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Metal-insulator transition in transition metal dichalcogenide heterobilayer moiré superlattices
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Moiré superlattices formed in two-dimensional semiconductor heterobilayers provide a new realization of
Hubbard model physics in which the number of electrons per effective atom can be tuned at will. We report on
an exact diagonalization study of the electronic properties of half-filled narrow moiré bands in which correlation
strengths are varied by changing twist angles or interaction strengths. We construct a phase diagram for the
bilayer, identifying where the metal-insulator phase transition occurs, estimating the sizes of the charge gaps
in the insulating phase, and commenting on the nature of the transition and the importance of subdominant
interaction parameters.
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I. INTRODUCTION

A moiré superlattice is formed when two or more van
der Waals layers are stacked with small differences in lat-
tice constant or orientation. When the isolated layers are
semiconductors or semimetals, the electronic properties of
the bilayer are accurately described by continuum models
that have the periodicity of the moiré superlattice, thereby
realizing moiré materials—artificial two-dimensional crystals
in which the lattice constant is on the moiré pattern scale.
One of the most attractive aspects of moiré materials is
that the longer periodicity allows the number of electrons
per effective atom to be tuned through large ranges with
electrical gates. When the moiré minibands are flat, elec-
tronic correlations are strong and can lead to new physics.
In magic-angle twisted bilayer graphene, for example, strong
correlations are manifested by insulating states surrounded by
superconducting domes [1–4] and quantum anomalous Hall
ferromagnets [5,6].

In this paper we report on an exact diagonalization
study of the moiré superlattices formed in transition metal
dichalcogenide (TMD) heterobilayers in which correlated in-
sulators and Wigner crystal states have already been observed
[7–13]. In heterobilayer systems, which have different two-
dimensional semiconductors on opposite sides of the junction,
there is an interval of energy near the band extremum within
which carriers are localized in one of the two layers. For ex-
ample, for WSe2 heterobilayers formed with either MoSe2 or
MoS2, the carriers at the top of the valence band are localized
in the WSe2 layer, but experience a periodic potential due
to the moiré pattern. Spin-valley locking in WSe2 then leads
to low-energy physics described by a Hubbard-like model
in which spinful electrons experience a periodic potential
whose extrema form a triangular lattice [14,15]. We limit our

attention to the case of one-electron per moiré period and
focus on the metal to insulator phase transition (MIT) [16,17]
that is expected to occur when interactions become strong
compared to moiré miniband widths.

The bilayer is described by a continuum model that de-
pends on moiré potential depth Vm and on the moiré period
aM (or equivalently the twist angle), which determine the
kinetic-energy scale WM and interaction energy scale UM .
Our main results are summarized by the phase diagram in
Fig. 1, which is controlled by the dimensionless parameters
Vm/WM and UM/WM . We find that the metal-insulator phase
transition points can be readily identified by calculating the
charge gap �c vs UM/WM for fixed VM/WM , as shown in
Fig. 1(a). Repeating these calculations at different modulation
strengths Vm yields the phase diagram shown in Fig. 1(b).
In order to emphasize the importance of a non-mean-field
theory treatment of the metal-insulator phase transition, we
have included an estimate for transition line obtained from the
Hartree-Fock method applied to a ground state without broken
translational symmetry. The insulating state is favored, as ex-
pected, at large Vm and UM but its stability is overestimated by
the Hartree-Fock calculation. Momentum-state occupation-
number distribution functions 〈�GS|nk|�GS〉 where |�GS〉 is
the many-body ground state, plotted as insets in Fig. 1(b),
clearly distinguish the two states by the presence or absence of
a Fermi surface (schematically represented as a green circle).
These numerical results clearly indicate that a MIT occurs at
half-filling in moiré materials, demonstrating that they are an
attractive platform for searches for superconductivity in doped
Mott insulators, and spin-liquid states on the insulating side
of metal-insulator phase transitions. Below we first explain
the technical details of our calculations and then discuss their
implications.
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FIG. 1. (a) Extrapolated charge gap vs UM/WM , for two values of the normalized moiré potential depth Vm/WM . Here WM = h̄2/(m∗a2
M )

is the moiré kinetic-energy scale and UM = e2/(εaM ) is the moiré interaction energy scale. (b) Phase diagram for a TMD heterobilayer vs
Vm/WM and UM/WM , the metallic and insulating phases are indicated in blue and green, respectively. Lines connect points estimated to be on
the metal-insulator phase-transition boundary calculated from exact diagonalization (dark green) and Hartree-Fock (light green). The insets
show the typical momentum distribution functions of each phase on a finite-size discrete momentum space mesh. The Fermi surface of the
metallic phase is schematically indicated by a circle. The top axis indicates the values of dielectric constant ε corresponding to a given UM/VM

for a heterobilayer twisted by θ = 2.5◦.

II. MOIRÉ BAND MODEL

The moiré Hamiltonian of twisted TMD heterobilayer
valence bands is [14]

H = − h̄2

2m∗ k2 + �(r), (1)

where �(r) is an external potential with moiré periodic-
ity. Experimental [18] and theoretical [19,20] values for
the effective mass of valence band monolayer WSe2 vary;
here we take m∗ = 0.35 m0. In the dominant harmonic ap-
proximation �(r) = 2Vm

∑3
j=1 cos(b j · r + ψ ), where b j =

kθ ( cos(2π j/3), sin(2π j/3)) and kθ = 4π/(
√

3aM ). In this
approximation the moiré modulation potential is completely
characterized by strength (Vm) and shape (ψ) parameters. The
potential strength Vm depends on heterobilayer and, when
strain effects are accounted for, also on twist angle. The shape
parameter ψ controls the relative depth of potential extrema
locations and, as shown in Ref. [15], strongly influences the
strength of particle-hole asymmetry relative to the half-filled
moiré band case considered in this work. For concreteness
we choose the value ψ = −94◦, estimated from ab initio
calculations for WSe2/MoSe2 in Ref. [14]. For this ψ the
valence band potential has a single maximum centered at the
AA positions of the moiré superlattice.

An example of the moiré minibands obtained by diagonal-
izing the Hamiltonian in Eq. (1) in a plane wave basis is shown
in Fig. 2(a). Clearly, the topmost valence moiré band is well
separated and flat in this case. The width of the topmost moiré
band, and the energy gap to the second moiré band are plotted
as a function of twist angle and shape parameter in Figs. 2(b)

and 2(c), respectively. The width increases with twist an-
gle but is almost ψ independent except near ψ = −60◦ and
ψ = −180◦, where the bands broaden. This property is ex-
plained by Fig. 2(c). Outside of the blue regions, the topmost
moiré miniband is not spectrally isolated, and any mapping
to a one-band Hubbard model is inaccurate. At both ψ =
−60◦ and ψ = −180◦, the shape parameter value imposed by

FIG. 2. (a) WSe2/MoSe2 moiré band structure for twist angle
θ = 2.5◦ and shape ψ = −94◦, showing the topmost isolated band.
(b) The bandwidth of the topmost band and (c) the energy gap to the
first remote band vs θ and ψ . In (c), the blue regions correspond
to triangular lattice generalized Hubbard models and the red re-
gions to honeycomb lattice generalized Hubbard models. Modulation
strength Vm = 11 meV was used in all illustrated calculations.
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emergent symmetries in the case of �-valley TMD homobi-
layers [21], the moiré potential has two identical maxima that
sit on honeycomb lattice sites, and it is therefore necessary
to retain at least two bands to model the low-energy physics.
As ψ is varied there is a smooth crossover between triangular
and honeycomb lattice limits, with intermediate values of ψ

providing a realization [15,22] of charge-transfer insulator
physics. In this paper we limit our attention to the one-band
Hubbard model case.

Using a harmonic oscillator approximation near the highest
extremum, we estimate that the moiré triangular lattice hop-
ping parameter t ∼ exp(−κ V 1/2

m /θ ), where κ is a constant,
and that the on-site Coulomb interaction U0 ∼ e2/(εaW ) ∼
(e2

√
θV 1/4

m )/ε, where aW is the width of the flat band Wannier
function and ε is the static dielectric constant. By varying
the values of θ , Vm, and ε, the ratios between interaction
strength and hopping can be tuned. Experimentally, the poten-
tial depth can be varied in situ by applying pressure [4,23] or
gate-controlled displacement fields [24], while the dielectric
environment can be modified by varying the carrier density of
surrounding graphene gates [25] and their separation from the
active layer.

III. MANY-HOLE HAMILTONIAN

Since our goal is to investigate the electronic properties
of moiré materials, we simplify the many-body problem by
projecting the continuum Hamiltonian to the Hilbert space of
the topmost moiré miniband:

H =
∑

k,σ

εk,σ c†
k,σ ck,σ

+ 1

2

∑

k,l,m,n

∑

σσ ′
V σσ ′

klmnc†
k,σ c†

l,σ ′cn,σ ′cm,σ , (2)

where c†
k,σ (ck,σ ) creates (destroys) a hole with momentum

k in valley σ , k, l, m, n are momentum labels, εk,σ is a flat
valence band single particle energy, and V σσ ′

klmn is a two-particle
matrix element

V σσ ′
klmn = 〈k, σ ; l, σ ′|V |m, σ ; n, σ ′〉. (3)

The Coulomb long-range interaction is given by V =
e2/ε|r1 − r2| and ε−1 is an interaction strength parameter
related to the two-dimensional system’s three-dimensional di-
electric environment. The V σσ ′

klmn matrix elements are sensitive
to the tails of the flat-band wave functions at positions away
from their maxima in the moiré unit cell. The size of these tails
is sensitive to the confinement potential at lattice sites, which
is weaker in the moiré material case than in atomic lattices.
For small twist angles the interaction physics is expected to
be accurately described by a model with only on-site inter-
actions. For larger angles, however, longer range Coulomb
interaction and nonlocal terms become more important (see
Supplemental Material for further comment [26]).

IV. METAL-INSULATOR TRANSITION

Our analysis is based on exact diagonalizations of Eq. (2)
with periodic boundary conditions applied to different finite
system sizes, limiting the number of momentum points in the

FIG. 3. (a) The many-body spectrum at half-filling for N = 9 as
a function of ε−1. The clear separation of two Hubbard bands for
strong interactions is visible, with 2N low-energy states. (b) The
energy gap between the ground state and the first excited many-
body state for systems with N = 9, 12, and 16. The gray-shaded
area indicates the region where the metal-insulator transition takes
place. The parameters used for these calculations were θ = 2.5◦

and Vm = 11 meV, corresponding to Vm/WM = 2.86. The top axis
indicates the values of UM/WM corresponding to a given ε−1.

discretized first Brillouin zone to N . We note that for half-
filling N is also the number of particles in the spinful system.
Typical results are illustrated in Fig. 3(a) where we plot the
lowest 1700 many-body energies relative to the ground state
as a function of ε−1 for N = 9. We see a set of 2N low-energy
states separated by a Hubbard gap to higher states at strong
interactions. This identifies a parameter range of insulating
states where the many-body physics can be described by a
spin model.

The picture of localized spins breaks down with decreas-
ing interaction strength and a transition to a metallic phase
is expected. Figure 3(b) shows the energy gap to the first
many-body excited state for system sizes N = 9, 12 and N =
16. For strong interactions, the total spin of the system is
size dependent with S = 0 for N = 12 and N = 16, and S =
3/2 for N = 9. The spectra for N = 9 and N = 12 show
level crossings around ε−1 ∼ 0.045, signaling a possible spin-
liquid intermediate phase with minimum total spin between
a Fermi liquid and the strong interaction limit, as predicted
for related models [27–29]. There is a level crossing in the
gray-shaded region (ε−1 ∼ 0.0175 − 0.025) in all three ge-
ometries, that we identify with the MIT. We have estimated
the ratio between on-site Hubbard interaction U0 and the
nearest-neighbor hopping integral t for the shaded region,
calculated from our model using Wannierization, obtaining
U0/t ∼ 7.9 − 9.9. This estimate is consistent with previous
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studies of the triangular Hubbard model [27–29]. For moiré
materials the precise value of U0/t is dependent on θ , Vm,
and ε, because of longer range hopping and nonstandard
interaction terms.

To examine the MIT more directly we evaluate the charge
gap �c, i.e., the difference between the energy to add a
particle and the energy to remove a particle from a given
ground state, to see if it remains finite in the thermodynamic
limit. The charge gap shown in Fig. 1(a) is defined as �c ≡
limN→∞ �c(N ), where

�c(N ) = E0(N + 1) + E0(N − 1) − 2 E0(N ). (4)

The values of �c for each potential strength Vm shown in
Fig. 1 were obtained from extrapolations of N = 4, 9, 16
results to N = ∞ (see Supplemental Material for further de-
tails [26]). The values obtained for the charge gaps in the
insulating region of our phase diagram are in the order of
tens of milielectronvolts, in agreement with results reported
in Refs [7,8]. As noted earlier, these charge-gap calculations
show clear metal-insulator phase transitions at positions that
can be accurately estimated. The insulating state is favored,
as expected, at large potential strengths and at smaller twist
angles, which decrease WM and produce a rapid decrease in
band width at a fixed Vm.

Metal-insulator transitions are more interesting when con-
tinuous but are usually first order [29–31]. In magnetically
frustrated systems such as the organic compounds [27,32]
metal-insulator transitions are often only weakly first order.
Some theoretical work [33,34] suggests that spin liquids
with a spinon Fermi surface could undergo continuous
metal-insulator phase transitions, with implications for finite
temperature behavior near the critical point. To address the
order of the metal-insulator transition in moiré materials, we
calculate the expectation value of the kinetic energy per parti-
cle, relative to the average energy of the band, T̃ = 〈T 〉/N −
Eav. This metallic bonding energy is maximized when inter-
actions are absent and is expected to be larger in magnitude
when the system is more weakly correlated. If the transi-
tion were first order this quantity would be discontinuous.
Figure 4(a) shows the evolution of T̃ with interaction strength.
At the system sizes we are able to study there is no
clear signature of discontinuous behavior, suggesting that the
metal-insulator phase transition in moiré materials is either
continuous, or only weakly first order. Figure 4(b) plots the
numerical first derivative of T̃ with respect to interaction
strength. Here we can see peaks for N = 9 and N = 12 in
the shaded area, while for N = 16 the derivative seems to
be continuous. This evidence, combined with the apparently
continuous vanishing of the charge gap �c vs UM/WM in
Fig. 1(a) clearly shows that the MIT in moiré materials is not
a simple strongly first-order phase change.

V. DISCUSSION

The theory of metal-insulator transitions in two or more
dimensions continues to be a challenge, partly because of the
absence of a clear order parameter. In the case of triangular
lattice systems, magnetic frustration in the insulating state
adds an additional complication. A standard way to approach

FIG. 4. (a) Expectation value of single-particle kinetic energy
relative to the flat-band average T̃ vs. ε−1 for several system sizes.
The gray shading indicates the approximate position of the MIT
as estimated by the charge-gap calculations. (b) Numerical first
derivative of (a), that reveals peaks for N = 9 and N = 12 at both
phase transitions. In these calculations θ = 2.5◦ and Vm = 11 meV,
corresponding to Vm/WM=2.86. The top axis indicates the values of
UM/WM corresponding to a given ε−1.

this problem theoretically is to study generalized single band
Hubbard models in particular lattice geometries. Some lay-
ered organic compounds are believed to be described by a
triangular lattice Hubbard model with on-site interactions and
nearest-neighbor hopping. In those systems an intermediate
spin-liquid state seems to appear [30,32,35,36] in the vicinity
of pressure-induced MITs. Previous numerical studies of the
frustrated Hubbard model motivated by these experiments
do identify the expected insulating (120◦-Néel state) and the
Fermi liquid states in the strong and weak on-site interac-
tion limits [27,29,31,37]. Between those phases an insulating
phase without apparent magnetic order appears in agreement
with experiment, separated from the metal by a first-order
transition [28,29,38]. Our calculations suggest that there is
also a delicate intermediate state close to the MIT line in
triangular lattice moiré materials and that the transition occurs
under experimentally realizable conditions. It is clear from
our numerical study that the moiré material metal-insulator
transition is not strongly first order, in agreement with known
properties of organic compound triangular lattice systems, in
which magnetic frustration plays an important role.

The principal difference between moiré materials and
atomic crystals is that the potential that attracts particles to
lattice sites is bounded in the former case, and unbounded
Coulomb ion-core attraction in the latter. In some cases
[15,22,39] the moiré potential can have two minima, and even
two-identical minima per moiré unit cell [21]. One signal of
this behavior is a relatively small splitting between the two
topmost moiré minibands. In these cases the moiré insulator is
more like a charge-transfer insulator than like a Mott-Hubbard
insulator, and the minimal model for the description of its MIT
includes at least two-bands. The boundary between Mott and
charge-transfer insulators is set by the band-structure shape
parameter ψ , as we show in Fig. 2.

Moiré materials are of special interest because of the
possibility they present for in situ, tuning of relevant pa-
rameters. Most important among these is the possibility
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of using gates to alter the carrier density and to measure the
chemical potential as a function of carrier density [40,41]. For
metal-insulator phase transitions, the implication is that the
charge gap at half-filling is directly measurable. Because the
band-width in all heterobilayer moiré materials is very sensi-
tive to twist angle, this knob can be used to prepare samples
that are in the neighborhood of the metal-insulator transition.
In situ tuning through the metal-insulator phase transition can
then be achieved using gates, or pressure, or by changing
gate screening properties. The prospects for unambiguous
experimental determination of the order of the metal-insulator
phase transition using transport [42,43] and chemical potential
measurements, and of the presence or absence of a spin-liquid
state are excellent, and would set the stage for careful studies
of weakly doped Mott insulators.

Note added. Recently, we became aware of two experi-
mental studies of the metal-insulator phase transition in moiré
superlattices on the arXiv, cited here [44,45].
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