
PHYSICAL REVIEW B 103, L241109 (2021)
Letter

Local Raman spectroscopy of chiral Majorana edge modes in Kitaev spin liquids
and topological superconductors
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The Raman scattering with local optical excitation from the Majorana edge modes of Kitaev spin liquids
and topological superconductors is studied theoretically. Although the effective one-dimensional model is
common between these two cases, the coupling to the electromagnetic field is different. It is found that the
Raman spectrum at low energy scales with ω3 in Kitaev spin liquids while it shows the gap in topological
superconductors. This is in sharp contrast to the infrared absorption, where the spectrum shows the gap in Kitaev
spin liquids, while it behaves as ∼ω2 in topological superconductors. This indicates that the electrodynamics of
Majorana edge modes depends on their higher-dimensional origins. A realistic estimate of the Raman scattering
intensity is given for α-RuCl3 as a candidate for a Kitaev spin liquid.
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Majorana fermions in condensed matter systems [1–5]
have attracted intensive interest recently. They are considered
as a promising candidate for robust quantum computation
with non-Abelian statistics [6–11]. Robustness comes from
the lack of coupling or weak coupling with the surrounding
systems. Majorana fermions are neutral particles and hence
are intuitively expected to be decoupled from the electro-
magnetic field, which makes their observation difficult. For
example, propagating Majorana modes are believed to exist in
very different systems including quantum spin liquids (QSLs)
[12,13] and topological superconductors (TSCs) [14–21]. In
QSLs, the Majorana fermions are neutral since they come
from spin operators, while their neutrality in TSCs is man-
ifested by their equal weight of electrons and holes at zero
energy. The origin of neutrality is that the Majorana field
operator c(x) satisfies the relation c†(x) = eiθ c(x), with θ

being some phase, and hence the density operator c†(x)c(x) =
eiθ c(x)2 is a numeric constant.

However, it has been shown in a previous study [22] that
the optical response of Majorana edge modes in TSCs is
nonzero. This is because of the existence of the Cooper pair
condensate. Then, this raises the question of whether an op-
tical response also exists for the Majorana edge modes in
QSLs. An analytically solvable model of QSLs is given by
Kitaev [12] which supports Majorana edge modes. There are
two types of excitations in this model: vortices and Majorana
fermions. The Raman scattering due to both of them in the
bulk has been investigated [23–25], while the infrared ab-
sorption is associated with both the vortices and Majorana
fermions [26]. However, the optical response of the edge states
remains an open question. Particularly, optical microscopy
and spectroscopy methods [27–29] have been successful in
detecting local optical responses with high spatial resolution
(up to a few nanometers [30,31]), which is ideal for the inves-
tigation of topological edge states [32,33].

In this Research Letter, we theoretically investigate the
Raman scattering in a Kitaev QSL with a magnetic field and
in a spinless p-wave superconductor (SC), both of which host
gapless chiral Majorana edge channels while the bulk energy
spectrum is gapped. In the QSL, we found that the edge chan-
nel induces Raman scattering with an intensity proportional to
ω3, ω being the photon frequency shift. We estimate a realistic
value of the intensity and find it to be detectable with current
local optical techniques. In contrast, the edge channel in the
p-wave SC does not induce Raman scattering unless h̄ω is
larger than the bulk gap. Such essential differences between
our results for QSLs and TSCs indicate that there does not
exist a general effective edge theory which is sufficient to
describe the electrodynamics of Majorana edge modes of var-
ious origins.

Quantum spin liquid. Consider the following Kitaev model
Hamiltonian [12]:

H =
∑
i,ν

Jνσ
ν
ri
σ ν

ri+dν
+ hνσ

ν
ri
, (1)

where ri is the displacement vector at site i on a honeycomb
lattice as shown in Fig. 1(a). Each site has three nearest neigh-
bors connected by vectors dν=1,2,3, respectively, and σ ν

ri
are

the spin operators at site i. When the external magnetic field
hν is small, the Hamiltonian for the low-energy sector can be
written in the Majorana representation [12,34]

H = iJν

2

∑
〈i j〉

cic j + iK

2

∑
〈i j〉′

cic j . (2)

Here, 〈i j〉 denotes nearest neighbors connected by d1,2,3,
while 〈i j〉′ are next-nearest neighbors as indicated by the
dashed arrows in Fig. 1(a). K is determined by hν . Note that
we have excluded the vortex excitations in Eq. (2) because
they are gapped and we consider the energy regime inside the
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FIG. 1. (a) The honeycomb lattice for the Kitaev model. The
solid (dashed) arrows denote the nearest (next-nearest) neighbors.
The dashed rectangle denotes a unit cell used for numerical calcu-
lations. (b) and (c) The energy spectrum with open zigzag (b) and
armchair (c) edges and J = 2, K = 0.1. The in-gap edge states are
pointed out.

gap. Thus our results are applicable when the temperature is
small compared with the vortex gap and the photon frequency
ω is smaller than this gap.

When hν = 0 and thus K = 0, there are two types of
QSLs given by Eq. (1)—a gapless phase when |J1| � |J2| +
|J3|, |J2| � |J1| + |J3|, |J3| � |J2| + |J1|, and gapped phases
otherwise. Here, we consider the case J1 = J2 = J3 = J and
h1h2h3 �= 0; then K ≈ h1h2h3/J , which makes the system
gapped except on the edges where chiral Majorana modes
exist [12]. The energy spectra with open zigzag and armchair
edge modes are shown in Figs. 1(b) and 1(c), respectively.

Spins can induce photon scattering through superexchange
coupling [35], and the Raman operator for the bond of two
spins on the sites i and j is (up to an undetermined constant)
[23,24,35,36]

Ri j ∼ (êin · d i j )(êout · d i j )J
ν
i jσ

ν
i σ ν

j , (3)

where Jν
i j is the coupling between spins and d i j is the vector

connecting them. The unit vector êin (êout) is the polarization
direction of the incident (outgoing) light. In our case, it can be
written in Majorana representation as

Ri j ∼ iJ

2
(êin · d i j )(êout · d i j )cic j . (4)

The Raman scattering intensity for a given photon frequency
shift ω is

I (q, ω) =
∫ ∞

−∞
dteiωt 〈R̂(q, t )R̂(−q, 0)〉, (5)

where R̂(q, t ) is the Fourier component along the x direction
of Eq. (4) in the Heisenberg picture.

We are interested in the quantity I (q, ω) induced by the
one-dimensional Majorana edge modes. Before a calcula-
tion in the full two-dimensional model, we study tentatively
a one-dimensional effective edge theory with the Majorana
Hamiltonian

Heff =
∑
k>0

vkc†
kck . (6)

The one-dimensional version of Eq. (4) is (in the recipro-
cal space) R(q) ∼ v

∑
k sin kc−k−qck , which becomes R(q) =∑

k vkc†
k+qck in the continuum limit. Substitution of this oper-

ator into Eq. (5) and application of the effective Hamiltonian
Heff lead to (using Wick’s theorem and assuming the temper-
ature T = 0)

〈R̂(q, t )R̂(−q, 0)〉 ∼
∑
k,k′

kk′e−ivqt [δk,−k′ + δk+q,k′ ], (7)

when 0 < k < −q or 0 < k′ < q, and zero otherwise. δk,k′

is the Kronecker delta. Assuming infinite size and chang-
ing the wave vector summation to an integral, we obtain
〈R̂(q, t )R̂(−q, 0)〉 ∼ v2|q|3ei|vq|t . Thus, using Eq. (5),

I (q, ω) ∼ v2|q|3δ(ω + |vq|). (8)

Assuming that the incident light has a Gaussian-distributed
intensity proportional to e−x2/�2

x , the total Raman intensity is

I (ω) =
∫

dqe−(q�x )2/2I (q, ω) ∼ |ω|3
v2

e−(ω�x )2/2v2
(9)

for ω < 0, and it vanishes when ω > 0. The constant �x

denotes the width of the light distribution. At small ω, we get
I ∼ |ω|3. The factor 1/v2 is related to the density of states,
which is expected to affect the scattering strength. Equation
(9) has a maximum of

I (ω0) ∼ v/�3
x (10)

at the frequency shift

ω0 =
√

3v/�x. (11)

When ω 
 ω0, I (ω) is proportional to ω3. I (ω0) decreases as
�x increases because the Raman scattering process of the chi-
ral Majorana modes requires translational symmetry breaking.

Back to the two-dimensional Kitaev model, there are two
typical kinds of edges when open boundaries are considered—
zigzag and armchair. Let us assume that the light shines on
a small rectangular area of size nx × ny [nx and ny denote
the numbers of rectangular unit cells, as shown in Fig. 1(a),
along the x and y directions, respectively]. Then the zero-
temperature Raman intensity with various polarizations and
at different positions (bulk or edge) is shown in Fig. 2.

The solid (dashed) curves are obtained with the light-
shining area on the edge (in the bulk). In the low-frequency
regime, the Raman intensity is finite on the edges but vanishes
in the bulk, manifesting the existence of the edge states. A
closer look at this regime shows that the intensity is propor-
tional to ω3 (see the insets in Fig. 2), as indicated by previous
one-dimensional effective model analysis. Thus a local Ra-
man spectroscopy measurement provides a valid method to
detect the Majorana edge modes in the QSL model. The
topological gap suggested by the bulk response is around
2Eg = 0.5, consistent with the energy spectrum in Figs. 1(b)
and 1(c). For h̄ω > Eg, the bulk state is involved, and the
ω3 feature is gone. The Raman scattering in this regime is
contributed by the optical transition between the edge and
bulk states. In the case of zigzag edges, the band edge is at
momenta (about π ± 0.35π ) away from the Majorana-edge-
mode-crossing point π , as seen in Fig. 1(b). Since the Raman
scattering with h̄ω � Eg comes from the transitions between
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FIG. 2. The zero-temperature local Raman spectra for various
choices of light polarizations on (a) zigzag edges and (b) armchair
edges. The solid (dashed) curves are obtained with the detection spot
on the edges (in the bulk). The size of the detection spot is nx × ny,
with nx and ny being the number of rectangular unit cells along x and
y directions, respectively. (a) nx × ny = 1 × 2. The number of sites
along the y direction is Ly = 20. (b) nx × ny = 2 × 1. The number of
sites along the x direction is Lx = 30. J = 2, K = 0.1 in both (a) and
(b). The symbols XX, YY, and XY denote the polarizations of the
incident (the first letter) and outgoing (the second letter) light.

edge modes with kx ≈ π and the bulk states on the band edge,
a momentum mismatch exists, which suppresses the Raman
intensity. This is the reason that the Raman intensity decreases
just after h̄ω ≈ Eg, resulting in a bumplike feature of the
curve in Fig. 2(a). On the other hand, there is no momentum
mismatch when the armchair edges are considered. Thus the
Raman intensity in Fig. 2(b) is monotonically increasing. The
symbols XX, YY, and XY denote the polarizations of the inci-
dent (the first letter) and outgoing (the second letter) light. The
signals are the strongest when both the incident and outgoing
light is polarized along the edge, i.e., XX for zigzag edges and
YY for armchair edges.

An exact calculation of finite-temperature results needs to
consider the complete Hilbert space including higher-energy
sectors with vortex excitations. However, we limit ourselves
to finite but small (compared with the vortex excitation gap)
temperatures. Then the excitation of vortices is exponen-
tially suppressed, and the effect of temperature is reflected in
the Fermi distribution functions of the low-energy Majorana
states. In this way, we obtain the low-temperature behavior as
shown in Fig. 3. For ω = 0, the intensity is proportional to T 3.

Topological superconductors. One may expect similar Ra-
man scattering features to appear with chiral Majorana edge
modes in other systems such as topological superconductors
(TSCs). To compare the Raman scattering by Majorana edge
modes in QSLs and TSCs, let us consider a spinless p-wave

FIG. 3. Temperature dependences of the local Raman intensities
(XX polarizations) for various frequencies on the zigzag edge (solid
curves) and in the bulk (dashed curves). The inset is the intensity
on the edge at ω = 0 drawn with the horizontal axis changed to
(10kBT )3.

superconductor whose Hamiltonian is

Hp =
∑

k

ξ (k)ψ†
k ψk + �[(sin kx + i sin ky)ψ†

k ψ
†
−k + H.c.],

(12)

where the operator ψk annihilates an electron of energy
ξ (k) = −2t[cos(kx ) + cos(ky)] − μ.

The Raman operator in models of itinerant electrons is
essentially given by the density operator. In tight-binding
models, it becomes [37] (assuming êin = êout = x̂ without loss
of generality),

Rp(q) ∼
∑

k

ψ
†
k+q

∂2ξ (k)

∂k2
x

ψk. (13)

By rewriting Eqs. (12) and (13) in the real-space represen-
tation along the y direction and applying open boundary
conditions there, we obtain the Raman intensity for this sys-
tem using Eq. (5) as shown in Fig. 4. Both the spectrum in the
inset and the bulk response indicate that the bulk energy gap is
around 2Eg = 0.54. The results for the two edges coincide due

FIG. 4. The Raman intensities in the bulk and on the edge of a
spinless p-wave superconductor. The inset shows the energy spec-
trum. The size along the y direction is 80 sites. The parameters are
t = 1, μ = 1, � = 0.3.
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TABLE I. Raman scattering and real-part optical conductivity
due to Majorana edge modes in QSLs and TSCs.

Re[σxx] Raman

QSL 0 ∼ω3

TSC ∼ω2 0

to the obvious spatial inversion symmetry. Most importantly,
no Raman scattering happens for frequencies ω < Eg. This is
a remarkable difference from the results for the QSL model.

The vanishing of the edge Raman scattering in TSCs may
be understood by noting that the density operator, ρ(x) =
ψ (x)†ψ (x) = 1

2 [1 + ic(x)c̃(x)] [the normal fermion operator
is expressed in terms of Majorana operators by ψ (x) = c(x) +
ic̃(x)], which also gives the Raman operator here, must in-
volve two Majorana fields c and c̃. Since only one Majorana
field exists below energy Eg, Raman scattering cannot happen.
When ω > Eg, the bulk states get involved, with which an-
other species of Majorana modes can be defined although they
are not energy eigenstates. Thus the Raman intensity becomes
finite. The Raman response in the range Eg < ω < 2Eg is a
result of the collaboration of edge and bulk states, similar to
the QSL case.

Comparing the Raman scattering in the QSL with that in
the TSC makes it clear that the electrodynamics of Majorana
edge modes depends on their environments, i.e., on the bulk
properties. This is related to the fact that Majorana modes
do not preserve charges themselves. Charge conservation is
recovered only when the whole system, including the bulk
and the edges, is taken into account. Thus there are no general
theories of the electrodynamics of Majorana edge modes.

Although Majorana edge states alone in TSCs do not con-
tribute to Raman scattering, they can absorb light and induce
an optical conductivity (the real part) Re[σxx] that is propor-
tional to ω2 [22]. In a Kitaev spin liquid, photon absorption
involves the gapped vortex excitations and thus is negligible at
the low-energy limit [26]. We obtain Table I as a comparison
between QSLs and TSCs.

Conclusion and discussion. We have shown that the chiral
Majorana edge modes in the Kitaev model of a QSL induce
Raman scattering whose intensity is proportional to the fre-
quency cube ω3 in the small-ω limit. For a finite temperature
T that is small compared with the bulk gap, the Raman inten-
sity is proportional to T 3 when ω → 0. The bulk system must
be taken into account when the electrodynamics of Majorana
edge modes is considered. Majorana edge modes from differ-

ent origins may lead to different electrodynamic properties.
For instance, the Majorana edge modes alone in TSCs cannot
induce Raman scattering, while they can absorb light.

A candidate material that shows the properties of the Ki-
taev model is α-RuCl3 [25,38]. The spin-excitation gap of
this material is about �0 = 1 meV [38]. The topological gap
�1 opened by an in-plane magnetic field B is about �1 ≈
4 × 10−3 B3 meV/T3 [38]. If B = 5 T, then �1 = 0.5 meV
and the Raman scattering purely due to the chiral Majorana
edge modes should be detected with the photon energy shift
h̄ω < 0.25 meV (or the frequency shift ω < 0.38 THz) and
the temperature T 
 10 K.

Now we estimate the Raman intensity based on our nu-
merical results. Figure 1(b) indicates v ∼ 1/�1. Thus a
stronger field and a smaller size result in larger Raman
intensity according to Eq. (10). Since J ≈ 30 meV [38],
the gap in our QSL model calculation as shown in Fig. 2
is about 0.25J ≈ 8 meV. The real gap �1 = 0.5 meV is
16 times smaller, and thus the real edge state velocity
should be vreal = vmodel/16. The peak position of Fig. 2(a)
is about half of the gap, i.e., h̄ω0,model ≈ 4 meV. The �x

we used in our calculation is �x,model ≈ 1 nm. According
to Eq. (11), a realistic peak position with �x,real = 5 nm
is h̄ω0,real ≈ 1

16×5 h̄ω0,model = 0.05 meV or ω0,real = 75 GHz.
Since I (ω0,model) ≈ 4 × 10−3Ibulk according to Fig. 2(a), we
obtain.

I (ω0,real ) = 1
16×53 I (ω0,model) ≈ 2 × 10−6Ibulk. As a refer-

ence, the bulk Raman intensity Ibulk in our model calculation is
of the order of unity, which corresponds to the value measured
by Sandilands et al. [25]. It may seem too small a signal to
be observed if a factor of 10−6 is there. However, the gigan-
tic local field generated by a scanning tunneling microscope
(STM) tip can enhance the Raman scattering by a factor of
107 or even larger [27,28], and thus the signal can be well
detectable.

Real materials may be a stack of many layers rather than
exactly two dimensional. In principle, the edge states of each
layer may couple with each other and form two-dimensional
surface states, instead of the one-dimensional modes we have
discussed here. However, a Heisenberg coupling between lay-
ers involves vortex excitations which are gapped by �0. So
the interlayer coupling is irrelevant in the low-energy limit.
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