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High-pressure phase diagram of beryllium from ab initio free-energy calculations
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We use first-principles molecular dynamics simulations coupled with the thermodynamic integration method
to study the hexagonal close-packed (hcp) to body-centered cubic (bcc) transition and melting of beryllium
up to a pressure of 1600 GPa. We derive the melting line by equating solid and liquid Gibbs free energies
and represent it by a Simon-Glatzel fit Tm = 1564 K[1 + P/(15.6032 GPa)]0.383, which is in good agreement
with previous two-phase simulations <6000 K. We also derive the hcp-bcc solid-solid phase boundary and
show that the quasiharmonic approximation underestimates the stability of the hcp structure, predicting lower
transition pressures between hcp and bcc phases. Our results are consistent with the stability regime predicted
by the phonon quasiparticle method. We also predict that the hcp-bcc-liquid triple point is located at 164.7 GPa
and 4314 K. In addition, we compute the shock Hugoniot curve and show that it is in good agreement with
experiments, intersecting our derived melting curve at ∼235 GPa and 4900 K. Finally, we make predictions for
future ramp compression experiments. Starting with an isentropic compression of the liquid, we predict the path
to intersect the melting line at low pressure and temperature, then to continue along the melting line over a large
temperature interval of 7000 K as the sample remains in the mixed solid-liquid state before it enters the solid
phase.

DOI: 10.1103/PhysRevB.104.014103

I. INTRODUCTION

Beryllium (Be) is a widely used material in space sci-
ence, plasma physics, and nuclear science because of its high
stiffness, low opacity, and high thermal conductivity [1,2].
It serves as an ablator material in internal confinement fu-
sion (ICF) experiments, as it withstands extreme conditions
of several megabar and thousands of Kelvin under shock
conditions [3–7]. This has triggered a number of studies to
investigate its phase diagram, equation of state (EOS), and
physical properties. Precise knowledge of the beryllium EOS
and phase diagram is of vital importance for understanding
the dynamical response of ICF capsules after the shock pulse
and to control the growth of hydrodynamic instabilities in the
ablator [8–10].

Over the past decades, several theoretical and experimental
studies have been performed to understand the phase diagram
and EOS of beryllium. Theoretical studies suggest that, at
0 K and high pressure, Be transforms from the hexagonal
close-packed (hcp) to the body-centered cubic (bcc) structure
[8,11–20]. Calculations using the linear muffin-tin orbital
(LMTO) method [11] as well as ab initio pseudopotential
simulations [12] have predicted this transition to occur be-
tween 100 and 200 GPa. Meyer-ter-Vehn and Zittel [13]
implemented the augmented-spherical-wave method in com-
bination with a quantum statistical model and found that
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the bcc structure would become more stable at ∼300 GPa.
Palanivel et al. [14] used the full-potential LMTO (FP-LMTO)
method together with the local density approximation (LDA)
and found the transition pressure at 180 GPa. Sin’ko and
Smirnov [15] predicted this transition to occur at 270 GPa
using the FP-LMTO method with generalized gradient ap-
proximation (GGA) functional. Kádas et al. [21] used the
exact muffin-tin orbitals method to derive a transition pressure
of 240 GPa. Recent predictions from first-principles calcu-
lations range from 390 to 420 GPa [8,16–18], while Coe
et al. [20] found a transition pressure of 325 GPa based on
a multiphase EOS.

From experiments at room temperature, Ming and Mangh-
nani [22] reported a phase transition from hcp to distorted hcp
between 8.6 and 14.5 GPa based on x-ray diffraction measure-
ments, while Vijayakumar et al. [23] claimed the existence of
an orthorhombic phase from their measurements of electrical
resistivity. However, more recent experiments that employed
either x-ray diffraction [24–27] or Raman spectroscopy meth-
ods [25,28] confirmed that the hcp phase is stable up to
200 GPa.

The phase boundary between hcp and bcc Be at higher
temperatures is also a matter of debate. Calculations predict a
negative Clapeyron slope along the phase boundary, meaning
that the transition temperature decreases with increasing pres-
sure [8,17–19]. The quasiharmonic approximation (QHA), a
standard method to calculate free energies at high temper-
ature, has been used to study the vibrational properties of
Be at high temperature, but this approach does not consider
the anharmonic effects [17–19]. Under the QHA, the free
energy of solids at high temperatures is obtained from phonon
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frequencies. Robert and Sollier [16] predicted a solid phase
boundary with lower transition temperatures using QHA, with
the hcp-bcc-liquid triple point located at 85 GPa and 3400 K.
Another work, also based on the QHA, by Luo et al. [17]
reported similar results using the LDA functional. A recent
work by Xian et al. [19] used a different method, based on
phonon quasiparticles, to calculate free energies and found
that this phase boundary shifts toward higher temperatures
than QHA estimations made by Robert and Sollier [16], pro-
moting the triple point to 165 GPa and 4200 K. Benedict
et al. [8] calculated the free energy using QHA and a global
EOS model, which led to much higher transition pressures.
Regarding experiments at high temperature, Lazicki et al. [27]
performed x-ray diffraction measurements in a laser-heated
diamond anvil cell (DAC) to study the hcp phase of beryllium
up to 205 GPa and 4000 K and found no evidence of a bcc
phase. The experimental shock Hugoniot curve measured by
McCoy et al. [9] did not show signatures of a bcc phase either
before the onset of melting.

Various simulation methods have been applied to study the
melting line of beryllium at high pressure and temperature.
Both the heat-until-it-melts (HUM) [18] and the two-phase
methods [8] have been used to predict the melting temper-
ature of Be at high pressure, while the modified embedded
atom model (MEAM) has been implemented to explore large-
scale phenomena of melting under both hydrostatic and shock
compression conditions [29]. Although it is often regarded
as an upper limit for the melting temperature, the heat-until-
it-melts simulations gave results consistent with two-phase
simulations [8,18]. Experimental data under these extreme
conditions remain scarce, making it difficult to verify predic-
tions from the various simulation methods.

Due to the high dispersion in theoretical predictions and
scarce experimental data, the intersection between the shock
Hugoniot and the melting curve is not well constrained yet.
Knudson [30] compressed beryllium in the Z-machine, mea-
suring the sound speed along the shock Hugoniot curve from
shock waves induced by a magnetically launched flyer plate.
He showed that the shock Hugoniot curve first crosses the
hcp-bcc transition line at ∼175 GPa and then intersects the
melting line at ∼205 GPa. McCoy et al. [9] performed similar
measurements, in which they also identified the onset of melt
along the Hugoniot at ∼205 GPa, but found no conclusive
evidence of bcc phase before melting. In this case, the ex-
perimental setup could not resolve the hcp-bcc solid-solid
phase transition due to the similarity of the sound velocities
between the two phases. A recent theoretical work by Coe
et al. [20] found a phase boundary between hcp and bcc phases
with lower transition pressures, leading to a Hugoniot curve
intersecting the hcp-bcc phase boundary at 150 GPa and the
melting line at 205 GPa. They noticed that the phase transition
at 150 GPa was correlated with a decrease in sound speed.

A small region of stable β-Be (bcc) on the phase diagram,
slightly below the melting line at low pressure, has been pro-
posed by some authors in previous papers [18,31,32]. It has
been suggested that before melting under ambient pressure,
beryllium transforms from hcp to bcc phase at ∼1530 K,
accompanied by a volume reduction of 6% [31,33–35]. The
slope of this hcp-bcc solid phase boundary at ambient pressure
has been reported to be either negative [33,34] or positive [35]

in different studies. Robert and Sollier [16] and Robert et al.
[18] addressed the existence of this small bcc region below the
melting line by monitoring the change of phonon frequencies
of the T1 mode at the N point with temperature, while Lu et al.
[32], using phonon quasiparticles to describe the anharmonic
effects, predicted the boundary of this region to have a positive
Clapeyron slope of 41 ± 4 K/GPa and to disappear at 11 GPa.
By contrast, recent x-ray diffraction experiments on DACs
have not found any evidence for this small bcc region [27].
All these discrepancies motivate further work on the phase
diagram of Be, where a proper treatment of the anharmonic
effects may be fundamental to accurately determine the nature
of the hcp-bcc transition at high pressures, as well as the
melting curve.

In this paper, we used the thermodynamic integration (TDI)
technique [36,37] to investigate the phase diagram of beryl-
lium, obtaining the free energy of the hcp, bcc, and liquid
phases from first-principles molecular dynamics (MD) sim-
ulations. The TDI technique captures the full anharmonicity
of the crystal, making this paper an attempt to calculate
free energies of beryllium without relying on the QHAs or
its extensions. We compare our resulting solid-solid phase
boundary with a recent study based on the phonon quasi-
particle method [19] and with other works based on the
quasiharmonic approach, demonstrating that the QHA tends
to underestimate the stability of hcp phase, lowering the hcp-
bcc transition pressure, as well as the hcp-bcc-liquid triple
point. We also derive the melting line for pressures up to
1600 GPa, where we found a melting temperature of 10 000 K,
as well as the shock Hugoniot curve, which is found to be in
good agreement with shock wave experiments.

Our Hugoniot curve intersects the melting line at 235 GPa
and 4900 K, consistent with previous theoretical works of
dynamical loading by nonequilibrium MD, where amorphous
[38] or recrystallized structures [29] form well below the
equilibrium melting curve. These disordered structures could
possibly explain the discrepancy of onset pressure of melt
along Hugoniot in shock experiments (∼205 GPa) [9,30]. In
addition, we derived an isentrope that intersects the melting
line at low pressures and found that beryllium compressed
along this thermodynamic path spans over a large section of
the melting line, a temperature interval as large as 7000 K.
We suggest that the melting curve of Be could be measured,
in principle, by a single quasi-isentropic ramp compression
experiment, where the solid and liquid phases coexist as the
sample is compressed.

II. METHOD

A. Ab initio molecular dynamics

We performed density functional MD (DFT-MD) simula-
tions using the Vienna Ab initio Simulation Package (VASP)
[39] with the projector augmented-wave [39–41] method and
a canonical ensemble regulated with a Nosé-Hoover thermo-
stat [42,43]. To describe the exchange-correlation effects, we
used the Perdew-Burke-Ernzerhof functional with the GGA
[44]. Electronic wave functions were expanded in a plane-
wave basis with an energy cutoff as high as 1000 eV. The MD
simulations were performed in 128-atom (4 × 4 × 4) and 144-
atom (4 × 3 × 3) orthorhombic supercells for bcc and hcp
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phases, respectively. Liquid simulations were done in cubic
cells with 128 atoms. We considered 400 bands to account for
partial electronic occupations. We chose a time step between
0.7 and 1.0 fs and total simulation times of at least 2 ps to
average the thermodynamic quantities. The error bars were
derived from the blocking averaging method [45,46]. We use
a Monkhorst-Pack grid [47] of 2 × 2 × 2 k-points to sample
the Brillouin zone in our ab initio MD simulations.

B. Thermodynamic integration

To determine the phase diagram, we calculated the Gibbs
free energy for each phase. We used a two-step coupling
constant integration technique to compute the Helmholtz free
energy [48,49]. The full energetics of a solid phase is then
described as

FDFT = FEin + �FEin→cl + �Fcl→DFT, (1)

where FEin is the Helmholtz free energy of an Einstein crystal
with the same density. This technique allows us to obtain
the Helmholtz free energy difference between a DFT system
and a reference system for which the free energy is known.
We chose the Einstein crystal where all atoms vibrate with
the same harmonic frequency around their lattice sites as
our reference system for the solid. A gas of noninteracting
particles was chosen as the reference system when we
calculated the Gibbs free energy of the liquid. We performed
the calculation of the Helmholtz free energy difference
between the Einstein crystal and the DFT system in two steps,
each involving a TDI integral

�Fa→b =
∫ 1

0
〈Ub(ri ) − Ua(ri )〉λ dλ, (2)

where the angle brackets 〈...〉λ represent the ensemble
average generated in simulations with the hybrid potential
Uλ = λUb + (1 − λ)Ua at constant volume and temperature
[48]. The classical system is governed by a combination
of harmonic and pair forces. Both are adjusted to match
the forces of a DFT trajectory [50,51]. After we find the
average force between each pair of Be atoms in bins of radial
separation, we fit a pair potential using a cubic spline function.
Five evenly spread values of λ (0, 0.25, 0.5, 0.75, 1.0) were
chosen to resolve the integral from DFT to the classical
system to complete this thermodynamic step. To compute
the Helmholtz free energy difference between the system
governed by classical pair forces and the Einstein crystal,
namely, �FEin→cl, we performed a TDI involving multiple
classical Monte Carlo simulations to sample many values of
λ. The Gibbs free energy GDFT = FDFT + PV is then obtained
by adding the pressure term PV .

Frenkel and Ladd [36] introduced a correction to the free
energy of an Einstein crystal to account for the missing de-
grees of freedom in a solid with a fixed center of mass [37,52].
However, Navascués and Velasco [53] showed that the mag-
nitude of the actual correction should be much smaller. A
recent study of the phase diagram of MgO [54] showed that
the Frenkel correction introduced a significant finite-size er-
ror that affected the predicted B1-B2 phase boundary if the
simulations of B1 and B2 phases were performed with a few
particles. Without the Frenkel correction, the results of small

and large cells were much more consistent. In this study, we
also obtained inconsistent results if we included the Frenkel
correction, namely, an overestimation of the stability field of
the solid phases that resulted in melting temperatures that
are incompatible with previous results [8,16]. Therefore, we
did not apply this correction to any of our results. We found
that our hcp-bcc phase boundary was not affected by this
correction because we used a comparable number of particles
for both phases.

C. k-point correction

We found that a 2 × 2 × 2 k-point grid in combination with
our 128- and 144-atom supercells was not sufficient to obtain
converged internal energies. However, using larger supercells
or denser k-point grids in DFT-MD simulations would be too
time consuming. To compensate for this drawback, we cor-
rected the unconverged energies using the free energy pertur-
bation method, where the internal energy was recalculated for
a smaller number of snapshots with a denser k-point grid, as
explained in Ref. [45], and used it to correct the free energy by

F high k
DFT − F low k

DFT

kBT
= − ln

〈
exp

(
−U high k

DFT − U low k
DFT

kBT

)〉
low k

,

(3)

where F high k
DFT stands for the Helmholtz free energy derived

with the higher number of k-points (4 × 4 × 4) and F low k
DFT

for the Helmholtz free energy calculated with a lower
number of k-points (2 × 2 × 2). The average 〈. . .〉low k

represents an ensemble average that is obtained from the
time-averaged MD trajectories that are generated with a
smaller number of k-points. We took one snapshot every 500
steps for each DFT-MD simulation and rederived the internal
energies by performing self-consistent DFT calculations
using 4 × 4 × 4 (which has been tested to be converged for
both solid phases) and 2 × 2 × 2 Monkhorst-Pack k-point
grids. Here, U high k

DFT and U low k
DFT denote the internal energy of

those configurations computed with high and low numbers
of k-points, respectively. The energy difference is almost the
same for all the snapshots, so the free energy correction is
close to the arithmetic average of the energy differences. The
k-point correction has also been implemented in previous
theoretical works of up-sampled TDI [55,56]. We compared
both methods and got similar free energy corrections.

D. Phonon free energies

To derive the transition pressure between hcp and bcc
phases at T = 0 K, we decomposed the free energy of the
solid into three contributions:

F (V, T ) = E0(V ) + Fi(V, T ) + Fe(V, T ), (4)

where E0 is the internal energy of the perfect lattice structure
and Fi, the thermal contribution of the vibrating nuclei, can be
expressed as

Fi(V, T ) =
∑

qs

1

2
h̄ωqs + kBT ln

∑
qs

[
1 − exp

(
− h̄ωqs

kBT

)]
,

(5)
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where ωqs corresponds to the phonon eigenfrequency with
vector q of branch s in the Brillouin zone. The electronic con-
tribution to the free energy Fe(V, T ) is negligible compared
with the other two terms [8,17,19], so we do not consider it
for this calculation. At T = 0 K, the second term of Eq. (5)
vanishes, and only the first term contributes. In this paper,
we applied the density functional perturbation theory (DFPT)
method [57] to investigate the phonon eigenfrequencies of the
solid phases and their corresponding zero-point energy. To
perform these phonon calculations, we chose a k-point grid
of 7 × 7 × 7 with an energy cutoff of 1100 eV, such that the
precision in the free energy is within 0.5 meV/atom. Phonon
eigenfrequencies are derived from the diagonalization of the
dynamical matrix, which was obtained in a 31 × 31 × 31 q-
mesh grid through Fourier interpolation using the PHONOPY

software [58].

III. RESULTS AND DISCUSSION

A. Gibbs free energy and phase diagram

We used TDI to obtain the Gibbs free energy difference
between the different phases of beryllium as a function of
pressure for several temperatures. The pressure at which the
Gibbs free energy difference goes to zero marks the phase
transition. Figure 1 shows all thermodynamic (density − tem-
perature) conditions where we performed TDI calculations.
In Fig. 2, we show this difference for a temperature of T =
3000 K as an example. As we observe, the k-point correction
is necessary, as it shifts the predicted melting pressure to a
lower value by >50 GPa. The Gibbs free energy difference
�G ≡ Ghcp − Gbcc increases with pressure, and after a criti-
cal transition pressure, this difference changes sign, and bcc
becomes the more stable phase.

The contribution of the different terms �E , P�V , and
−T �S to the Gibbs free energy, as we can see in Fig. 2, shows
that the entropic term is comparable with the pressure term
and that the hcp phase always has lower energy than the bcc
phase.

The entropic term contributes >20 meV/atom to the
total Gibbs free energy, being crucial in the determi-
nation of the hcp-bcc transition pressure. As we can
see from the upper panel of Fig. 2, underestimating the
Gibbs free energy by 10 meV can make a difference in
the transition pressure as large as ∼80 GPa. The slope
of the Gibbs free energy difference (∂�G/∂P)T = �V ≈
�G/�P ≈ 0.1meV/GPa = 0.016 Å3 is consistent with the
volume difference between hcp and bcc phases that we get
from our 3000 K isotherms �V = Vhcp − Vbcc = 4.080 Å3 −
4.064 Å3 = 0.016 Å3/atom at the transition pressure of P =
271 GPa. In the lower panel of Fig. 2, we can see that both
entropy and pressure terms favor and help stabilize the bcc
structure. Since the TDI calculations were performed at con-
stant volume and temperature, a correction must be applied
to the Gibbs free energies to evaluate both terms of �G =
Ghcp − Gbcc at the same target pressure PT . This correction
is given by G(PT , T0) = G0 + ∫ PT

P0
V (P) dP, where the inte-

gration is performed along the isotherm T = T0, and G0 =
F0 + P0V0 is the Gibbs free energy at the volume V0 chosen for
the TDI calculation. We show two of our isotherms T = 1000

FIG. 1. Pressure-temperature conditions over which our density
functional theory (DFT) molecular dynamics (MD) simulations have
been performed. The symbols indicate the different phases explored:
liquid (open circles), hexagonal close-packed (hcp) solid (squares),
and body-centered cubic (bcc) solid (diamonds).

FIG. 2. Gibbs free energy difference �G ≡ Ghcp − Gbcc between
hexagonal close-packed (hcp) and body-centered cubic (bcc) phases
along the T = 3000 K isotherm. The different contributions to �G =
�E + P�V − T �S are shown in the lower panel.
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FIG. 3. Equation of state (EOS) of hexagonal close-packed (hcp)
and body-centered cubic (bcc) beryllium crystal at T = 1000 and
3000 K. EOS data are fitted to a fourth-order Birch-Murnaghan EOS.

and 3000 K in Fig. 3. We chose to plot PV 3 as a function of V
to enhance the differences in pressure between the two phases
which are actually small. At a density ρ = 4 g cm−3 and
T = 1000 K, the pressures of the hcp and bcc phases are 269
and 264 GPa. When the densities of both phases are compared
for a pressure of 300 GPa at 1000–3000 K, the bcc phase is
found to be 2.0 and 2.2% denser, respectively. The density of
the bcc phase is always higher than that of the hcp under the
same (P, T ) condition. Overall, we could judge from Fig. 3
that the bcc phase has a lower PV term in Gibbs free energy
at high temperature of thousands of Kelvin.

To analyze the finite-sized effect of our simulations, we
repeated our TDI calculations using larger supercells with 700
and 686 atoms for the hcp and bcc phases, respectively. We
used the � point to sample the Brillouin zone but applied
the k-point correction as described in the previous section.
We performed our TDI simulation at P = 280 GPa and
T = 3000 K as an example. In Fig. 4, we show that the Gibbs

FIG. 4. Finite-sized effect on the Gibbs free energy per atom at
P = 280 GPa and T = 3000 K.

FIG. 5. Phase boundary of hexagonal close-packed (hcp)-body-
centered cubic (bcc) beryllium, including the melting line and solid
phase boundary. Blue diamond: solid phase boundary and melting
line by thermodynamic integration (TDI; this paper); red upper tri-
angle: hcp phase from diamond anvil cell (DAC) experiments by
Lazicki et al. [27]; red dashed curve: phase boundary by two-phase
method [8]; yellow dotted dashed line: phase boundary derived by
Robert et al. [18] using quasiharmonic approximation (QHA) and
HUM; blue thin line: solid boundary by Luo et al. [17] using QHA
[local density approximation (LDA) functional]; orange thin line:
hcp-bcc solid phase boundary derived by Xian et al. [19] using
the phonon quasiparticle method; green dashed line: start of re-
crystallization by Lazicki et al. [27]; magenta open diamonds: hcp
beryllium shock wave experiments by McCoy et al. [9].

free energy decreases with system size. However, when we
increased the number of atoms from 128 to 686 in our bcc
simulations and from 144 to 700 in our hcp simulations, the
Gibbs free energy difference did not change within the error
bars. Similarly, when we extrapolated our results to infinite
size, the resulting Gibbs free energy difference was consistent
with those that we originally derived from our simulations
with smaller system sizes (see Fig. 4). The same conclusion
holds for T = 1000 K and P = 410 GPa (see Supplemental
Material [59]). Based on these two examples, we conclude
that our predictions are sufficiently well converged with re-
spect to system size.

In Fig. 5, we show the transition pressures obtained from
our TDI calculations and compare our derived phase diagram
with previous simulations and experiments. As we can see in
the figure, the QHA (light blue solid line by Luo et al. [17] and
dashed yellow curve by Robert et al. [18]) underestimates the
transition pressure from hcp to bcc beryllium at high tempera-
ture. This phase boundary has also been derived in a recent
paper using phonon quasiparticles, fitted from the Fourier
transform of velocity autocorrelation function [19]. When
anharmonic effects from the phonon quasiparticles are con-
sidered, the hcp phase becomes more stable, and the transition
pressure gets larger than QHA. According to the results from
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their study [19], the hcp-bcc-liquid triple point is located at
165 GPa and 4200 K, at higher pressure and temperature than
those suggested by the QHA method, 85 GPa and 3400 K.
Our TDI calculations also point toward similar results, with
the hcp phase being more stable than QHA results, occu-
pying a larger area of the phase diagram. We will compare
our TDI with the phonon quasiparticle method and show the
differences in the predicted free energies in Sec. III F. Over-
all, we will demonstrate that the anharmonic effects of Be,
fully captured by TDI, are well approximated by the phonon
quasiparticles <4000 K. The phase diagram of beryllium
resembles many features of the phase diagram of MgO, an
important material in planetary science, where a B1-B2 solid-
solid phase boundary, like the hcp-bcc boundary in Be, also
exhibits a negative Clapeyron slope [54,60,61]. It turns out
that anharmonic effects play an important role in promoting
B1-B2 transition pressure, especially at high temperature,
compared with conventional QHA methods [62–65]. To cap-
ture anharmonic effects in MgO at high temperature, Boates
and Bonev [60] calculated the entropy from the vibrational
spectrum derived from the velocity autocorrelation function,
Bouchet et al. [61] calculated the vibrational free energy
using the temperature-dependent effective potential method
[66], while Soubiran and Militzer [54] performed a complete
TDI. The shape of the B1-B2 solid-solid phase boundary in
the MgO phase diagram changes significantly when entropy
contributions that go beyond QHA are considered, as anhar-
monic effects stabilize the B1 phase considerably. Our results
for beryllium show that, as it occurs with MgO, the slope of
the solid-solid phase boundary is actually steeper than what
QHA predicts, which enhances the regime of stability of the
low-pressure phase in both cases. This is in agreement with
previous DAC [27] and shock wave [9] experiments, where
no bcc structure was detected, and all of their measured state
points lie within our hcp domain. A fit to our hcp-bcc solid
phase boundary leads to a triple point located at 164.7 GPa
and 4314 K.

B. Transition pressure at T = 0 K

We derived the c/a ratio of the hcp structure at 0 K as
a function of pressure, which is shown in Fig. 6. As we
can observe, as compression increases, the c/a ratio rises,
converging to the ideal value of

√
8/3 ≈ 1.633. At ambi-

ent pressure and zero temperature, we obtain a c/a ratio of
1.577, in close agreement with the experimental value 1.568
[25,27,68]. The deviation from the ideal value at ambient
conditions can be attributed to the large hybridization of s
and p orbitals [69,70]. As pressure increases, the px, py, and
pz bands tend to become degenerate, making Be closer to
ideal hcp rigid packing at high pressures [15,16,70]. In our
simulations, we assume the c/a ratio is constant along each
isochore because the value of this ratio has little impact on the
calculated free energy of hcp Be [19].

We calculated the energy of the bcc and hcp structures
as a function of pressure at T = 0 K to determine where
the phase transition occurs. We used a dense k-point grid
(43 × 43 × 43) to sample the Brillouin zone of the primi-
tive cell and included the zero point energy by performing
DFPT phonon calculations. We fit the cold curve of hcp and

FIG. 6. Variation of the c/a ratio of the hexagonal close-packed
(hcp) phase of beryllium with pressure. Open circle: density func-
tional theory (DFT) calculation in this paper; yellow triangle:
first-principles calculation by Robert et al. [16]; green curve: clas-
sical analytic mean-field potential method by Song et al. [67]; blue
square: x-ray diffraction diamond anvil cell (DAC) experiment by
Nakano et al. [24]; magenta star: experimental value at P = 0 GPa
from Zhang et al. [68].

bcc beryllium with a fourth-order Birch-Murnaghan EOS, as
shown in Fig. 7. We observe that the energy of hcp phase
of beryllium is lower than the bcc phase, but the difference
decreases as pressure increases. We found that V0 = 7.99 Å3,
and the bulk modulus of Be at P = 0 GPa in the hcp phase is
B0 = 112.96 GPa and B′

0 = 3.61, close to previ-
ous experiments [1,24,25,27] and theoretical predictions
[8,15,16,18,26,67]. From our fitted EOS for the bcc phase,
we find V0 = 7.92 Å3, B0 = 111.52 GPa, and B′

0 = 3.64. We
determined the relative enthalpy between the two phases and
find that the transition from hcp to bcc occurs at 405 GPa,

FIG. 7. Fitted fourth-order Birch-Murnaghan equation of state
of hexagonal close-packed (hcp) and body-centered cubic (bcc)
beryllium.
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FIG. 8. Melting line and shock Hugoniot curve of Be. Blue di-
amond: phase diagram by thermodynamic integration (TDI) in this
paper; orange thick line: Hugoniot by ab initio molecular dynam-
ics (MD) in this paper; upper red triangle: melting temperature at
ambient pressure [31]; cyan dotted curve: Hugoniot by SESAME
2024 [72]; dashed red curve: Hugoniot by Benedict et al. [8]; pink
squares: melting temperature by Benedict et al. [8] using two-phase
method; green lower triangle: heat-until-it-melts by Robert et al.
[18]; red circles: melting temperature by Dremov et al. [29] using
heat-until-it-melts method; red curve: TDI by Dremov et al. [29]
using the modified embedded atom model (MEAM); green dotted
line: melting line by Coe et al. [20]; open star: point along the
nucleation phase boundary derived from classical nucleation theory.

consistent with recent theoretical predictions [8,17–19] (see
Fig. 1).

C. Melting curve

For a given temperature, we derive the melting pressure by
equating the Gibbs free energy of the liquid and solid phases.
For temperatures <4300 K, the solid phase considered is hcp
because, as we will demonstrate, this phase is more stable than
the bcc phase at these conditions. For higher temperatures, the
bcc phase becomes more stable, so we compute the Gibbs
free energy difference between liquid and bcc phases. Our
TDI calculations also allow us to obtain the Gibbs free energy
of the liquid, which we use to obtain the melting curve. The
melting points obtained from these calculations are shown in
Figs. 1 and 5. We fitted our melting curve with the Simon-
Glatzel equation [71]:

Tm(P) = T0

(
1 + P

a

)1/c

, (6)

starting from the experimental value of T0 = 1564 K [31],
and found the parameters a = 15.6032 GPa and c = 2.6065.
In Fig. 8, we compare our melting curve with experiments
and other ab initio calculations. Predictions from ab intio

simulations using the two-phase [8] and HUM methods [18]
(pink squares and green triangles in Fig. 8, respectively) are
consistent with our melting points [8,18]. Thus, the predic-
tions from TDI and the two-phase method agree with each
other, at least at low temperatures <6000 K.

While at low temperatures our melting curve agrees well
with the predictions from two-phase simulations, the extrapo-
lated melting line of Benedict et al. (pink dashed line in Fig. 8)
[8] results in higher melting temperatures. This difference can
be attributed to the fact that only two melting points were
reported in their two-phase simulations. However, the HUM
method [18], which is often regarded as the upper limit of
melting temperature, also leads to melting temperatures that
are consistent with ours at low pressures. The melting curve
fitted to the HUM data from Robert et al. [18], which goes
below our melting curve in Fig. 8, shows a large offset with
their own data at the highest pressures. For instance, their
fitted melting curve shows that the melting temperature at
320 GPa is ∼5200 K, which is 800 K below their actual
melting data point (bcc phase) and ∼300 K below our melting
line.

A recent study that used both the hysteresis method (HM)
as well as TDI with a MEAM parametrization [29] reported
a melting line that is several hundred Kelvin above ours.
This shows that this empirical potential [73–75] cannot fully
capture the atomic interactions as well as DFT. Conversely, a
recent study based on an EOS model [20] proposed a melting
line lower than all the reported melting curves so far. They
compared their theoretical EOS predictions with DAC exper-
iments [27] and showed that discrepancies in the EOS appear
along the isochores at high temperature, implying that their
melting line should be steeper than what they predict [20].
Overall, we obtain a melting curve that is in reasonable agree-
ment with previous predictions from two-phase and HUM
simulations, and we extended it to much higher pressures.

D. Hugoniot calculations and EOS

In Fig. 8, we show the shock Hugoniot curve of Be that we
have obtained by solving the Rankine-Hugoniot condition:

(E − E0) + 1
2 (V − V0)(P + P0) = 0, (7)

where E0, V0, and P0 are the internal energy, volume, and
pressure of the hcp phase of beryllium at ambient pressure
and 300 K. Our Hugoniot curve is in good agreement with
shock wave experiments [9] and with predictions from other
theoretical works [8,18]. Our Hugoniot curve intersects the
hcp-bcc phase boundary at ∼200 GPa and 4000 K, showing a
very small offset due to the phase transition. The intersection
with the melting line occurs at 235 GPa and 4900 K, and the
Hugoniot curve reappears in the liquid region ∼276 GPa, with
an offset of ∼40 GPa. Shock experiments suggest that the
onset of melting along the Hugoniot curve occurs at 205 GPa
and ∼4000 K, based on the criteria that the longitudinal and
bulk sound speed are equal [9,20,30]. This leads to melt-
ing temperatures lower than ours, but this criterion may not
represent a valid condition for melting at equilibrium. It has
been suggested that this could be attributed to a phenomenon
called cold melting [29,38,76–78]. In cold melting, disordered
structures such as recrystallized grains or amorphous solids
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FIG. 9. Hugoniot and isotherm of S = 7.9 kB/atom of beryl-
lium in density-temperature space. Blue diamonds: melting points
obtained from thermodynamic integration (TDI; average density be-
tween solid and liquid at the melting temperature); purple curve:
melting curve obtained from the Lindemann criterion (see Sec. III E);
orange curve: isentrope S = 7.9 kB/atom of solid and liquid phases
by TDI; cyan curve: hexagonal close-packed (hcp)-body-centered
cubic (bcc) solid phase boundary; black curve: shock Hugoniot de-
rived from ab initio molecular dynamics (MD); red cross: density
and temperature we investigate using both TDI and the phonon
quasiparticle method.

form right after the shock front, leaving behind a metastable
system instead. Dremov et al. [29] considered this effect and
corrected the shock Hugoniot curve using large-scale MD
simulations, resulting in an intersection with the melting line
∼250 GPa and 5000 K [29], consistent with our simulations.

Hugoniostat MD simulations by Thompson et al. [38]
predict that the Hugoniot curve crosses the melting line at
230 GPa and 5000 K, consistent with our result.

We also derived an isentrope for beryllium from the en-
tropies that we obtained from our TDI simulations. This is
relevant to ramp compression experiments, where the com-
pression is assumed to follow a quasi-isentropic path [79,80].
If the sample is isentropically compressed from the liquid, it
will hit the melting line and remain in a solid-liquid mixture
until the pressure is high enough to solidify the sample en-
tirely. If the sample is ramp compressed further, it will follow
a solid isentrope, unless plastic work heating increases the
temperature to a significant degree. Here, we compute the
thermodynamic path of such a ramp compression experiment.
As initial conditions, we considered liquid Be at 2000 K and
5 GPa (ρ = 1.66 g cm−3), where we obtained an entropy of
S = 7.9 kB/atom from our TDI calculations. Then using the
EOS table that we have generated with our simulations, we
solve the thermodynamic equation:

(
∂T

∂V

)
S

= −T

(
∂P
∂T

)
V(

∂E
∂T

)
V

, (8)

to generate isentrope S = 7.9 kB/atom for both solid and liq-
uid phases.

FIG. 10. Upper panel: Entropy and specific volume difference
between liquid and solid beryllium along the melting line. Lower
panel: Comparison between slope of the melting line and the
Clayperon formula.

As we can see in Fig. 9, this isentrope intersects the melt-
ing line at 3000 K and reappears in the solid bcc region
at ∼10 000 K (1590 GPa, 7.00 g cm−3), a temperature gap
of 7000 K. The slope of the melting line is steeper than
that of the isentrope, suggesting that isentropic compression
should always encounter partial crystallization if pressure is
high enough, and that recrystallization of Be during isentropic
release in shock decay experiments should not be observable
[81,82].

These results imply that isentropic ramp compression ex-
periments should generate a solid-liquid mixture and remain
in such a state over a T , ρ, P interval of ∼7000 K, 4.7 g cm−3,
and 1550 GPa before the mixture freezes completely at a com-
pression ratio of 3.05-fold from ambient density. The intensity
of the x-ray diffraction peaks would surge as the fraction of the
solid increases at higher compression. On the other hand, the
Debye-Waller effect [83,84] would broaden the peaks. Never-
theless, a long section of the melting line could, in principle,
be measured with a ramp compression experiment if accurate
temperature measurements become available.

In Fig. 10, we show how the volume and entropy differ-
ences between the solid and liquid phase change along the
melting line and compare their ratio with the slope of our fitted
melting curve, as given by the Clausius-Clapeyron relation:

dT

dP

∣∣∣∣
m

= Vliq − Vsol

Sliq − Ssol
. (9)

We obtain consistent results from both approaches, which
differ by <10% in the pressure range investigated.

From the entropy of fusion in Fig. 10, we can estimate
the kinetic (nucleation) effects during the solidification of
liquid beryllium at high pressure. It has been reported that
a thermodynamically metastable crystal phase may dominate
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the initial growth of a solidifying cluster in the liquid [85,86].
The Gibbs free energy of the solid cluster in the liquid during
supercooling is determined not only by the thermodynamic
bulk free energy but also by the interfacial Gibbs free energy
γI , which is proportional to the characteristic Turnbull coeffi-
cient α in the Gibbs-Thompson limit [87]:

γI = α
�Hm

v
2/3
S

Asphere
I , (10)

where Asphere
I = (36π )1/3(Nsvs)2/3 represents the surface area

of the cluster in equilibrium with the surrounding liquid. Here,
vS is the specific volume of the solid. The Turnbull coefficient
of hcp αhcp is assumed to be higher than that of the bcc phase
[86,88]. Considering the size limitation of current ab initio
MD simulations, as well as the scarcity of data on the Turnbull
coefficient of different beryllium phases, it is challenging to
calculate the kinetic nucleation boundary with high precision.
We estimate αhcp/αbcc = 1.15 based on previous studies that
predicted the Turnbull coefficient of the bcc crystals to be
∼10–20% lower than that of face-centered cubic or hcp crys-
tals [86].

The kinetic phase boundary is defined as the state where
two phases share the same nucleation rate. In classical nucle-
ation theory, this rate can be expressed as [86]

JS (Tc) =
√

�G′′
S (Tc)

2πkBTc
[NS (Tc)]2/3 τ

vL
exp

[
−�GS (Tc)

kBTc

]
, (11)

where τ is the rate of attachment to a unit area of the cluster,
which we set equal for both phases τhcp = τbcc. The excess
Gibbs free energy �GS at the temperature Tc is defined as

�GS (T ) = NS
�Hm

Tm
(T − Tm) + α

(
36πN2

S

)1/3
�Hm, (12)

where �G′′
S is the curvature of the excess Gibbs free energy

with respect to cluster size. Minimizing the Gibbs free energy,
we obtain the critical cluster size:

NS = 32π

3

(
αTm

Tm − T

)3

. (13)

After equating the nucleation rates of both phases, Jhcp
S (T ∗) =

Jbcc
S (T ∗), we derived one point along the kinetic phase bound-

ary (see open star near the triple point in Fig. 8). The bcc phase
is predicted to exhibit a larger nucleation rate than the thermo-
dynamically preferred hcp phase and may thus dominate the
initial nucleation process. The nucleation temperature T ∗ may
be expressed by

T ∗ − T hcp
m

T ∗ − T bcc
m

= T hcp
m

T bcc
m

√(
αhcp

αbcc

)3
�Hhcp

m

�Hbcc
m

. (14)

We derived one point on the hcp-bcc nucleation boundary:
P = 137 GPa and ∼3700 K, just 300 K below the melting
curve. Above this boundary, the hcp phase crystallizes
more quickly, while when the sample is cooled rapidly to
a temperature below this boundary, the bcc polymorph is
predicted to form.

E. Gap along the isentrope derived from the logarithmic
phonon moment

In this section, we provide a simple method that allows us
to obtain an approximated expression for the temperature dif-
ference between the solid and liquid entropies without relying
on expensive TDI calculations. This difference is important
to understand the relationship of isentropes and the melting
line that is relevant for ramp compression experiments, which
are assumed to be quasi-isentropic. Starting with a liquid isen-
trope, such experiments may intersect and follow the melting
line, as the sample remains in a solid-liquid mixed state before
it enters the solid phase.

We start with the assumption that, at low pressures,
beryllium has an entropy of fusion of �S ≡ Sliq − Ssol ≈
0.9 kB/atom [89,90] close to the “universal” entropy of fusion
of 0.8 kB suggested by Wallace [84].

When the isentrope intersects the melting line at a given
temperature T1, the liquid has density ρ1 and an entropy
Sliq(ρ1, T1). The thermodynamic path with the same entropy in
the solid regime appears at a higher density ρ2 with a temper-
ature T2, and Ssol(ρ2, T2) = Sliq(ρ1, T1). Since we assume that
the entropy of fusion is known, we can calculate the entropy
gain in the solid by

�S = Ssol(ρ2, T2) − Ssol(ρ1, T1)

= Sliq(ρ1, T1) − Ssol(ρ1, T1)

≈ 0.9 kB/atom. (15)

The entropy of the solid phase at a given density and
temperature can be obtained from the ion-thermal contribution
of the free energy in Eq. (4), which takes the form Fi(V, T ) =
3kBT ln[θ0/T ] for temperatures higher than the characteristic
Debye temperature [8]. Its derivative respect to temperature
leads to

Ssol(V, T ) = 3kB ln

[
T

θ0(V )

]
+ 3kB, (16)

where θ0 is the logarithmic moment of the phonon density of
states (PDOS) at the volume V , defined by [8,18,84]

ln [kBθ0(V )] = h̄
∫ ∞

0
g(ω) ln ω dω. (17)

Here, g(ω) is the PDOS, and the logarithmic phonon mo-
ment θ0 is a good approximation of the Debye temperature
θ (V ).

The entropy derived from this free energy accounts only for
the vibrational entropy, which dominates over the electronic
entropy even at the high temperatures we are interested in. To
confirm this, we calculated the electronic entropy using the
Mermin functional [91]:

Sel(T ) = −kB

∫
n(ε)[ fi ln fi + (1 − fi ) ln (1 − fi )] dε, (18)

where n(ε) corresponds to the electronic density of states
(DOS), and fi(ε) is the Fermi-Dirac distribution function at
temperature T . Our calculations indicate that, at these con-
ditions, the electronic entropy only accounts for <2% of the
entropy of the entire system.
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FIG. 11. Logarithmic phonon moments with respect to volume.
Blue circle: θ0 (this paper); green diamond: θ0 by Robert et al. [18];
orange squares: θ0 by Benedict et al. [8]; red dashed line: curve fit
assuming the Grüneisen parameter γ = − d ln θ0

d ln V linear with volume.

If the melting curve is not known, one can obtain an
approximate value for the melting temperature from the Lin-
demann criterion, which relates the melting temperature to
the Grüneisen parameter γ of the solid phase through the
expression [92,93]

d ln Tm

d ln V
= −2

[
γ (V ) − 1

3

]
, (19)

where

γ ≡ −d ln θ0(V )

d ln V
, (20)

and θ0(V ) is the logarithmic phonon moment of order n = 0
at the volume V . A good approximation for γ is to assume
that it depends linearly on the volume of the solid phase,
namely, γ = AV + B, which allows us to obtain an analytical
expression for the logarithmic phonon moment [8,94] from
Eq. (20):

θ0(V ) = θ0(V ∗)

(
V

V ∗

)−B

exp [−A(V − V ∗)]. (21)

In the same way, it allows us to obtain an analytical expression
for the melting curve from Eq. (19):

Tm(V ) = T ∗
(

V

V ∗

)−2B+ 2
3

e−2A(V −V ∗ ). (22)

We performed DFPT phonon calculations [57] to obtain
the PDOS, which we integrated using Eq. (17) to derive the
logarithmic phonon moment of the bcc phase θ0(V ) for a
number of volumes. The resulting values were used to fit
the parameters A, B, V ∗, and θ0(V ∗) in Eq. (21), obtaining
V ∗ = 6.868 Å3, θ0(V ∗) = 1039.86 K, A = 0.101 Å−3, and
B = 0.515, consistent with the values obtained by Benedict
et al. [8]. The value of T ∗ is obtained from the melting
temperature of Be at ambient conditions (V0 = 8.09 Å3/atom)
by setting Tm(V0) = T0 = 1564 K . We found T ∗ = 2490 K a
good fitting parameter.

As shown in Fig. 11, our values of θ0 are in good agree-
ment with previous studies [8,18]. The resulting melting curve

obtained from Eq. (22) is shown as the purple curve in Fig. 9,
and it is consistent with our melting temperatures derived with
TDI, which demonstrates that the approximations considered
here work very well for predicting the melting temperatures.
We can insert Eq. (16) into Eq. (15) to relate the two melting
temperatures T1 and T2 with the corresponding volumes of the
solid, which results in

�S = Ssol(V2, T2) − Ssol(V1, T1)

= 3 kB ln

[
T2

T1

θ0(V1)

θ0(V2)

]

= 3kB ln

[(
V2

V1

)−B+ 2
3

e−A(V2−V1 )

]
. (23)

This implies that T2 = θ0(V2 )
θ0(V1 ) e

�S/3 kB T1. Here, T2 ≡ Tm(V2) and
T1 ≡ Tm(V1) can be evaluated from Eq. (22), while θ0(V2) and
θ0(V1) are given by Eq. (21). This results in a temperature
difference �T = T2 − T1 along the isentrope given by

�T =
[(

V1

V2

)B

e−A(V2−V1 )+�S/3kB − 1

]
T1. (24)

Considering that the melting temperature T1 = Tm(V1) at
which the isentrope intersects the melting line is known, we
can infer the corresponding volume of the solid V1 from
Eq. (22). Then V2 can be inferred from Eq. (23), assuming
�S ≈ 0.9 kB. With these parameters, we can use Eq. (24) to
determine the temperature gap between the solid and liquid
isentrope with the same entropy. Here, T1 = 2525 K and V1 =
6.812 Å3/atom (2.196 g cm−3), which results in a temperature
gap of �T = 7500 K. This is just slightly higher that the
actual gap of 7000 K that we obtained from our TDI calcu-
lations, as we can see in Fig. 9.

Therefore, the approximations that we have introduced
here, based on phonon calculations coupled with a Lindemann
form of the melting curve, work very well for predicting the
temperature gap that arises when an isentrope intersects the
melting line. We suggest that this approach can be used to
estimate this gap for other materials and to predict the tem-
perature interval over which ramp compression experiments
follow the melting line.

F. PDOS and quasiphonon free energy

To obtain a measure of the anharmonic effects, we com-
pare our free energies derived from TDI with those obtained
from phonon-based methods. Using the DYNAPHOPY software
[95,96], we derived the contribution to the free energy of the
quasiphonon particles from a power spectrum of the velocity
autocorrelation function:

Gq(ω) =
∫ +∞

−∞
〈Vq(0)Vq(t )〉eiωt dt, (25)

where q is a wave vector in the Brillouin zone, and Vq(t ) is the
Fourier transform of weighted velocity

√
Mv(t ) along the ab

initio MD trajectory at a given time t . The quantity in angle
brackets corresponds to the velocity autocorrelation function
defined as

〈Vq(0)Vq(t )〉 = lim
τ→∞

1

τ

∫ τ

0
Vq(t ′)Vq(t ′ + t ) dt ′. (26)
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FIG. 12. (a) Phonon vibrational density of states (DOS) of
body-centered cubic (bcc) beryllium at 0 and 3000 K. (b) Phonon
vibrational DOS of bcc beryllium at 0 and 3000 K.

In Fig. 12, we plot the PDOS at T = 0 and 3000 K from the
dynamic matrix. Vibrational DOS and quasiphonon particle
fitting have been carried out with the help of PHONOPY [58]
and DYNAPHOPY [96]. The PDOS at 3000 K was derived from
the quasiphonon particle method for both hcp and bcc phases
of beryllium at ρ = 3.814 g cm−3. In contrast to the PDOS
at 0 K, the PDOS of both phases at high temperature shifts
toward lower frequencies, yielding phonon softening in both
phases.

To better understand the anharmonic effects at finite
temperature, we compared our entropies and free energy dif-
ferences with those derived from the phonon quasiparticle
method. We chose T = 3000 K and ρ = 3.814 g cm−3 as
references, marked as a red cross in Fig. 9. The entropy and
free energy differences are shown in Table I.

As we can see from Table I, at T = 3000 K and ρ =
3.814 g cm−3, the free energy difference between the hcp and
bcc phases of beryllium given by the traditional QHA method
is 13.68 meV/atom. However, from the phonon quasiparticle
method [19,32,95,97], this difference is just 2.255 meV/atom,
indicating a more stable hcp phase when anharmonic effects
are considered, which agrees with previous experiments by
either DAC [27] or shock wave experiments [9]. From our
TDI results, we obtain a free energy difference between hcp
and bcc beryllium of 1.026 meV/atom, close to the result
suggested by the quasiphonon method. Therefore, anharmonic
effects lower the free energy of the hcp structure by >10 meV

TABLE I. Comparison of the free energy difference (in
meV/atoms) between the hcp and bcc phases of Be at T = 3000 K
and ρ = 3.814 g cm−3, derived from different simulation methods.

Method QHA Quasiphonon TDI

Shcp (kB ) 5.336 5.399 5.439
Sbcc (kB) 5.479 5.495 5.539
−T �S (meV) 36.968 24.694 25.704
Fhcp − Fbcc (meV) 13.680 2.255 1.026

FIG. 13. Electronic density of states (DOS) of Be at 3000 K.
DOS of hexagonal close-packed (hcp) Be at 0 and 200 GPa from
Ref. [98] are shown in dot-dashed and dashed lines in the upper
panel.

at 3.814 g cm−3and 3000 K, which helps to explain the higher
hcp-bcc transition pressure in our phase diagram Fig. 5. Thus,
the anharmonic effects captured by TDI are well approxi-
mated by the quasiphonon method.

We further investigated the entropy of both phases at these
conditions. Our results, summarized in Table I, show that the
entropic term in the Gibbs free energy difference Ghcp − Gbcc

at T = 3000 K is 25.7 meV/atom from our TDI calculations,
11 meV/atom smaller than that derived from QHA. Thus,
the anharmonic effects on the entropy are stronger in the hcp
structure than the bcc structure, enhancing the stability of the
hcp structure.

G. Electronic density of states

In Fig. 13, we show how the electronic DOS of beryllium
changes with pressure in the hcp, bcc, and liquid phases
at 3000 K. We obtained the DOS from the analysis of the
eigenenergies provided by Kohn-Sham DFT, as we have done
in previous works [99,100]. With a Brillouin zone sampled
by the Monkhorst-Pack method with 2 × 2 × 2 k-points sam-
pling [47], we obtained smooth DOS curves by averaging over
the MD simulation snapshots and by applying a Gaussian
smearing of 0.1 eV to the band energies. The DOS at every
snapshot was aligned at its respective Fermi energy, and then
we averaged all of them together. The average Fermi energy
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was then subtracted out, and the integrated DOS was normal-
ized to 1.

The K shell (1s) electrons form a sharp peak (not displayed
in the figure) centered ∼100 eV below the Fermi energy.
The conduction band, formed by the L shell electrons, shows
similar features for both the bcc and hcp phases. While the
DOS of Be shows a minimum around the Fermi energy for
the hcp phase, this minimum is shifted to energies above the
Fermi energy in the liquid phase. In our EOS, we did not
find signatures of pressure ionization that can be attributed to
an energy minimum [101,102], and no gap opening occurred
in our electronic DOS for the regime of pressures explored.
However, the DOS near the Fermi energy does decrease under
compression, leaving a possibility for a gap opening at higher
pressures.

IV. CONCLUSIONS

We performed a systematic investigation of the beryllium
phase diagram under extreme conditions using the first-
principles TDI method. At 0 K, we find that the hcp phase
of beryllium transforms to the bcc phase at 405 GPa and
that, at higher temperatures, the Clapeyron slope of the hcp-
bcc phase boundary is negative. We showed that the QHA
tends to underestimate the stability of the hcp phase. When
the full anharmonicity is considered, we find a solid-solid
phase boundary that is like that predicted by QHA at low
temperatures but is shifted to higher pressures with increas-
ing temperature. Our triple point is located at 164.7 GPa
and 4314 K, much higher pressure and temperature than the
85 GPa and 3400 K suggested by the QHA.

By fitting the Fourier transform of the velocity autocor-
relation function to obtain the phonon quasiparticles, we
obtained the vibrational DOS at 3000 K and calculated cor-
responding free energy. The free energy difference between
hcp and bcc phases calculated by the TDI method is much
smaller than that derived by QHA and agrees well with
the phonon quasiparticle method, consistent with our predic-
tions of a larger hcp domain and higher hcp-bcc transition
pressures.

We calculated the shock Hugoniot curve and found it to
be consistent with previous shock experiments. Our Hugoniot
crosses the solid-solid phase boundary at 200 GPa and 4000 K
with a small drop in temperature and encounters the melting
line at 235 GPa and 4900 K. Previous shock Hugoniot experi-
ments that predict a lower pressure for the onset melting from
sound speed measurements may correspond to a case of cold
melting, followed by recrystallization, yielding a premature
measurement of the melting point.

Our melting line shows good agreement with the two-
phase method and heat-until-it-melts simulations predictions
<6000 K and is lower than that predicted by TDI simulations
using the empirical MEAM. Our derived melting temperatures
extend the melting curve of beryllium up to a pressure of
1600 GPa.

We computed isentropes in the liquid and solid phases and
found them to be shallower than our melting curve in the
pressure-temperature space. We predict the thermodynamic
path of a hypothetical quasi-isentropic ramp compression ex-
periment. Starting with a liquid isentrope, it would follow
the melting line while the sample is in a solid-liquid mixed
state before entering the solid phase. We predict Be to re-
main in a solid-liquid mixed state to be present over a large
temperature interval of 7000 K. Based on the canonical value
for the entropy of fusion 0.9 kB/atom, one can expect the
solid-liquid state for other materials to be present over several
thousand Kelvin. The magnitude also depends on the shape of
the melting curve.
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