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Simple formulas of directional amplification from non-Bloch band theory
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Green’s functions are fundamental quantities that determine the linear responses of physical systems. The
recent developments of non-Hermitian systems, therefore, call for Green’s function formulas of non-Hermitian
bands. This task is complicated by the high sensitivity of energy spectrums to boundary conditions, which
invalidates the straightforward generalization of Hermitian formulas. Here, based on the non-Bloch band theory,
we obtain simple Green’s function formulas of general one-dimensional non-Hermitian bands. Furthermore,
in the large-size limit, these formulas dramatically reduce to finding the roots of a simple algebraic equation.
As an application, our formulation provides the desirable formulas for the defining quantities, the gain and
directionality, of directional amplification. Thus our formulas provide an efficient guide for designing directional
amplifiers.
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The responses of a physical system are generally propor-
tional to a sufficiently weak perturbation, which is captured
by the Green’s functions. Whereas their explicit formu-
las are well known for Hermitian energy bands, recent
progresses in non-Hermitian systems call for their general-
izations. This seemingly straightforward task is hindered by
the non-Hermitian skin effect [1–7], meaning the exponential
localization of most eigenstates to the boundaries. This effect
causes a high sensitivity of Green’s functions to the boundary
condition, invalidating a straightforward extension of Hermi-
tian formulas. It is the purpose of this Letter to obtain general
formulas of non-Hermitian Green’s functions.

The problem can be simply phrased. Let us consider a
general non-Hermitian Hamiltonian H of one-dimensional
(1D) lattice with length L, with translational symmetry Hi j =
Hi+1, j+1 (for i, j = 1, 2, . . . , L − 1). For example, if we take
Hi,i±1 = t1, Hi,i±2 = t2 ∓ γ /2, Hii = iκ and all other matrix
elements zero, H can be shown pictorially as Fig. 1(a). We
take an open-boundary condition (OBC) at the two ends [8].
Our goal is to find explicit formulas for the frequency-domain
Green’s function matrix

G(ω) = 1

ω − H
. (1)

Although Green’s functions have recently been studied to
extract non-Hermitian topology [9–11], their general and
explicit formulas have been lacking. As we will see, this
seemingly trivial goal is difficult, if not impossible, to
achieve from the standard Brillouin zone (BZ) and Bloch-
band framework. Here, we will obtain the G matrix from
the non-Bloch band theory [1,12], which is based on the
generalized Brillouin zone (GBZ) originally introduced to
understand non-Hermitian topology [1,3,12–24]. We obtain a
simple integral formula for all the matrix elements Gi j (ω). In
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particular, for the end-to-end Green’s functions, GL1 and G1L,
our integral formula reduces in the large-L limit to

GL1(ω) ∼ [βM (ω)]L, G1L(ω) ∼ [βM+1(ω)]−L, (2)

where β j=1,...,2M are the roots of h(β ) = ω ordered as |β1| �
· · · � |β2M |. Here, h(β ) denotes the Bloch Hamiltonian of
H , under the notation β ≡ eik , which takes the general form
of h(β ) = ∑M

n=−M hnβ
n with coefficients hn = Hi,i+n, with M

being the hopping range. For example, for the model Fig. 1(a),
we have M = 2 and

h(β ) =
(

t2 + γ

2

)
β−2 + t1β

−1 + iκ + t1β +
(

t2 − γ

2

)
β2.

(3)
As we will show, the presence in Eq. (2) of the middle two
roots, namely the Mth and (M + 1)th of the 2M roots, reflects
the GBZ origin of Eq. (2).

Among various applications, our formulas are important
for directional amplifiers (or nonreciprocal amplifiers). In
such devices, signals are amplified in a preferred direction
and suppressed in the reversed direction, which protects the
signal sources; such a feature is essential to a wide range of
applications in classical and quantum information processing
[25–42]. Irrespective of device details, their dynamics is gen-
erated by effective non-Hermitian Hamiltonians [36–50], and
the gain and directionality are given by the Green’s function
[36,37,43]. To be precise, directional amplification occurs
when |Gi j (ω)| � 1 while |Gji(ω)| � 1 for a certain pair
(i, j), meaning that an ω-frequency signal is amplified from
j to i, while the back-propagation from i to j is suppressed.
Although brute force calculation of the Green’s function is
viable for few-mode cases, it becomes inconvenient for many-
mode amplifiers taking the shape of a 1D chain; such 1D
amplifiers have the advantage of unlimited gain-bandwidth
product without fine-tuning [46,47]. Our Green’s function
formulas tell their gain and directionality in a simple fashion.

Integral formulas of Green’s function. Numerically, Gi j (ω)
follows an exponential law with respect to |i − j|. For
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FIG. 1. (a) Hamiltonian H , with open-boundary condition
(OBC) at the two ends. (b) |GL1| and |G1L|. The corresponding curve
represents Eq. (9) and Eq. (10), with |K| = 0.292 and 0.619, respec-
tively. (c) |G40, j | for L = 80 (dots). Blue curve represents Eq. (8).
For (b) and (c), parameters are t1 = t2 = 1, γ = 4/3, κ = −0.8, and
ω = −1.7. (d) An open quantum system whose effective Hamilto-
nian is (a). Gain and loss are denoted by Lg,l and the external signals
by εi.

example, the end-to-end Green’s functions for our specific
model [Fig. 1(a)] have the following large-L behaviors:

|GL1(ω)| ∼ (α→)L, |G1L(ω)| ∼ (α←)L, (4)

which are displayed in Fig. 1(b). Knowing α→ and α← is
important to understanding and designing directional amplifi-
cation. The condition for rightward amplification, |GL1| � 1
and |G1L| � 1, is to require α→ > 1 and α← < 1; similarly,
the condition for leftward amplification is to require α→ <

1, α← > 1. Remarkably, such 1D amplification does not suf-
fer from the standard limitation of gain-bandwidth product,
because large gain is possible for large L, while the bandwidth
is independent of L [46,47].

The values of α→ and α← can be derived from the gen-
eral formulas of Gi j (ω) to be obtained below. To derive
the general Gi j (ω), a plausible starting point is the spec-
tral representation (ω − H )−1 = ∑

n(ω − En)−1|ψnR〉〈ψnL|,
where En and |ψnR(L)〉 are the eigenvalues and normal-
ized right (left) eigenvectors of H under OBC, namely,
H |ψnR〉 = En|ψnR〉, 〈ψnL|H = 〈ψnL|En. Moreover, it is tempt-
ing to switch to the BZ and conjecture that

Gi j (ω) =
∫ 2π

0

dk

2π

eik(i− j)

ω − h(k)
. (5)

With the notation β = eik , BZ is the unit circle and the integral
becomes

Gi j (ω) =
∫

|β|=1

dβ

2π iβ

β i− j

ω − h(β )
. (6)

An immediate difficulty is seen after using the residue
theorem, which leads to GL1 ∼ (βa)L, with βa being the
largest-modulus root of ω − h(β ) = 0 inside the unit circle.
This would always imply α→ = |βa| < 1 and forbids any
directional amplification. Similarly, one would have α← =
1/|βa′ | < 1, with βa′ being the smallest-modulus root outside
the unit circle. In fact, Eq. (6) is generally valid only in
Hermitian cases, as will become clear below.

The problem with Eq. (6) is the assumption of the valid-
ity of Bloch band theory. In fact, a unique non-Hermitian
phenomenon is that, for a broad class of non-Hermitian
Hamiltonians, all the eigenstates are localized at the bound-
aries, which is known as the non-Hermitian skin effect [1–7].
This effect suggests that we should remove the usual Bloch-
band restriction |β| = 1. Indeed, it has been found that when
β varies in a closed curve known as the GBZ in the complex
plane, the trajectory of h(β ) is exactly the OBC energy band
[1,12]. Note that, if β varies in the BZ (|β| = 1), the h(β )
trajectory is the periodic-boundary-condition (PBC) energy
band, which is generally different from the OBC energy band.
In Hermitian cases, GBZ reduces to the BZ, being consistent
with the fact that PBC and OBC bands are the same. The
equation that determines the GBZ was found in Refs. [1,12];
we recall their final result below without reproducing the tech-
nical derivations. For a hopping range M, h(β ) = E is a 2Mth
order equation with roots β1(E ), β2(E ), . . . , β2M (E ), which
are ordered as |β1| � |β2| � · · · � |β2M |. The GBZ equation
reads [1,12]

|βM (E )| = |βM+1(E )|, (7)

which is essentially a single-variable equation because βM ,
βM+1, E are related by h(βM ) = h(βM+1) = E . The βM and
βM+1 solutions form a closed loop in the complex plane,
which is the GBZ, and the E solutions form the OBC energy
bands. Examples of GBZ are shown in Figs. 2(a) and 2(e).

In view of the failure of BZ [e.g., invalidity of Eq. (6)], we
propose the following GBZ-based integral formula for Gi j :

Gi j (ω) =
∫

GBZ

dβ

2π iβ

β i− j

ω − h(β )
, (8)

which is a main result of this Letter. Its proof is provided in the
Supplemental Material [53]. In practice, this integral is highly
convenient to evaluate by the residue theorem, which reduces
it to a sum at several roots of h(β ) = ω. This simplification
is enabled by the vital fact that the GBZ is always a closed
loop [1,12,15]. A numerical confirmation of Eq. (8) is shown
in Fig. 1(c). Irrespective of |i − j| being large or small, the
formula is always precise for i, j not too close to the two ends.
At the two ends, because of the boundary effect, a factor K of
order unity has to be included:

GL1(ω) = K
∫

GBZ

dβ

2π iβ

βL−1

ω − h(β )
, (9)

G1L(ω) = K
∫

GBZ

dβ

2π iβ

β−(L−1)

ω − h(β )
. (10)
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FIG. 2. (a) GBZ (red solid loop) and BZ (blue dashed circle). β1,2,3 are roots of h(β ) = ω for κ = −0.1 and ω = 4 (β4 is outside this
region). When there exists a root in the colored region inside GBZ but outside BZ, rightward amplification occurs. (b) |β2| as a function of
κ, ω. (c) α→ from Eq. (4). (d) α→ and |β2| along the cut κ = −0.1 [dashed line in (c)]. (e) The same as (a) except that ω = −3. When there
exists a root in the colored region inside BZ but outside GBZ, leftward amplification occurs. (f) |β3|−1. (g) α←. (h) α← and |β3|−1 along the
cut κ = −0.1. Parameter values are t1 = 2, t2 = 0.3, and γ = 0.3.

Now Eq. (2) can be derived as follows. Ordering the roots
of h(β ) = ω as |β1| � |β2| � · · · � |β2M |, one can prove that
β1, . . . , βM are enclosed by the GBZ, while βM+1, . . . , β2M

are not. To see this, suppose that we vary ω in the complex
plane (though ω is real valued for physical applications). As
long as ω stays away from the OBC energy spectrum EOBC,
the roots βi’s cannot touch the GBZ because GBZ generates
EOBC. Therefore, the number of roots enclosed by GBZ is
independent of ω. To determine this number, we consider the
|ω| → ∞ limit, in which either the βM or β−M term domi-
nates h(β ) and there are M roots with |β| ∼ |ω|1/M → ∞, and
also M roots with |β| ∼ |ω|−1/M → 0. Therefore, for any ω,
there are M roots β1,2,...,M inside the GBZ (for a more rigorous
proof, see Refs. [51,52]). Now Eq. (9) and Eq. (10) can be
simplified by the residue theorem. For large L, we obtain
Eq. (2); in other words,

α→ = |βM (ω)|, α← = |βM+1(ω)|−1. (11)

Therefore, the middle two roots of h(β ) = ω, βM and βM+1,
determine the gain and directionality, leading to a surpris-
ing simplification. The indices M and M + 1 are difficult
to understand from the BZ; they reflect the GBZ origin of
Eqs. (2) and (11). Equations (8)–(11) are the central results
of this work. For multiband systems, h(β ) is a matrix, and
Eq. (11) remains applicable with β j=1,...,2M denoting the roots
of det[ω − h(β )] = 0 (see Supplemental Material [53]).

As an application to the model in Fig. 1(a), we show in
Fig. 2 a quantitative comparison of our theory with the ex-
tensive numerical results. For all the parameters investigated,
the numerical α→ and α← are in excellent agreement with
Eq. (11) with M = 2. Pictorially, rightward and leftward am-
plification occurs when a root locates in the colored area in
Figs. 2(a) and 2(e), respectively. Notably, the amplifier can

selectively amplify signals in a frequency-dependent direc-
tion. In our theory, this frequency-dependent directionality
is possible when the GBZ has intersections with the BZ
[Figs. 2(a) and 2(e)]. This picture provides a mechanism for
designing devices that efficiently integrate directional ampli-
fiers and frequency filters or splitters. On the other hand, the
simpler cases of rightward (leftward) unidirectional amplifi-
cation within the entire bandwidth are realized when the GBZ
is entirely outside (inside) the BZ (an example is shown in the
Supplemental Material [53]).

Intuitively, the nonreciprocal hoppings seem to favor
motion towards a preferred direction, causing directional am-
plification in that direction; e.g., when |t2 + γ /2| > |t2 −
γ /2| in Fig. 1(a), it seems that the directional amplification
should be rightward. However, as has been shown above,
leftward directional amplification is also seen in certain fre-
quency windows. Thus the simple intuition based on hopping
direction fails even qualitatively by telling a wrong amplifi-
cation direction. Our formulas of G are therefore not merely
a matter of quantitative precision, but also important for a
qualitative prediction.

Very recently, effort has been made to find OBC Green’s
function formulas from the conventional Brillouin zone [47].
Their results are applicable only to the simplest case where
the hoppings exist only between nearest neighbors, in which
case our results are consistent with theirs. It is highly chal-
lenging, if not impossible, to generalize their approach to
the cases beyond nearest-neighbor hopping [e.g., our model
Fig. 1(a)]. In contrast, our formulas are straightforward to
use for general hoppings. Note that the necessity of taking
OBC has been emphasized in recent insightful papers [46,47],
though general formulas were lacking. In fact, if one takes
PBC, the directional amplifiers become dynamically unstable,
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which results from the endless amplification during the cyclic
directional motion.

We note that our results are generalizable to more compli-
cated boundary conditions such as domain wall geometries,
for which GBZ remains definable [16]. Moreover, as the con-
cept of GBZ also applies to higher dimensions [13,19], we
expect that higher-dimensional generalizations of our formu-
las remain valid, though their applications rely on efficient
algorithms of GBZ, which are called for in higher dimensions.

Realization in open quantum systems. So far, the non-
Hermitian Hamiltonian is taken for granted. While it is
without question in classical platforms, for example, the
Green’s function is directly measurable in the topolectrical
circuits [6], we emphasize that our formulas are also appli-
cable to various open quantum systems. For example, we may
consider a 1D lattice of coupled bosonic modes, which can be
realized in various realistic systems such as optomechanical
cavities [38,54] and photonic lattices [43,55]. The bosonic
modes are denoted by a1, . . . , aL. For simplicity, let all modes
have the same bare frequency ω0, and each mode is coupled
to its neighbors with strengths t1 and t2 [Fig. 1(d)]. Each site
receives a coherent drive with amplitude εi(t ), which can rep-
resent an incoming signal to be amplified. The Hamiltonian
reads

H0 =
∑

i

[(t1a†
i ai+1 + t2a†

i ai+2 + H.c.) + ω0a†
i ai

+ εi(t )a†
i + ε∗

i (t )ai]. (12)

As the system is open, we consider the density matrix ρ,
whose time evolution follows the quantum master equation

ρ̇(t ) = −i[H0, ρ] +
∑

μ

(
LμρL†

μ − 1

2
{L†

μLμ, ρ}
)

, (13)

where Lμ’s are the dissipators describing the effects of envi-
ronment. While the physics is general, we take the following
set of dissipators for concreteness: {Lμ} = {Lg

i , Ll
i }, including

the single-particle gain Lg
i = √

γ ′a†
i and loss Ll

i = √
γ (ai −

iai+2). Feasible implementations of such dissipators have been
discussed in detail [36,43].

The most measurable quantity is the field coherence
ψi(t ) = 〈ai(t )〉 = Tr[aiρ(t )]. It follows from Eq. (13) that
they evolve under an effective non-Hermitian Hamiltonian H
(see Supplemental Material [53]):

ψ̇i = −i
∑

j

Hi jψ j − iεi. (14)

The same Eq. (14) also generally arises in other physical
platforms of directional amplification. Our results will be
independent of specific implementation and applicable to a
general H . For the specific model in Fig. 1(d), H is found
to be Fig. 1(a) (see Supplemental Material [53]) [56], with
κ = γ ′

2 − γ .
Let us introduce the vector notation �ε = (ε1, . . . , εL )T , and

similarly for �ψ . For a signal �ε with a frequency ω, �ε(t ) =
�ε(ω) exp(−iωt ), the resultant field is �ψ (t ) = �ψ (ω) exp(−iωt )
whose amplitude is

�ψ (ω) = G(ω)�ε(ω), G(ω) = 1

ω − H
. (15)

To simplify notations, we shall measure the frequency with
respect to ω0, namely, rename ω − ω0 as ω. Mathematically,
this is equivalent to taking ω0 = 0. As such, negative ω de-
notes frequencies lower than ω0.

It is now evident that the Green’s function matrix G deter-
mines the amplification. For a signal entering the j site, with
the only nonzero component of �ε being ε j , the induced field at
i site is ψi(ω) = Gi j (ω)ε j (ω). Note that, in the input-output
formalism of amplification [57], the scattering matrix S is
not exactly the same as, but has a simple relation to, the
Green’s function: Si j (ω) = δi j − iμiμ jGi j (ω), with certain L-
independent coefficients μi, j [37,46,47]. Therefore, S1L (SL1)
is simply proportional to G1L (GL1), and it suffices to focus
on G.

Discussions. We have obtained general formulas of the
Green’s function for 1D non-Hermitian systems. As a prac-
tical application, our results serve as simple formulas of the
gain and directionality of directional amplification, which
provide an efficient guide for designing high-quality direc-
tional amplifiers. The general applicability of our formulas
is independent of the specific physical platform. Moreover,
in view of the versatile roles of the Green’s function in Her-
mitian systems, the general formula of the Green’s function
obtained here is expected to have various applications in non-
Hermitian bands. For example, it will be useful in studying
the interaction effects that are significant in many open hybrid
systems.
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