCUSSION

One may wonder if the method developed here for a sim-
plified case can be extended to more complex systems such as
2D or three-dimensional (3D) systems, semi-infinite systems,
defects, multicomponent alloys, or others.

The main difference between 2D and 3D systems and the
1D system is related to the choice of the clusters in CE to
get an optimal truncation. Rules have been established to
unambiguously define a set of clusters [41]. Thus, when a
certain cluster is included in CE, then all subclusters (in range
and numbers of atoms) must be included. The formalism is
successfully applied to 2D systems for square (Z = 4) and
hexagonal (Z = 6) structures. We believe that the formalism
can therefore be developed for 3D systems.

The extension of this approach to inhomogeneous systems,
such as surfaces or defects, is more delicate. The reference
state chosen for a homogeneous system is the RSS. For in-
homogeneous systems, the reference state must be chosen
carefully. For example, for the study of a surface alloy on a
pure B substrate, a completely random reference state is too
far from the equilibrium state. In this example, it is necessary
to consider a RSS in the surface plane on a pure substrate
in B and to determine the site energies of the atoms A and
B of the surface plane as a function of the local composition
and the global composition (in the surface plane), as well as
the site energies of the B atoms of the subsurface plane first
neighbors of the surface plane. The formalism, extended to the
surface plane and to the B-plane first neighbors of the surface
plane, allows us to correctly describe the thermodynamics.
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More generally, the extension to inhomogeneous systems is
possible, provided that a reference state close to the equilib-
rium state is chosen, but not to the high energy states as well
as CE [41].

This formalism can also be generalized to the case of pseu-
dobinaries such as mixed oxides AxB1−xO2. In this case, the
reference state is a RSS on the cationic lattice, and the energies
of atoms A, B, and O are functions of local (the local com-
position in atoms A) and global (the nominal composition)
variables. Study of SnxTi1−xO2 is currently under progress.

VI. CONCLUSIONS

To summarize, we have successively implemented CE
based on the total energy of configurations and on the site
energies of RSSs. We used an energetic model limited to the
first neighbors, and we considered a 1D system to restrict the
discussion to the range of ECIs without considering the shape
of the clusters.

First, we show that configurational CE, with fairly long-
range ECIs (up to sextuples), gives a poor prediction of the
mixing enthalpy of ordered and RSSs configurations. The
convergence of CE is significantly improved by consider-
ing the dependence of ECIs on concentration. These results
are consistent with the literature. The mixing enthalpy is
very well predicted with concentration-dependent pairs and
triplets. Moreover, we show that concentration-dependent CE
gives us access to the decomposition of driving forces.

Concentration-dependent ECIs fit the energies of the con-
figurations but do not reproduce the initial energetic model.
By testing the prediction of site energies, we show that CE

leads to a larger range of n-tuples than the range of the ini-
tial energetic model; it therefore describes variables that are
not considered. By using an analytical model, we highlight
a problem that we believe to be quite frequent. One may
think that the range of the n-tuples is often greater than the
real interactions. In this case, we can no longer really talk
about ECIs because the coefficients determined do not really
have a physical meaning; they simply fit the energies of the
structures.

By developing CE from site energies, the ECIs allow one
to reproduce the energetic model and the energies of ordered
and random structures. The site energy formalism provides
simple and strict control of the terms necessary for the con-
vergence of CE. It also gives the dependence in concentration
of all the n-tuples. This leads to an unambiguous distinction
between the chemical or elastic origin of the thermodynamic
forces involved in the phase diagrams. This represents a triple
advantage compared with CE, at least if the energies per site
can be obtained. This point remains an open question for ab
initio calculations. Even if it is not the case, the formalism
of site energies proves to be very promising for a systematic
analysis of the thermodynamics of bimetallic alloys and their
defects (dislocations, surface, grain boundaries).
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APPENDIX A: DRIVING FORCES FROM SITE ENERGIES

We recall in this Appendix how the dependence of the site energies on local and global variables (i.e., the local composition
p and on the nominal concentration c) allows us to extract elastic and chemical effects. We first explain the calculation of the
permutation enthalpy from the Hamiltonian of site energies [Eq. (9)].

The introduction of the site energies [Eq. (2)] in Eq. (9) leads to the following expression of the Hamiltonian:

〈H〉
N

= E0
B (c) + [

EZ
A (c) − E0

B (c)
]
c − c(1 − c)

{[
EZ

A (c) − E0
A (c)

] − [
EZ

B (c) − E0
B (c)

]}
+ Z (Z − 1)c(1 − c)[cκA(c) + (1 − c)κB(c)]. (A1)

The dependence of the site energies on the local composition p is transformed in the Hamiltonian into a dependence on c. The
dependence on the local composition is then less explicit. However, writing the enthalpy of permutation allows us to separate
two components. To do this, we first introduce the cohesive contribution {�Hperm

Coh = (EA
Coh−EB

Coh) = [EZ
A (1) − E0

B (0)]}:

�Hperm = �Hperm
Coh + 1

N

∂〈H〉
∂c

− [
EZ

A (1) − E0
B (0)

]
. (A2)

To transform the third term of the right-hand side, we add and subtract [EZ
A (c) − E0

B (c)]:

�Hperm = �Hperm
Coh − [

EZ
A (c) − E0

B (c)
] + 1

N

∂〈H〉
∂c

+ {[
EZ

A (c) − EZ
A (1)

] − [
E0

B (c) − E0
B (0)

]}
. (A3)

Then we decompose ∂〈H〉
∂c into two derivatives ∂〈H〉

∂c = ∂〈H〉
∂c |a + ∂〈H〉

∂c |b, where ∂〈H〉
∂c |a denotes that only the combinatorial sums

of the site energies are differentiated (the site energies being fixed at a given value of c), whereas for ∂〈H〉
∂c |b, only the site energies

are differentiated. Let us recall that the variation of the site energies with concentration is related to the elastic effect. Thus, the
last term of the right-hand side, which is the difference in c slope �c(EZ

A ) − �c(E0
B ) at a given p value (Z for A and 0 for B), is

also an elastic term.
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This decomposition allows us to define the chemical and elastic contributions:

�Hperm
Chem = −[

EZ
A (c) − E0

B (c)
] + 1

N

∂〈H〉
∂c

∣∣∣∣
a

, (A4)

and

�Hperm
Size = {[

EZ
A (c) − EZ

A (1)
] − [

E0
B (c) − E0

B (0)
]} + 1

N

∂〈H〉
∂c

∣∣∣∣
b

, (A5)

which leads to

�Hperm
Chem = −(1 − 2c)

{[
EZ

A (c) − E0
A (c)

] − [
EZ

B (c) − E0
B (c)

]} + Z (Z − 1)(1 − 2c)[cκA(c) + (1 − c)κB(c)]

+ Z (Z − 1)c(1 − c)[κA(c) − κB(c)]. (A6)

We can see that �Hperm
Chem depends on the difference in p− slope �p(E p

A ) − �p(E p
B ), with �p(E p

I ) = EZ
I −E0

I at a given c value.
We have previously shown that terms which depend on the curvatures are due to the change for neighbors when a B atom is
turned into an A atom [46].

The size contribution is written as

�Hperm
Size = {[

EZ
A (c) − EZ

A (1)
] − [

E0
B (c) − E0

B (0)
]} + Ė0

B (c) + [
ĖZ

A (c) − Ė0
B (c)

]
c

− c(1 − c)
{[

ĖZ
A (c) − Ė0

A (c)
] − [

ĖZ
B (c) − Ė0

B (c)
]}

+ Z (Z − 1)c(1 − c)[cκ̇A(c) + (1 − c)κ̇B(c)], (A7)

with Ė p
I (c) = ∂E p

I (c)/∂c.
The mixing enthalpy is then deduced via the following equation:

�Hmix =
∫ c

0
�Hperm(u)du − c

∫ 1

0
�Hperm(u)du, (A8)

or more easily from its definition �Hmix = 〈H〉/N−[c EA
Coh + (1−)EB

Coh]:

�Hmix = −c(1 − c)
{[

EZ
A (c) − E0

A (c)
] − [

EZ
B (c) − E0

B (c)
]} + Z (Z − 1)c(1 − c)[cκA(c) + (1 − c)κB(c)]

+ {
c
[
EZ

A (c) − EZ
A (1)

] + (1 − c)
[
E0

B (c) − E0
B (0)

]}
. (A9)

We recognize in the first term of the right-hand side the difference in p− slope �p(E p
A ) − �p(E p

B ) and, in the second term,
the curvatures at a given c value. These two terms are related to the local composition:

�Hperm
Chem = −c(1 − c)

{[
EZ

A (c) − E0
A (c)

] − [
EZ

B (c) − E0
B (c)

]} + (Z − 1)c(1 − c)[cκA(c) + (1 − c)κB(c)]. (A10)

The third term of the right-hand side [Eq. (A9)] shows the variations of the site energies with the concentration at a fixed
value of p; it is thus an elastic term:

�Hperm
Size = c

[
EZ

A (c) − EZ
A (1)

] + (1 − c)
[
E0

B (c) − E0
B (0)

]
. (A11)

APPENDIX B: PAIR AND TRIPLET SITE ENERGIES

We note hereafter the site energies written according to the n-tuple interactions EV p
I (n) to distinguish them from the site

energies defined as the initial energetic model. The pair interactions induce straightforwardly an equivalent expression of site
energies:

EV 0
A (n = 2) = VAB, EV 1

A (n = 2) = 1
2 (VAA + VAB), EV 2

A (n = 2) = VAA; (B1a)

EV 0
B (n = 2) = VBB, EV 1

B (n = 2) = 1
2 (VBA + VBB), EV 2

B (n = 2) = VBA. (B1b)

Larger tuples involve neighboring shells beyond the range of the energetic model. These interactions are weighted by the
probability that unknown occupation numbers being 1 (i.e., occupied by an atom A) is c or being 0 (respectively B) is (1−c).
Thus, for triplets, we get the following expressions for an atom A:

EV 0
A (n = 3) = 1

3 {[c VABA + (1 − c) VABB] + VBAB + [c VABA + (1 − c) VBBA]},
EV 1

A (n = 3) = 1
3 {[c VABA + (1 − c) VABB] + VAAB + [c VAAA + (1 − c) VBAA]},

or

EV 1
A (n = 3) = 1

3 {[c VAAA + (1 − c) VAAB] + VBAA + [c VABA + (1 − c) VBBA]},
EV 2

A (n = 3) = 1
3 {[c VAAA + (1 − c) VAAB] + VAAA + [c VAAA + (1 − c) VBAA]}.
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For a B atom,

EV 0
B (n = 3) = 1

3 {[c VBBA + (1 − c) VBBB] + VBBB + [c VABB + (1 − c) VBBB]},
EV 1

B (n = 3) = 1
3 {[c VBAA + (1 − c) VBAB] + VBBA + [c VABB + (1 − c) VBBB]},

or

EV 0
B (n = 3) = 1

3 {[c VBBA + (1 − c) VBBB] + VABB + [c VAAB + (1 − c) VBAB]},
EV 2

B (n = 3) = 1
3 {[c VBAA + (1 − c) VBAB] + VABA + [c VAAB + (1 − c) VBAB]}.

For p = 0 or Z , the quadratic term is cancelled, and the site energies depend only on the linear term. Pair interactions therefore
allow one to perfectly reproduce these site energies E p

I = EV p
I (n = 2) and EV p

I (n = 3) = 0. Triplets are necessary to reproduce
the site energies when 0 < p < Z : E1

I = EV 1
I (n = 2) + EV 1

I (n = 3). Triplets correspond to the excess energy compared with
the pair interactions, so they fit the curvature term EV 1

I (n = 3) = κI .

APPENDIX C: ENTHALPY OF PERMUTATION

We detail in this Appendix the different contributions of the permutation enthalpy of a RSS written as a function of the
weighted ECIs determined by CE from the site energies by applying the approach detailed in Appendix A. The permutation
enthalpy is obtained by derivation of the enthalpy given by Eqs. (10)–(12):

�Hperm(c) = �Hperm
Coh (c) + 1

N

∂H (c)

∂c
− Z

2
[VAA(1) − VBB(0)], (C1)

where �Hperm
Coh (c) = Z

2 [VAA(1) − VBB(0)]. Then we add and subtract Z[VAA(c) − VBB(c)]/2, and we split the enthalpy of pertur-
bation into three contributions:

�Hperm(c) = �Hperm
Coh (c) + �Hperm

Chem(c) + �Hperm
Size (c), (C2)

with

�Hperm
Chem = −Z

2
[VAA(c) − VBB(c)] + 1

N

∂〈H〉
∂c

∣∣∣∣
a

, (C3)

and

�Hperm
Size = Z

2
{[VAA(c) − VAA(1)] − [VBB(c) − VBB(0)]} + 1

N

∂〈H〉
∂c

∣∣∣∣
b

. (C4)

The elastic term is expressed as

�Hperm
Size (c) = Z

2
{[VAA(c) − VAA(1)] − [VBB(c) − VBB(1)]} − Zc(1 − c)

∂V (c)

∂c

+ Z (Z − 1)c(1 − c)

[
c
∂EV 1

A (n = 3)

∂c
+ (1 − c)

∂EV 1
B (n = 3)

∂c

]
+ Z

2

[
c

∂VAA(c)

∂c
+ (1 − c)

∂VBB(c)

∂c

]
. (C5)

The chemical contribution is the sum of the pair and triplet contributions:

�Hperm
Chem(c) = �Hperm

pairs (c) + �Hperm
triplets(c), (C6)

which are written as

�Hperm
pairs (c) = −Z (1 − 2c) Vp(c), (C7a)

�Hperm
triplets(c) = Z (Z − 1)

[
c(2 − 3c)EV 1

A (n = 3) + (1 − c)(1 − 3c)EV 1
B (n = 3)

]
. (C7b)

APPENDIX D: DRIVING FORCES FROM CONCENTRATION-DEPENDENT ECIs

It is also possible to separate the chemical and elastic contributions when the ECIs are determined directly from the structures,
provided they are concentration dependent (with nonweighted ECIs).

In the mean-field approximation, the generalized Hamiltonian given by Eq. (5) is expressed as

〈H〉/N =
{

Z[τ (c) − Vp(c)] c + ZVp(c) c2 + ZVBB(c)

2

}
+ Z (Z − 1)

2
[R3(c) c3 + R2(c) c2 + R1(c) c + VBBB(c)], (D1)
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with

τ (c) = VAA(c) − VBB(c)

2
, Vp(c) = VAA(c) + VBB(c) − VAB(c) − VBA(c)

2
,

R3(c) = VAAA(c) − VBBB(c) + [VABB(c) + VBAB(c) + VBBA(c)] − [VAAB(c) + VABA(c) + VBAA(c)],

R2(c) = [VAAB(c) + VABA(c) + VBAA(c)] + 3VBBB(c) − 2[VABB(c) + VBAB(c) + VBBA(c)],

R1(c) = [VABB(c) + VBAB(c) + VBBA(c)] − 3VBBB(c). (D2)

The approach developed in Appendix A is applied to the generalized Hamiltonian [Eq. (D1)]. We first introduce the cohesive
contribution {�Hperm

Coh = (EA
Coh−EB

Coh) = Z[VAA(1) − VBB(0)]/2}:

�Hperm = �Hperm
Coh + 1

N

∂〈H〉
∂c

− Z

2
[VAA(1) − VBB(0)]. (D3)

Then we add and subtract [VAA(c) − VBB(c)]/2:

�Hperm = �Hperm
Coh − Z

2
[VAA(c) − VBB(c)] + 1

N

∂〈H〉
∂c

+ Z

2
{[VAA(c) − VAA(1)] − [VBB(c) − VBB(0)]}, (D4)

leading to

�Hperm
Chem = −Z

2
[VAA(c) − VBB(c)] + 1

N

∂〈H〉
∂c

∣∣∣∣
a

, (D5)

and

�Hperm
Size = Z

2
{[VAA(c) − VAA(1)] − [VBB(c) − VBB(0)]} + 1

N

∂〈H〉
∂c

∣∣∣∣
b

. (D6)

The final expressions are

�Hperm
Chem = −Z (1 − 2c)Vp(c) + Z (Z − 1)

2
[3R3(c) c2 + 2R2(c) c + R1(c)], (D7)

and

�Hperm
Size = Z

2
{[VAA(c) − VAA(1)] − [VBB(c) − VBB(0)]} +

{
Z[τ̇ (c) − V̇p (c)]c + ZV̇p (c)c2 + ZV̇BB(c)

2

}

+ Z (Z − 1)

2
[Ṙ3(c)c3 + Ṙ2(c)c2 + Ṙ1(c)c + V̇BBB(c)]. (D8)

Then we write the mixing enthalpy and its three components.
The size contribution is expressed as the weighted sum of the variations of homoatomic interactions with the global

concentration relative to the pure constituents:

�Hmix
Size(c) = Z

2
{c [VAA(c) − VAA(1)] + (1 − c)[VBB(c) − VBB(0)]}

+ Z (Z − 1)

2
{c [VAAA(c) − VAAA(1)] + (1 − c)[VBBB(c) − VBBB(0)]}. (D9)

Thus, the chemical contribution of the mixing enthalpy is given by

�Hmix
Chem(c) = −c(1 − c)ZVp(c) − Z

(Z − 1)

2
c(1 − c)[R2(c) + (1 + c)R3(c)]. (D10)

Note that �Hmix
Chem can also be written as

�Hmix
Chem(c) = −c(1 − c)ZV (c) − c(1 − c)Z

(Z − 1)

2
(1 − 2c)R3(c), (D11)

with Z V = ∑
n ZnVn, Zn, and Vn being, respectively, the coordination number and the effective pair interactions (EPIs) in the

nth neighboring shell. The EPIs Vn are obtained by considering the enthalpy difference �Hn of a RSS containing two isolated
solute atoms and two solvent atoms in nth-neighbor position (initial state) and two solute atoms in the nth-neighbor position and
two isolated solvent atoms (final state). Here, Vn is related to �Hn by �Hn = (1−2c)ZnVn. This leads to

V1(c) = Vp(c) + (Z − 1)

(
R2(c)

2
+ κB(c) + cR3(c)

)
, (D12)
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and

V2(c) = (Z − 1)

(
−κB(c) + c

R3(c)

2

)
, (D13)

with κB(c) = [VABB(c) + VBBA(c) − VBBB(c) − VABA(c)]/2; this term corresponds to the curvature of the site energies of
B atoms.

[1] J. M. Sanchez and D. de Fontaine, The fee Ising model in
the cluster variation approximation, Phys. Rev. B 17, 2926
(1978).

[2] J. M. Sanchez and D. de Fontaine, Ordering in fcc lattices with
first- and second-neighbor interactions, Phys. Rev. B 21, 216
(1980).

[3] J. M. Sanchez and D. de Fontaine, Ising model phase-diagram
calculations in the fcc lattice with first- and second-neighbor
interactions, Phys. Rev. B 25, 1759 (1982).

[4] R. Kikuchi, A theory of cooperative phenomena, Phys. Rev. 81,
988 (1951).

[5] G. Ceder, A derivation of the Ising model for the computation
of phase diagrams, Comput. Mater. Sci. 1, 144 (1993).

[6] J. W. D. Connolly and A. R. Williams, Density-functional the-
ory applied to phase transformations in transition-metal alloys,
Phys. Rev. B 27, 5169 (1983).

[7] J. M. Sanchez, F. Ducastelle, and D. Gratias, Generalized clus-
ter description of multicomponent systems, Physica A 128, 334
(1984).

[8] R. Biswas and D. R. Hamann, New classical models for silicon
structural energies, Phys. Rev. B 36, 6434 (1987).

[9] F. H. Stillinger and T. A. Weber, Computer simulation of local
order in condensed phases of silicon, Phys. Rev. B 31, 5262
(1985).

[10] R. Drautz, Atomic cluster expansion for accurate and transfer-
able interatomic potentials, Phys. Rev. B 99, 014104 (2019).

[11] F. Ducastelle, Modules élastiques des métaux de transition,
J. Phys. 31, 1055 (1970).

[12] V. Rosato, M. Guillopé, and B. Legrand, Thermodynamical and
structural properties of f.c.c. transition metals using a simple
tight-binding model, Philos. Mag. A 59, 321 (1989).

[13] F. Berthier, B. Legrand, and G. Tréglia, How to compare super-
ficial and intergranular segregation? A new analysis within the
mixed SMA-TBIM approach, Acta Mater. 47, 2705 (1999).

[14] F. Berthier, B. Legrand, and G. Tréglia, New structures and
atomistic analysis of the polymorphism for the � = 5 (210)
[001] tilt boundary, Interface Sci. 8, 55 (2000).

[15] J. Creuze, F. Berthier, R. Tétot, and B. Legrand, Wetting
and Structural Transition Induced by Segregation at Grain
Boundaries: A Monte Carlo Study, Phys. Rev. Lett. 86, 5735
(2001).

[16] F. Berthier, J. Creuze, R. Tétot, and B. Legrand, Structural
phase transition induced by interfacial segregation: a compar-
ison between surface and grain boundary, Appl. Surf. Sci. 177,
243 (2001).

[17] R. Tétot, F. Berthier, J. Creuze, I. Meunier, G. Tréglia, and B.
Legrand, Cu-Ag (111) Polymorphism Induced by Segregation
and Advacancies, Phys. Rev. Lett. 91, 176103 (2003).

[18] G. Tréglia, C. Goyhenex, C. Mottet, C. Legrand, and F.
Ducastelle, Electronic structure of nanoalloys: a guide of use-
ful concepts and tools, in Nanoalloys. Engineering Materials,

edited by D. Alloyeau, C. Mottet, and C. Ricolleau (Springer,
London, 2012), p. 159.

[19] P. M. Larsen, A. R. Kalidindi, S. Schmidt, and C. A. Schuh,
Alloy design as an inverse problem of cluster expansion models,
Acta Mater. 139, 254 (2017).

[20] N. A. Zarkevich, T. L. Tan, L.-L. Wang, and D. D. Johnson,
Low-Energy antiphase boundaries, degenerate superstructures,
and phase stability in frustrated fcc Ising model and Ag-Au
alloys, Phys. Rev. B 77, 144208 (2008).

[21] D. Paudyal, T. Saha-Dasgupta, and A. Mookerjee, Phase stabil-
ity analysis in Fe-Pt and Co-Pt alloy systems: An augmented
space study, J. Phys. Condens. Matter 16, 7247 (2004).

[22] J. Teeriniemi, P. Taskinen, and K. Laasonen, First-Principles
investigation of the Cu-Ni, Cu-Pd, and Ni-Pd binary alloy sys-
tems, Intermetallics 57, 41 (2015).

[23] S. He, P. Peng, O. I. Gorbatov, and A. V. Ruban, Effective
interactions and atomic ordering in Ni-rich Ni-Re alloys, Phys.
Rev. B 94, 024111 (2016).

[24] I. Al-Lehyani, M. Widom, Y. Wang, N. Moghadam, G. M.
Stocks, and J. A. Moriarty, Transition-metal interactions in
aluminum-rich intermetallics, Phys. Rev. B 64, 075109 (2001).

[25] A. V. Ruban, S. Shallcross, S. I. Simak, and H. L. Skriver,
Atomic and magnetic configurational energetics by the gen-
eralized perturbation method, Phys. Rev. B 70, 125115
(2004).

[26] M. Fèvre, J.-M. Sanchez, J. R. Stewart, J.-S. Mérot, F.
Fossard, Y. Le Bouar, K. Tanaka, H. Numakura, G. Schmerber,
and V. Pierron-Bohnes, Investigations of the Co-Pt alloy
phase diagram with neutron diffuse scattering, inverse cluster
variation method, and Monte Carlo simulations, Phys. Rev. B
102, 134114 (2020).

[27] F. Körmann, A. V. Ruban, and M. H. F. Sluiter, Long-ranged
interactions in bcc NbMoTaW high-entropy alloys, Mater. Res.
Lett. 5, 35 (2017).

[28] X. Xu and H. Jiang, Cluster expansion based configura-
tional averaging approach to bandgaps of semiconductor alloys,
J. Chem. Phys. 150, 034102 (2019).

[29] A. R. Natarajan and A. Van der Ven, Linking electronic
structure calculations to generalized stacking fault energies in
multicomponent alloys, Npj Comput. Mater. 6, 80 (2020).

[30] G. Ceder, A. F. Kohan, M. K. Aydinol, P. D. Tepesch, and A.
Ven, Thermodynamics of oxides with substitutional disorder: a
microscopic model and evaluation of important energy contri-
butions, J. Am. Ceram. Soc. 81, 517 (2005).

[31] N. L. Allan, G. D. Barrera, M. Y. Lavrentiev, C. L. Freeman,
I. T. Todorov, and J. A. Purton, Beyond the point defect limit:
simulation methods for solid solutions and highly disordered
systems, Comput. Mater. Sci. 36, 42 (2006).

[32] X. Liu, V. L. Vinograd, X. Lu, E. V Leonenko, N. N. Eremin,
R. Wang, and B. Winkler, Thermodynamics of mixing in
an isostructural solid solution: simulation methodologies and

014111-15

https://doi.org/10.1103/PhysRevB.17.2926
https://doi.org/10.1103/PhysRevB.21.216
https://doi.org/10.1103/PhysRevB.25.1759
https://doi.org/10.1103/PhysRev.81.988
https://doi.org/10.1016/0927-0256(93)90005-8
https://doi.org/10.1103/PhysRevB.27.5169
https://doi.org/10.1016/0378-4371(84)90096-7
https://doi.org/10.1103/PhysRevB.36.6434
https://doi.org/10.1103/PhysRevB.31.5262
https://doi.org/10.1103/PhysRevB.99.014104
https://doi.org/10.1051/jphys:019700031011-120105500
https://doi.org/10.1080/01418618908205062
https://doi.org/10.1016/S1359-6454(99)00144-5
https://doi.org/10.1023/A:1008783220877
https://doi.org/10.1103/PhysRevLett.86.5735
https://doi.org/10.1016/S0169-4332(01)00210-0
https://doi.org/10.1103/PhysRevLett.91.176103
https://doi.org/10.1016/j.actamat.2017.08.008
https://doi.org/10.1103/PhysRevB.77.144208
https://doi.org/10.1088/0953-8984/16/41/007
https://doi.org/10.1016/j.intermet.2014.09.006
https://doi.org/10.1103/PhysRevB.94.024111
https://doi.org/10.1103/PhysRevB.64.075109
https://doi.org/10.1103/PhysRevB.70.125115
https://doi.org/10.1103/PhysRevB.102.134114
https://doi.org/10.1080/21663831.2016.1198837
https://doi.org/10.1063/1.5078399
https://doi.org/10.1038/s41524-020-0348-z
https://doi.org/10.1111/j.1151-2916.1998.tb02369.x
https://doi.org/10.1016/j.commatsci.2004.12.083


F. BERTHIER, Q. LULLIEN, AND B. LEGRAND PHYSICAL REVIEW B 104, 014111 (2021)

application to the rutile-cassiterite system, Am. Mineral. 101,
1197 (2016).

[33] H. Ji, A. Urban, D. A. Kitchaev, D. H. Kwon, N. Artrith, C.
Ophus, W. Huang, Z. Cai, T. Shi, J. C. Kim, H. Kim, and G.
Ceder, Hidden structural and chemical order controls lithium
transport in cation-disordered oxides for rechargeable batteries,
Nat. Commun. 10, 592 (2019).

[34] A. van de Walle, M. Asta, and G. Ceder, The alloy theoretic
automated toolkit: A user guide, Calphad 26, 539 (2002).

[35] J. H. Chang, D. Kleiven, M. Melander, J. Akola, J. M. Garcia-
Lastra, and T. Vegge, CLEASE: A versatile and user-friendly
implementation of cluster expansion method, J. Phys. Condens.
Matter 31, 325901 (2019).

[36] M. Asta, C. Wolverton, D. de Fontaine, and H. Dreyssé, Ef-
fective cluster interactions from cluster-variation formalism. I,
Phys. Rev. B 44, 4907 (1991).

[37] C. Wolverton, M. Asta, H. Dreyssé, and D. de Fontaine, Ef-
fective cluster interactions from cluster-variation formalism. II,
Phys. Rev. B 44, 4914 (1991).

[38] A. Gonis, P. P. Singh, P. E. A. Turchi, and X. G. Zhang, Use of
the Ising model in the study of substitutional alloys, Phys. Rev.
B 51, 2122 (1995).

[39] A. V. Ruban and I. A. Abrikosov, Configurational thermo-
dynamics of alloys from first principles: Effective cluster
interactions, Rep. Prog. Phys. 71, 046501 (2008).

[40] A. H. Nguyen, C. W. Rosenbrock, C. S. Reese, and G. L. W.
Hart, Robustness of the cluster expansion: Assessing the roles
of relaxation and numerical error, Phys. Rev. B 96, 014107
(2017).

[41] N. A. Zarkevich and D. D. Johnson, Reliable First-Principles
Alloy Thermodynamics via Truncated Cluster Expansions,
Phys. Rev. Lett. 92, 255702 (2004).

[42] M. Stone, Cross-validatory choice and assessment of statistical
predictions, J. R. Stat. Soc. Series B Stat. Methodol. 36, 111
(1974).

[43] D. M. Allen, The relationship between variable selection
and data agumentation [sic] and a method for prediction,
Technometrics 16, 125 (1974).

[44] J. M. Sanchez, Foundations and practical implementations
of the cluster expansion, J. Phase Equilibria Diffus. 38, 238
(2017).

[45] J. M. Sanchez, Renormalized interactions in truncated cluster
expansions, Phys. Rev. B 99, 134206 (2019).

[46] F. Berthier, J. Creuze, and B. Legrand, Effective site-energy
model: a thermodynamic approach applied to size-mismatched
alloys, Phys. Rev. B 95, 224102 (2017).

[47] F. Berthier, J. Creuze, T. Gabard, B. Legrand, M. C. Marinica,
and C. Mottet, Order-disorder or phase-separation transition:

analysis of the Au-Pd system by the effective site energy model,
Phys. Rev. B 99, 014108 (2019).

[48] F. Berthier and B. Legrand, Analysis of Au-Pd driving forces
via the effective site energy model: LRO, antisites and en-
thalpy of permutation, J. Phys. Condens. Matter 32, 354001
(2020).

[49] H. Lukas, S. G. Fries, and B. Sundman, Computational Ther-
modynamics, Vols. 978-0-521- (Cambridge University Press,
Cambridge, 2007).

[50] M. Cottura and E. Clouet, Solubility in Zr-Nb alloys from first-
principles, Acta Mater. 144, 21 (2018).

[51] C. Goyhenex, H. Bulou, J.-P. Deville, and G. Tréglia,
Pt/Co(0001) superstructures in the submonolayer range: A
tight-binding quenched-molecular-dynamics study, Phys. Rev.
B 60, 2781 (1999).

[52] G. Rossi, R. Ferrando, and C. Mottet, Structure and chemi-
cal ordering in CoPt nanoalloys, Faraday Discuss. 138, 193
(2008).

[53] Z. Yang, L. Shi, and J. Ni, A computational study of kinetic
phase diagrams for CoPt alloy films during epitaxial growth,
Thin Solid Films 518, 4860 (2010).

[54] A. Lopes, G. Tréglia, C. Mottet, and B. Legrand, Ordering
and surface segregation in Co1−cPtc nanoparticles: A theoreti-
cal study from surface alloys to nanoalloys, Phys. Rev. B 91,
035407 (2015).

[55] A. Front, B. Legrand, G. Tréglia, and C. Mottet, Bidimen-
sional phases in Co-Pt surface alloys: A theoretical study
of ordering and surface segregation, Surf. Sci. 679, 128
(2019).

[56] D. D. Johnson, A. V. Smirnov, J. B. Staunton, F. J. Pinski, and
W. A. Shelton, Temperature-induced configurational excitations
for predicting thermodynamic and mechanical properties of
alloys, Phys. Rev. B 62, R11917 (2000).

[57] J. M. Sanchez, Cluster expansion and the configurational theory
of alloys, Phys. Rev. B 81, 224202 (2010).

[58] A. Finel, M. Barrachin, R. Caudron, and A. Francois, Effective
pairwise interactions in Ni3V, in Metallic Alloys: Experimental
and Theoretical Perspectives (Springer Netherlands, Dordrecht,
1994), pp. 215–224.

[59] E. Walter, Y. Lecourtier, J.-Y. Kao, and J. Happel, Identifiability
and distinguishability testing for linear models in heterogeneous
catalysis, Chem. Eng. Commun. 83, 157 (1989).

[60] E. Walter and L. Pronzato, On the identifiability and distin-
guishability of nonlinear parametric models, Math. Comput.
Simul. 42, 125 (1996).

[61] F. Berthier, J.-P. Diard, L. Pronzato, and E. Walter, Iden-
tifiability and distinguishability concepts in electrochemistry,
Automatica 32, 973 (1996).

014111-16

https://doi.org/10.2138/am-2016-5490
https://doi.org/10.1038/s41467-019-08490-w
https://doi.org/10.1016/S0364-5916(02)80006-2
https://doi.org/10.1088/1361-648X/ab1bbc
https://doi.org/10.1103/PhysRevB.44.4907
https://doi.org/10.1103/PhysRevB.44.4914
https://doi.org/10.1103/PhysRevB.51.2122
https://doi.org/10.1088/0034-4885/71/4/046501
https://doi.org/10.1103/PhysRevB.96.014107
https://doi.org/10.1103/PhysRevLett.92.255702
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1080/00401706.1974.10489157
https://doi.org/10.1007/s11669-017-0521-3
https://doi.org/10.1103/PhysRevB.99.134206
https://doi.org/10.1103/PhysRevB.95.224102
https://doi.org/10.1103/PhysRevB.99.014108
https://doi.org/10.1088/1361-648X/ab87ce
https://doi.org/10.1016/j.actamat.2017.10.035
https://doi.org/10.1103/PhysRevB.60.2781
https://doi.org/10.1039/B705415G
https://doi.org/10.1016/j.tsf.2010.02.017
https://doi.org/10.1103/PhysRevB.91.035407
https://doi.org/10.1016/j.susc.2018.08.024
https://doi.org/10.1103/PhysRevB.62.R11917
https://doi.org/10.1103/PhysRevB.81.224202
https://doi.org/10.1080/00986448908940660
https://doi.org/10.1016/0378-4754(95)00123-9
https://doi.org/10.1016/0005-1098(96)00031-3

