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We present an extended microcanonical Lanczos method for a direct evaluation of the diffusion constant
and its frequency dependence within the disordered Anderson model of noninteracting particles. The method
allows to study systems beyond 106 sites of hypercubic lattices in d = 3–7 dimensions. Below the transition to
localization where we confirm dynamical scaling behavior of interest is a wide region of incoherent diffusion,
similar to percolating phenomena and to interacting many-body localized systems.
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Introduction. The metal-insulator (MI) transition in dis-
ordered systems of noninteracting fermions is established
and theoretically a well-understood phenomenon since the
fundamental work of Anderson [1], the scaling theory of
localization [2,3], and numerous analytical and numerical
studies captured in several reviews [4–7]. Since the MI tran-
sition exists only in lattices of higher dimensions d � 3, the
focus of numerical efforts was in the analysis of the critical
behavior, primarily of the localization length ξ and its crit-
ical exponent ν, which is by now even quantitatively well
established within the standard Anderson model in d = 3
[4,8–10], but also for higher d � 6 [11–15]. The transport
properties of the disordered system were first approached via
the sensitivity to boundary conditions [16,17] resulting in
an important concept of Thouless energy and the timescale
in finite (also interacting many-body) systems. On the other
hand, numerical studies and explicit results of intrinsic prop-
erties as the optical conductivity σ (ω) [18,19] with related
dc conductivity σ0 [8,18,20] and diffusion coefficient D0

[5,21–24] are surprisingly sparse also due to the lack of pow-
erful numerical methods.

In the past decade interest in disordered models revived in
connection with the challenging phenomenon of the many-
body localization (MBL) [25–34] which predicts the MI
transition also in the d = 1 system, i.e., in the Anderson
disordered model with interaction between fermions (or,
equivalently, in the anisotropic Hesenberg spin chain). The
connection between Anderson and MBL models has been
recently reinvestigated [24] in a wide range of disorder and
d = 3, 5, also in terms of the characteristic Thouless time
τTh ∝ L2/D0 (where L is the system length) and related Thou-
less energy ETh = 2π/τTh [35–38].

In this Letter we present a numerical method for an effi-
cient calculation of the dynamical diffusion coefficient D(ω)
and, in particular, its dc value D0, within the Anderson
model of the d-dimensional disordered lattice. The method
is the extension of the microcanonical Lanczos method
(MCLM) [39,40] employed already within numerous studies

of (mostly high-temperature T � 0) transport in MBL models
[30,41–43]. Here, we use the method for T → 0 diffusion
of noninteracting (NI) particles and adapt it for very high-
frequency resolution δω and for hypercubic lattices beyond
N = Ld ∼ 106 sites. This allows us to scan D0 as well as
D(ω) from the weak-scattering regime up to localization tran-
sition at W = Wc for dimensions d = 3–7. Results reveal in
all d three distinct regimes: (a) the weak-scattering region for
small W < W ∗, (b) the critical regime W � Wc following the
scaling behavior, and (c) the very wide intermediate regime,
in particular, for d > 3 with small and incoherent D(ω) with
effective mean free path λ < 1, reminiscent of a percolative
diffusion. The latter transport has similarities but also differ-
ences to the (sub)diffusive regime in MBL systems. On the
localized side of the MI transition we employ the method
to study the dynamical imbalance C(ω) and related dc value
C0, the quantity experimentally studied in MBL cold-atom
systems [44], including the case of NI-disordered systems
[45], but also closely related to experiments on classical waves
in continuous disordered systems [46].

We consider the standard Anderson model [1] of NI
fermions on a d-dimensional hypercubic lattice with the on-
site quenched disorder,

H = −t
∑
〈i j〉

(c†
j ci + H.c.) +

∑
i

εic
†
i ci, (1)

where the hopping is between nearest-neighbor (n.n.) lattice
sites and random local energies are assumed to have uniform
distribution −W/2 < εi < W/2. We will use theoretical units
h̄ = 1, t as a unit of energy, and lattice spacing a0 = 1. We
focus only on the physics in the middle of the spectrum, i.e., at
energies E ∼ 0 where also values for critical disorder strength
Wc are well established, i.e., Wc/t ∼ 16.5 [10,11], for d = 3
up to Wc/t ∼ 83 [15] for d = 6.

Numerical approach to diffusion. The dynamical con-
ductivity, being isotropic in the hypercubic lattice, can be
expressed in a system of NI fermions with that of the
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Kubo-Greenwood formula [17],

σ (ω) = πe2
0

Nω

∑
n,m

[ fn − fm]|〈ϕn|J|ϕm〉|2δ(ω − Em + En), (2)

where the current operator J = t
∑

i(ic
†
i+1x

ci + H.c.) is taken
for convenience in one (x) direction, assuming also pe-
riodic boundary conditions in all directions. En, |ϕn〉 are
fermion eigenenergies and eigenfunctions, respectively, and
fn = 1/[e(En−E )/(kBT ) + 1] is the state occupation for given
Fermi energy E and temperature T . For a hypercube N = Ld

is the number of sites. At T → 0 the dc conductivity σ0 =
σ (ω → 0) depends only on eigenstates with En,m ∼ E , and it
is convenient to express it with the dc diffusion coefficient D0

as σ0 = e2
0NF D0, where NF is the density of states at E . Since

we are interested in the low-frequencies ω � t (smaller than
an effective bandwidth) Eq. (2) yields an expression for D(ω),

D(ω) = π

N

∑
m

|〈ϕn|J|ϕm〉|2δ(ω − Em + En) (3)

provided that En ∼ E and that the resulting D(ω) (in the
macroscopic limit L → ∞) is a self-averaging quantity, i.e.,
is independent of chosen |ϕn〉.

Whereas Eq. (3) in a finite system apparently requires a full
exact diagonalization (ED) of the model (1) and, in particular,
the knowledge of the eigenfunction |ϕn〉, we use at this point
the idea of the MCLM method [39,40] and replace |ϕn〉 with
the single microcanonical state |�E〉 with the energy E . The
latter is within MCLM obtained via the Lanczos-type ap-
proach using the operator V = (H − E )2. Performing ML � 1
Lanczos iterations the result should converge well for the
lowest eigenstate of V . Since in the present application we
have in mind Hilbert spaces with typically Nst � 106 states,
such a Lanczos procedure is not expected to converge to an
eigenstate but rather to a state with very small energy disper-
sion σ 2

E = 〈�E |V |�E〉. By performing the Lanczos procedure
twice and extracting only the lowest eigenfunction of V , the
storage of the emerging three-diagonal matrix is needed with-
out a final ED of the ML × ML matrix. This allows us to use
large ML ∼ 105 necessary to get high-resolution σE/t < 10−4.
The second step is then the evaluation of the correlation func-
tion, Eq. (3), as resolvent,

D(ω) = 1

N
Im〈�E |J 1

ω − iη + E − H
J|�E〉. (4)

The latter is evaluated with the Lanczos procedure for H , start-
ing with J|�E〉 as an initial vector, which after ML iterations
gives Eq. (4) in terms of continued fractions, evaluated finally
using an appropriate damping η � δω. Within such a MCLM
procedure the frequency resolution is directly connected to ML

as δω � �E/ML where �E is the energy span of H within
chosen finite-size system. For given ML we typically also get
σE < δω.

For the study of transport and dynamical correlations in the
Anderson NI model, where Nst = N it is essential to reach be-
sides large Hilbert spaces with N > 106 also high-frequency
resolution with typically δω/t < 10−4, representing long-time
dynamics up to τ ∼ 1/δω > 104/t . Within the presented
MCLM this is achieved by optimizing the choice of N and
ML whereby the limitations are given mostly by CPU time

FIG. 1. Dynamical diffusion D(ω) in the Anderson model at the
intermediate disorder W/t = 20, (a) for hypercubic lattices d = 2–7
and (b) for d = 3, 4 showing the influence of the damping η.

∝NML, whereas the memory requirement in considered mod-
els is determined by Nz where z = 2d is the connectivity of
H , i.e., the number of n.n. in the lattice. In the following we
present results for the Anderson model typically with N � 106

sites and ML ∼ 105 iterations which for modest W leads to
δω/t ∼ 10−4. We note that such a numerical approach to
D0 is more convenient than, so far mostly used, time evo-
lution of the wave-packet spread [5,22–24] since the latter
requires open boundary conditions and hardly can reach times
τ > 103/t .

Diffusion coefficient: results. Before turning to the dc trans-
port let us consider some general features of dynamical D(ω).
We note that our diffusion D(ω)/t is dimensionless since
D ∝ a2

0/τ0 and τ0 = h̄/t and we have chosen h̄ = a0 = 1. In
Fig. 1(a) we present typical spectra for intermediate disorder
W/t = 20, calculated for dimensions d = 2–7. The case is
chosen so that for d = 3 it is W � Wc, for d > 3 disorder
is subcritical W < Wc, whereas in d = 2 all states are local-
ized. It is evident that high-frequency dynamics D(ω/t > 1)
is essentially d independent with spectra extending to ω ∝
W [note that in this regime D(ω) does not reflect directly
σ (ω)]. The localized cases, i.e., d = 2, 3, typically reveal
large spectral fluctuations and require sampling over disorder
realizations Ms � 1. On the other hand, D(ω) at ω/t < 1 and,
in particular, ω → 0 are clearly d dependent, and as shown in
Fig. 1(b) the resolution and choice of small η/t 
 1 is crucial
to reproduce small D0 
 t or even a localized regime with
D0 = 0 as is the case for d = 3 at W/t = 20.

The central quantity of this Letter is the dc diffusion coef-
ficient D0 in the middle of the band E = 0 and for d = 3–7.
This is calculated via MCLM on isotropic lattices with N =
Ld sites using in the evaluation of resolvent, Eq. (4), at ω = 0
the damping η � δω. The result is η sensitive only in the cases
with strong D(ω) dependence, which is actually the case at
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FIG. 2. Diffusion coefficient D0 vs disorder strength W within
the Anderson model in hypercubic lattices with d = 3–7 (in the inset
in the normal scale for D0/t < 1) for D0, in the vicinity of the critical
regime also fitted with the scaling form D0 ∝ (Wc − W )s (see the text
for details).

W ∼ Wc in d = 3, 4. We present here results for N � 106,
i.e., L = 100, 36, 16, 12, 8 for d = 3–7, respectively. Consid-
ered quantity D(ω) is expected to be self-averaging (unlike
the conductance [47–49]) for L → ∞. Despite large systems
studied, we still observe at W � Wc sample-to-sample fluctu-
ations of D0, so we employ also a modest sample averaging
with Ms = 10–30.

Results for D0 vs W are presented in Fig. 2. It is evident that
the method allows to follow D0 for more than three decades
where its lower bound is mostly determined by reachable δω

at chosen N . It is characteristic that we reach lowest D0/t ∼
10−3 for d = 5 due to less singular D(ω) (discussed later on),
whereas for d = 6, 7 small D0 might be already limited by
finite-size effects. Still, results in Fig. 2 clearly reveal three
different regimes of diffusion:

(a) Weak-scattering regime, for all d—typically at W <

W ∗ ∼ 10t—we confirm D0 = cd/W 2, where cd ∝ NF . Since
considered disorders W � 2 already smear most details of
density of states N (E ), one could expect NFt ∝ 1/

√
2πz.

However, results in Fig. 2 seem to indicate even weaker d
dependence. Here we note, that (as standard) defined D(ω),
Eq. (3) refers to a propagation in only one (x) direction, so it
should be quite d independent in the regime W < W ∗.

(b) Wide intermediate regime, particularly well pro-
nounced for higher dimensions d � 4 where the diffusion is
incoherent, i.e., D0/t < 1 in all d at W > W ∗. Since D0 =
v̄xλx, where particle effective velocity (in one direction) v̄x ∼
t and λx is the corresponding transport mean free path, this
regime implies λx < 1. It is rather surprising that such trans-
port persists in such a wide range of W < Wc. It even indicates
on some universal form D0 ∝ exp(−cW ) for d � 5 as pointed
out recently [24], having the similarity to the variation of dc
conductivity σ0 [30,43] and the inverse Thouless time [37] in
the MBL prototype model (see also the discussion later on).

(c) The critical regime W � Wc is characterized in Fig. 2 as
the drop from quasilinear ln(D0/t ) vs W dependence whereby
Wc is increasing with d . Close to the MI transition results
can be well captured with D0 ∝ (Wc − W )s and s = (d − 2)ν
from the scaling theory [2,3], critical disorder values Wc/t ∼
16.5, 35, 59, 87, 107, and localization-length exponents ν ∼
1.57, 1.1, 0.96, 0.84.0.72 for d = 3 − 7, respectively, well

FIG. 3. Dynamical diffusion response D(ω) in the vicinity of the
Anderson transition W � Wc compared to the scaling form D(ω) =
wsF (w−νLω ) for (a) d = 3 and (b) d = 4 Anderson model (see the
text for details).

consistent with focused numerical studies of the Anderson
transition [9–15]. Also, our results appear to be consistent
with decreasing ν → 0.5 for d → ∞ [12,14].

D(ω): critical regime. Although in the weak-scattering
regime W < W ∗ D(ω) is essentially Lorentzian with re-
laxation rate 1/τ ∝ W 2, in the intermediate regime W ∗ <

W < Wc, spectra are broad and quite featureless with nearly
constant low-frequency value D(ω < 1) ∼ D0 as shown in
Fig. 1. Frequency dependence becomes nontrivial in the criti-
cal regime where we can test it with the scaling form σ (ω) =
ξ 2−d F (ξ/Lω ) [50], where Lω ∝ [D(ω)/ω]1/2 is the character-
istic length scale (at given ω) for density correlation. This
suggests the relation,

D(ω) = wsF

(
w−ν

√
ω

D(ω)

)
, (5)

where w = (Wc − W )/Wc and for the scaling function we
assume a simple form F (x) = A + Bxd−2 [50], satisfying both
limits: (a) w > 0, ω → 0 with D0 = Aws, discussed already
in connection with Fig. 2, (b) w → 0, ω > 0 where the rela-
tion, Eq. (5), yields D(ω) ∼ Bωp with p = (d − 2)/d .

In Fig. 3 we present our numerical result for D(ω) for
several values W in the critical regime W � Wc for d = 3
and d = 4. Results restricted to the window ω 
 1 are shown
along with the solution of Eq. (5) with fixed A, B. For d = 3
our results in Fig. 3(a) are well consistent with anomalous
D(ω) ∝ ω1/3 at critical w = 0, turning into D(ω) ∼ D0 +
α
√

ω at w > 0 [50]. We note that steep ω dependence at
w � 0 is also preventing us from reaching small values of
D0 in d = 3 as compared to d � 4 data as evident in Fig. 2.
In contrast, results for d = 4 in Fig. 3(b) follow expected
D(ω) ∝ √

ω at w ∼ 0 as well as D(ω) ∼ D0 + γω for w > 0.
We also find that for d > 4 at the MI transition D ∝ ωp where
p = 1 − 2/d → 1 with increasing d > 3.
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FIG. 4. Imbalance stiffness C0 vs W for the Anderson model in
d = 2, 3 dimensions. Results for d = 3 are fitted to critical behavior
C0 ∝ (W − Wc )ν .

Imbalance. On the insulating side of MI transition W >

Wc, we can also apply our MCLM method to evaluate dynam-
ical quantities. Since in this regime D0 = 0 of interest at ω →
0 are time-dependent density correlations C(t ) ∝ 〈ρq(t )ρq〉
and their Fourier transform,

C(ω) = 1

N
Im〈�E |ρq

1

ω − iη + E − H
ρq|�E〉, (6)

where ρq = ∑
i eiq·Ri ni is the density modulation operator. In

connection with the theory of MBL systems [42,43,51] as
well as related experiments on cold-fermion systems [44,45],
the quantity of interest is the imbalance which probes the
q/π = 1d response (with 1d as a d-dimensional unity). In
the localized regime one expects a singular response with
C(ω) = C0δ(ω) + Creg(ω), where C0 is the imbalance stiff-
ness. We note that C0 has been directly measured in cold-atom
chains [45] but is closely related also to analogous infinite-
range intensity correlations investigated in d = 3 disordered
classical-wave systems [46,52].

Here, we concentrate on C0 which reflects the localization
of Anderson wave functions and, in particular, should—in
the critical regime—behave as the inverse localization length
C0 ∝ 1/ξ ∝ wν . Such a quantity should be self-averaging
even in the random system, in contrast to, e.g., local density
correlation Cii(ω) (analogous to the inverse participation ra-
tio). The MCLM results discussed below reveal substantial
sample-to-sample fluctuations of C0 since by choosing small
σE we effectively get C0 averaged only over Neff = σEN An-
derson localized states, generating significant statistical error
in the localized regime.

In Fig. 4 we present results for C0 vs W for d = 2, 3. Since
results reveal larger sample-to-sample fluctuations, here we
take smaller N ∼ 3.105 but larger Ms ∼ 100 and presented
C0 are average values. It should be noted that C0’s are by
definition normalized for NI particles,

∫
dωC(ω) = 1, so in

the extreme localization limit C0 = 1. Although in d = 3 re-
sults can be well described by the critical behavior of the
localization length, i.e., C0 ∝ wν with ν = 1.57, in d = 2 the
variation of C0 vs W remains finite C0 at W > 0 but still
with a sharp crossover at W ∗/t ∼ 7 with the onset of stronger
localization at W > W ∗.

Let us finally, in more detail, comment on similarities as
well as differences to the physics of the MBL systems:

(a) Incoherent diffusion: percolation. From Fig. 2 it is
evident that beyond W > W ∗ ∼ 10t there is is wide span of
W , particularly, pronounced for d � 4 with the incoherent dif-
fusion characterized by mean free path λx < 1. We note that
the marginal W ∗ ∼ B can be related to an effective bandwidth,
scaling roughly as B ∼ 2

√
zt . In order to capture qualitatively

the incoherent regime W ∗ < W < Wc, we can employ simple
concept of propagation through resonant states, which allows
to make contact with transport emerging in MBL systems due
to interaction between localized NI Anderson states [53]. At
W ∗ � t the diffusion in the Anderson NI model can appear
through the resonance between n.n. sites. Probability for these
sites to satisfy the resonance |εi − ε j | � 2t is P1 ∼ 2t/W 

1. Taking into account the connectivity z = 2d and requir-
ing the overall probability P1 ∼ 1, one can reach marginal
W ∗

1 ∼ 2zt < Wc, at least, in d � 4. For W > W ∗
1 diffusion in

higher d > 3, hopping to further neighbors via intermediate
sites becomes relevant. E.g., for next n.n. hop between i, j
via intermediate site k, we get t̃i j ∼ t2/(εi − εk ). The effec-
tive total hopping probability P2 ∼ z2 p2 is then obtained via
perturbation theory (where lower-resonances εi − εk < 2t are
omitted),

P2 = z2 2t2
W

, t2 ∼ t2

W

∫ W

2t

d�

�
= t2

W
ln

W

2t
. (7)

Requiring P2 ∼ 1 yields critical W ∗
2 ∝ zt[2 ln(W/2t )1/2]. One

can continue such estimates taking into account further
neighbors and higher resonances with effective hopping tn =
(t n/W n−1) lnn−1(W/2tn−1). Such a procedure leads to the
known estimate for the critical disorder Wc ∝ 2zt ln(Wc/2t )
[17,54].

Although the above derivation is just a rough counter-
part of the original arguments [1,17] for the convergence of
perturbation expansion in the localized regime W > Wc, our
aim here is to connect the phenomenon of the incoherent
diffusion to transport in MBL systems. In the latter systems,
the prototype being the d = 1 disordered chain of interacting
fermions [25–28] the interaction allows the hopping between
Anderson states [55], typically localized on next n.n. and
further neighbors. Such a process has an analogy to the perco-
lation problem in the high-d lattice [53]. Although from above
arguments we cannot establish an analytical dependence of
D0(W ), it is evident from Fig. 2 that in high d � 5 it can be
reasonably represented as D0 ∝ exp(−cW/t ) [24], although
with much smaller c 
 1 compared to MBL models where
c ∼ 1 [30,43].

(b) D(ω): subdiffusion. Strictly, the phenomenon of subd-
iffusion requires D0 = 0 and D(ω) ∝ ωp with p < 1. In MBL
models the existence of such transport (in the ergodic regime)
is still controversial. On the other hand, in the NI Anderson
model this is the case (only) at the critical point, where p =
(d − 2)/d , whereas for W < Wc this is just a transient feature
(e.g., in time) [24] since D0 > 0. Again, D(ω) resembles MBL
systems more for d � 3 since p → 1, which is the situation of
dynamical conductivity σ (ω) at the presumed transition into
the localized phase [30,43].

Summary. We introduced a numerical method which al-
lows the study of dynamical correlation functions in nontrivial
models of NI particles, reaching larger sizes as well as
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high-frequency resolution. The method has promising poten-
tial also for application in similar problems requiring both
large Hilbert spaces and high-frequency resolution as, e.g.,
MBL and (nearly) integrable models. We focused here on the
dynamical diffusion D(ω) in the Anderson model in hypercu-
bic d � 3 lattices where also the MI transition exists. Our dc
and dynamical results are in the critical regime W ∼ Wc well
consistent with the scaling theory of localization. On the other

hand, we find a broad regime of incoherent diffusion which
has similarities as well as differences with the challenging
problem of many-body localization.
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