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The quest for nonequilibrium quantum phase transitions is often hampered by the tendency of driving and
dissipation to give rise to an effective temperature, resulting in classical behavior. Could this be different when
the dissipation is engineered to drive the system into a nontrivial quantum coherent steady state? In this work
we shed light on this issue by studying the effect of disorder on recently introduced dissipation-induced Chern
topological states, and examining the eigenmodes of the Hermitian steady-state density matrix or entanglement
Hamiltonian. We find that, similarly to equilibrium, each Landau band has a single delocalized level near its
center. However, using three different finite-size scaling methods we show that the critical exponent ν describing
the divergence of the localization length upon approaching the delocalized state is significantly different from
equilibrium if disorder is introduced into the nondissipative part of the dynamics. This indicates a different type
of nonequilibrium quantum critical universality class accessible in cold-atom experiments.
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Introduction. Recent years have seen a surge of interest
in the driven-dissipative dynamics of quantum many-body
systems [1,2]. Of particular interest is the possibility of
new nonequilibrium quantum critical phenomena. However,
typically far-from-equilibrium conditions give rise to an effec-
tive temperature governing the long time physics, and leading
to classical criticality. This stands in line with the usual per-
ception of driving and dissipation as causing decoherence and
destroying subtle quantum phenomena. This point of view
has been challenged by recent works showing how coupling
to an environment could be engineered to drive a system
towards desired steady states displaying quantum correlations
[3–9], such as nonequilibrium topological states [10–23]. In
particular, Refs. [18,19] introduced a protocol, realizable with
cold atoms, for purely dissipative dynamics which approaches
at a finite rate a mixed steady state as close as desired to a pure
topological state. Yet, the resulting topology is encoded in the
Hermitian steady-state density matrix, giving rise to the same
topological classes as in equilibrium [10–12,15,18,21,23–34].
Could this new type of engineered driving still lead to new
quantum nonequilibrium criticality?

Every natural system exhibits imperfections and disorder.
In equilibrium, it has long been recognized that disorder is
actually essential for stabilizing the most basic topological
phase, the integer quantum Hall state [35]. Disorder localizes
all states in a Landau level except one at energy Ec. The
wave-function localization length diverges as one approaches
it as [36,37]

ξ (E ) ∼ |E − Ec|−ν, (1)

with a critical exponent ν governing the plateau transition.
Lately, a debate arose regarding the theoretical value of ν

[38–49], and its relation to experiment [50–52]; the currently
accepted value is 2.5–2.6.

In this work we study the interplay between disorder
and the recipe of Refs. [18,19] for dissipatively inducing
Chern-insulator states, through the effects of disorder on the
eigenmodes of the steady-state density matrix, which is ex-
perimentally measurable in cold atoms [53–57]. This is thus
a Hermitian localization problem, unrelated to disordered
non-Hermitian Hamiltonians [58,59]. We show that disorder
in the system-bath coupling leads to the same universality
class as in equilibrium, while disorder perturbing the system
Hamiltonian is not. We employ three different finite-size scal-
ing (FSS) methods, based on (a) the number of conducting
states [48,60]; (b) the local Chern marker [61]; and (c) the
transfer matrix Lyapunov exponent [37,47]. The final results
are presented in Table II; all methods show that the out-of-
equilibrium ν is larger by 0.5–0.6 than equilibrium, hinting at
a different universality class.

Recipe. We now briefly recall the recipe for the dissipa-
tive creation of topological states, which is comprehensively
described in Ref. [18]. Suppose we have a “reference
Hamiltonian,” H ref = ∑

i, j href
i j c†

i c j = ∑
λ εref

λ c†
λcλ (i, j being

real space indexes in two dimensions, and λ an eigenvalue
index, which, in the clean case, would correspond to the
band number and lattice momentum), with some desired (e.g.,
topologically nontrivial) gapped ground state where only low-
lying states (λ � λ0) are filled. Rather than implementing
H ref as the system Hamiltonian, one may set the system
Hamiltonian to zero and employ dissipation to drive the
system into a steady state which is close to the ground
state of H ref . For this one takes a system consisting of
two types of fermions (e.g., cold-atom hyperfine states),
with respective creation operators a†

i (system) and b†
i

(bath). Both fermion species feel a lattice potential in
the xy plane, but the bath b fermions could also es-
cape in the z direction. Besides that, the Hamiltonian of
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TABLE I. Methods parameters: W is the disorder strength, L and Lx the system size in the y and x directions, respectively, Ng the grid
size (method I), M the number of disorder realizations, Leff

x the effective x length (method III), p the hopping range cutoff (method III,
nonequilibrium), μeff the effective chemical potential, and γ in/γ 0 the refilling rate in units of γ 0 = 2πν0t2.

Equilibrium Out of equilibrium

Method W Geometry L Lx Ng M Leff
x W μeff γ in

γ 0 Geometry L Lx p Ng M Leff
x

I 0.2 L × L 28–63 30 53000–740a 2 −3.6 0.2 L × L 35–63 25–31b 32000–290a

II 0.2 L × L 21–77 30000 2 −3.6 0.2 L × L 28–77 3000–1500c

III 0.2 L × Lx 14–210 2 × 107 5 108 5.5 −3.6 0.2 L × Lx 14–49 105 5 15000 1.3 × 106

aM depends on L [62].
bNg = 25 for L � 49 and Ng = 31 for L = 56, 63.
cM = 3000 for L � 63 and M = 1500 for L = 70, 77.

the a fermions is trivial, ideally featuring no hopping;
deviations from this will be described by a system Hamil-
tonian HS = ∑

i, j hS,i ja
†
i a j . Rather, the dynamics originates

from the system-bath coupling Hamiltonian, which is built
out of the matrix elements of the reference Hamiltonian. In
the rotating frame (with respect to the system and bath Hamil-
tonians) it acquires a time-independent form,

HSB =
∑
i, j

(
href

i j − μeffδi j
)
b†

i a j + H.c.

=
∑

λ

(
εref
λ − μeff

)
b†

λaλ + H.c., (2)

where μeff is an effective “chemical potential.” The util-
ity of the construction now becomes apparent: Suppose the
lowest energy band of the reference Hamiltonian is almost
flat (dispersionless). By tuning μeff to its center (εref

λ ≈ μeff

for all λ � λ0), its states become weakly coupled to the bath
compared to states in the other bands, λ > λ0. Thus, all states
are evaporated rapidly, except those belonging to the lowest
band. One may then introduce another similar reservoir which
refills all trapped states at a uniform rate. Coupling the system
to these two reservoirs with different chemical potentials sta-
bilizes a nonequilibrium steady state close to the ground state
of the reference Hamiltonian, as we now explain.

Integrating out the baths one gets a Lindblad [63]
master equation, from which the Gaussian steady state ρ can
be obtained. The latter is completely characterized by the
single-particle density matrix Gi j ≡ tr(ρa†

i a j ), which obeys
a continuous Lyapunov equation [18,19,64]:

i[G, h∗
S] + 1

2 {G, γ out + γ in} = γ in, (3)

where γ in, γ out are non-negative Hermitian matrices that
describe the rates which particles enter/escape the system,
and h∗

S is the complex conjugate of the matrix hS . By
Fermi’s golden rule, γ out

λ = 2πν0(εref
λ − μeff )2 is diagonal in

the eigenbasis of the reference Hamiltonian [more generally,
as a matrix γ out = 2πν0(href − μeff1)2], with ν0 the density

of states of the b species (assumed constant), while γ in is
taken as state independent (proportional to the unit matrix).
For hS = 0, we can solve Eq. (3) explicitly:

G =
[

1 + 2πν0

γ in
(href − μeff1)2

]−1

. (4)

We see that G is diagonal in the eigenbasis of H ref , with
eigenvalues nλ = γ in/(γ in + γ out

λ ) representing their mean
occupation. The coupling to two reservoirs with different
chemical potentials thus induced a Lorentzian nonequilibrium
distribution (in terms of the energies of H ref ), unlike the
equilibrium Fermi-Dirac distribution. G [or, equivalently, the
system-bath entanglement Hamiltonian − ln(ρ)] has a similar
band structure to H ref (with the highest occupancy band of
G corresponding to the lowest energy band of H ref ), which
is amenable to topological classification [10–12,15,18,19,28].
For maxλ�λ0 (γ out

λ ) � γ in � minλ>λ0 (γ out
λ ) we get nλ�λ0 ≈ 1,

nλ>λ0 ≈ 0, as desired: The steady state is then close to the
ground state of H ref at zero temperature, and will therefore
have the same topological index. This motivates the study of
the eigenmodes of G and their localization properties in the
presence of disorder.

Localization transition. This work compares the
localization quantum phase transition of two systems. The
first is the equilibrium Hofstadter model [65] for the integer
quantum Hall effect on a square lattice:

HH=t
∑
rx,ry

e2π iαry a†
rx+1,ry

arx,ry+a†
rx,ry+1arx,ry+H.c., (5)

where we take t = 1, α = 1/7. The second system is the
out-of-equilibrium analog, built using the recipe described
above [18,19]: The Hofstadter Hamiltonian (whose low-
est band is naturally almost flat) is taken as the reference
Hamiltonian H ref = HH , while HS = 0. To study the
localization phase transition we introduce disorder. In
equilibrium we add a term HD = ∑

rx,ry
wrx,ry a

†
rx,ry

arx,ry ,
where wrx,ry ∈ [−W,W ] are independent and uniformly

TABLE II. Summary of the results for the critical exponent ν, in and out of equilibrium.

Method I II III

Equilibrium 2.58 ± 0.04 2.26 ± 0.04 2.53 ± 0.03
Nonequilibrium 2.99 ± 0.10 2.91 ± 0.06 Not convergent, higher than equilibrium
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FIG. 1. Log-log plot of 〈Nc/Nb〉 as a function of L (system size),
with Nc the number of conducting states and Nb = αL2 (α = 1/7)
the total number of states per band. Dashed lines represent linear fits
with L � 28 in equilibrium and L � 35 out of equilibrium. Insets:
residual plots.

distributed. Out of equilibrium, there are two options for
introducing the same disorder term, realizable in cold atoms
using the setup introduced in Refs. [18,19]: One may either
(a) add HD to H ref while keeping HS = 0, by adding a random
component to the laser beam which drives the on-site a → b
transition in HSB, using, e.g., a speckle pattern [66]; (b) keep
H ref = HH and set HS = HD, by adding a random component
to the optical lattice potential of the a atoms or to the optical
potential confining them to the lattice plane. We find that in
both cases the disorder causes a nonequilibrium steady-state
localization phase transition of the eigenmodes of G. We can
define the localization length of an eigenmode of G by the
exponential decay of its envelope, in the same way it is defined
for the eigenmodes of H in equilibrium [36,37]. Similarly to
Eq. (1), it behaves as ξ (n) ∝ |n − nc|−ν , where now it depends
on the eigenvalue of G, that is, the occupation n (instead of
the energy E ). nc is the critical occupation, which replaces
the critical energy Ec. In this work we will concentrate on the
band of highest occupation, akin to the lowest Landau band in
equilibrium [see, for example, the bottom panel of Fig. 2(b)].

Does ν take the same value as in equilibrium? In the first
case the answer is yes; since HS = 0, G is still given by
Eq. (4). Thus, even in the presence of disorder, href and G
share the same eigenvectors, hence the same ν [62]. This ar-
gument does not hold in the second scenario (disorder in HS),
since G and href have different eigenvectors. Here we need to

FIG. 2. The average local Chern number (a) in and (b) out
of equilibrium. Insets: scaling data collapse. Bottom panels: the
seven energy bands in equilibrium, and occupation bands out of
equilibrium (note the different scales). The band which is investi-
gated is marked in red and the others in blue.

resort to numerical solution of Eq. (3). We will investigate
ν using three FSS methods. For each we first calculate ν

in equilibrium (disordered Hofstadter model), and then out
of equilibrium (H ref = HH and HS = HD). Again, while in
equilibrium we examine the properties of the Hamiltonian
(e.g., eigenvector localization length, Chern number), out of
equilibrium we investigate the same properties, which are now
obtained from G instead of the Hamiltonian. While the band
structure in equilibrium depends only on α and the disorder
strength W , out of equilibrium it also depends on γ in and μeff .
The results were found not to be sensitive to their particular
values, as long as they are chosen so that the disorder broadens
the bands more than their clean width but less than their sep-
aration [62]. The parameter values are summarized in Table I,
and the final results in Table II.

Method I. Following Ref. [48,62], we calculate the
critical exponent in equilibrium by the scaling of the number
of conducting states, Nc,

Nc(L) ∝ L2−1/ν, (6)

where L is the system size and ν is the critical exponent.
Working with a L × L Hofstadter model with periodic bound-
ary conditions, we calculate Nc by counting the number of
single-particle states with nonzero Chern number, and aver-
age the result over M different disorder realizations. In the
presence of disorder, the Chern number can be defined as [67]

CL(ψ ) = − 1

π

∫
Im〈∂θx ψ |∂θyψ〉dθxdθy, (7)

where ψ (θx, θy) is the single-particle state and the integral
is over the space of twisted periodic boundary conditions,
defined by the phases 0 � θx, θy � 2π . For efficient calcula-
tion, we use the method suggested in Ref. [68], employing
grid size Ng × Ng [62]. Corrections to the scaling in Eq. (6)
fade quickly with increasing the system size, hence may be
ignored by excluding low system sizes. The nonequilibrium
generalization is straight-forward: We calculate the Chern
number of eigenstates of G (instead of H) by introducing the
twisted boundary conditions θx, θy into H ref . Then, we count
the conducting states within the highest occupation band. Re-
sults are presented in Fig. 1.

Method II. Here we study FSS of the topological index
[36,62]. In equilibrium, we define the total Chern number
CL(E ) as the sum of the Chern numbers defined in Eq. (7)
over all single-particle states ψ with energy below E (hence
it varies between 0 when E is below the lowest band, to −1
when it is in the gap between it and the next band). In the
vicinity of the critical energy Ec, it scales as

CL(E ) = f
(
(E − Ec)L1/ν

)
, (8)

We note that the transition will be sharp in the thermodynamic
limit. For a more efficient estimation of CL(E ), we will use the
local Chern marker [61,69] with open boundary conditions,

C(rx, ry) = −2π i〈rx, ry|X̃Ỹ − Ỹ X̃ |rx, ry〉, (9)

where X̃ , Ỹ are the projected lattice position operators: X̃ =
P(E )XP(E ), Ỹ = P(E )Y P(E ), P(E ) being a projection
onto states with energy below E . The local Chern marker
fluctuates around the value of the Chern number in the bulk
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of the system, but takes different values on the edges, so that∑
rx,ry

C(rx, ry) = 0. Thus, we average C(rx, ry) over the bulk,
while excluding 1/4 of the sample length from each side,
CL(E ) = (4/L2) × ∑

L/4�rx,ry�3L/4 C(rx, ry), and average the
result over M different disorder realizations. As in method
I, irrelevant corrections exist, but their influence decreases
rapidly with increasing system size. We then search for ν, Ec,
and the coefficients of a polynomial approximating f [62],
which minimize the chi-squared deviation of CL(E ) from the
scaling Eq. (8). Out of equilibrium, we calculate CL(n), the
Chern number of eigenstates of G with occupation larger
than n, using Eq. (9) with the appropriate projector P(n). The
results are presented in Fig. 2.

Method III. Here we perform FSS of the localization length
ξ . Following Ref. [70] (see also [62]), we calculate the local-
ization length with the transfer-matrix method: We consider
a long cylinder of size Lx × L, Lx � L. Let ψ be an eigen-
value of the Hamiltonian with energy E . From the equation
Hψ = Eψ we can construct the 2L × 2L transfer-matrix Trx ,
defined as (

ψrx+1

ψrx

)
= Trx

(
ψrx

ψrx−1

)
, (10)

where ψrx is a vector with L elements ψrx,ry=1···L. Being
symplectic, the eigenvalues of each transfer matrix come in
reciprocal pairs {λ, λ−1}. The same applies to their product,
T = ∏Lx

rx=1 Trx . The Lyapunov exponent (inverse localization
length) is defined as

�̃ ≡ ξ−1 = lim
Lx→∞

ln(λmin)

Lx
, (11)

where λmin is the smallest eigenvalue of T that is larger
than unity. We have applied the Gram-Schmidt process to the
columns of T every seven multiplications to reduce numerical
error. The results are presented in Fig. 3(a). As in the previ-
ous method, ν can be extracted by finding a function f that
minimizes the chi square of the dimensionless Lyapunov
exponent � ≡ L�̃. However, since the data contains strong
corrections to scaling (typical for the long cylinder geometry),
we account for a single irrelevant scaling field [62].

The nonequilibrium generalization from �(E ) to �(n) is
more complicated compared to the previous methods. First,
unlike H , G has nonlocal hopping terms which prevent us
from constructing a transfer matrix. This requires introducing
a cutoff p on the hopping range in the x direction, and setting
terms of range larger than p to zero. From this perspective it
is advantageous to construct the transfer matrices using G−1,
since Eq. (4) shows that for HS = 0 its elements have a finite
range p = 2. We have verified numerically that the elements
of G−1 decay exponentially with range for HS = HD, making
truncation at p = 5 a very good approximation [62].

A second issue is that in the presence of disorder the
structure of G−1 can only be obtained numerically, by solv-
ing Eq. (3). Thus, we cannot analytically obtain the transfer
matrix at a specific x position, and instead, we can only gener-
ate the entire G−1 matrix, which is impractical for Lx � 1. As
a solution, we use the scheme depicted in Fig. 3(c): We gen-
erate a G−1 matrix of size Lx × L for some large but practical
Lx (with periodic boundary conditions) [62]. We repeat this
with M disorder realizations, and denote the resulting matrices

FIG. 3. Dimensionless Lyapunov exponent (a) in and (b) out of
equilibrium. Insets: scaling data collapse [in (a) the vertical axis
includes corrections to scaling and ur is the relevant scaling field
[62]]. (c) Illustration of the nonequilibrium transfer matrices con-
struction. (d) Comparison of the critical exponent in and out of
equilibrium, without corrections to scaling. The horizontal axis rep-
resents the number data points that were excluded from each side of
the critical point in the chi-squared minimization.

as {(G−1)m}M
m=1. From each (G−1)m we extract K transfer

matrices (K = Lx − 2c, excluding the c = 7 matrices closest
to each end) by imposing a cutoff p on the hopping range,
as explained above. We then define the sequence {Tn}MK

n=1,
with T(n−1)K+1, . . . , TnK the transfer matrices extracted from
(G−1)n. The effective system length is thus Leff = MK . The
mismatch between transfer matrices that originate from dif-
ferent G−1 (e.g., TK and TK+1) introduces an error, but it can
be reduced by increasing Lx [62].

The results are shown in Fig. 3(b). The numerical effort
per sample is still much higher in the nonequilibrium case,
limiting our ability to reduce statistical error by either sample
averaging or using large system sizes. Hence, we can neither
implement corrections to scaling nor drop small systems,
and therefore cannot determine ν as accurately as before.
We thus resort to extracting the uncorrected nonequilibrium
exponent and comparing it with a similarly obtained equilib-
rium value, to appreciate the significance of their difference
[see Fig. 3(d)].

Results and discussion. The results are summarized in
Table II. In equilibrium they are generally in line with pre-
vious studies [38–49]. For method I, the obtained ν = 2.58 ±
0.04 is somewhat higher than the value ν = 2.50 ± 0.01 re-
ported in Ref. [48] (also for α = 1/7). This might be related
to the fact that there the disorder Hamiltonian has been
projected to the clean lowest band. In method II, the result
(ν = 2.26 ± 0.04) is smaller than recent estimates of the crit-
ical exponent, which seems to be a general feature of FSS
of a topological index [46,71]. Let us note that in any case
we are interested in the equilibrium-nonequilibrium differ-
ence, which is larger than this discrepancy. In method III,
upon including corrections to scaling we get ν = 2.53 ± 0.03,
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y = 0.44 ± 0.01, �(Ec) = 0.83 ± 0.01, with y the leading
irrelevant exponent. This is slightly smaller but still in agree-
ment with ν = 2.58 ± 0.03 obtained in Ref. [47] for the
Hofstadter model.

Out of equilibrium, methods I and II give rise to values
which are significantly higher than in equilibrium. The results
of method III are not convergent, but they still strongly suggest
that ν is higher than equilibrium by 0.5–0.6 [see Fig. 3(d)],
in agreement with the other methods. We have also verified
that our results are insensitive to the specific parameter values
[62]. All this points at a different type of nonequilibrium
universality class.

Let us reiterate that the single-particle density matrix
G is Hermitian. Furthermore, G−1 is local in space. The
locality is exact for hS = 0, where G−1 is essentially the
square of href [see Eq. (4)]. We have found that for disorder
in HS the elements of G−1 have distributions without fat
tails, and with averages and correlations which decay ex-
ponentially with distance [62]. Thus, our results indicate a
different type of universality class of the local Hermitian dis-
ordered G−1, which is rooted in the nonequilibrium nature of
the system.

The value of ν could be measured experimentally, by us-
ing the following protocol: (i) realize the cold-atoms setup
described in Ref. [18]; (ii) use a laser speckle [66] to introduce
disorder, either in the beam that induces the a → b transitions
(for disorder in H ref ), or in the beam that is responsible for the

confinement of the a atoms (for disorder in HS), as discussed
above; (iii) measure G as demonstrated in Refs. [53–57];
and (iv) repeat for different system sizes to extract ν

through FSS.
Conclusions. In this work we have investigated the

effects of disorder on dissipation-induced topological states.
We demonstrated the existence of nonequilibrium steady-state
localization phase transition similar to the integer quantum
Hall plateau transition. Using three FSS methods, we found
a significant difference between the value of the critical expo-
nent ν in and out of equilibrium when disorder is introduced
into the nondissipative part of the Lindbladian. This indicates
a different type of nonequilibrium quantum universality class,
despite the steady-state density matrix being Hermitian and
local. Our findings could be tested in cold-atom experiments.
In the future it would be interesting to investigate other types
of disorder (e.g., long range [72–74]), to attack the problem
using field theoretical methods [2,37], and to study the relation
between the steady state and the non-Hermitian [58,59,75]
decay towards it (a relation which is nontrivial out of equi-
librium [19]), as well as the possibility of new many-body
localization transitions [76,77].
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