
PHYSICAL REVIEW B 103, L241103 (2021)
Letter

Current-induced torques in magnetic Weyl semimetal tunnel junctions

D. J. P. de Sousa,1,* Fei Xue ,2,3 J. P. Wang,1 P. M. Haney,2 and Tony Low1,†

1Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
2Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6202, USA

3Institute for Research in Electronics and Applied Physics & Maryland Nanocenter, University of Maryland,
College Park, Maryland 20742, USA

(Received 30 January 2021; accepted 28 May 2021; published 8 June 2021)

We study the current-induced torques in asymmetric magnetic tunnel junctions containing a conventional
ferromagnet and a magnetic Weyl semimetal contact. The Weyl semimetal hosts chiral bulk states and topo-
logically protected Fermi arc surface states which were found to govern the voltage behavior and efficiency of
current-induced torques. We report how bulk chirality dictates the sign of the nonequilibrium torques acting
on the ferromagnet and discuss the existence of large fieldlike torques acting on the magnetic Weyl semimetal
which exceed the theoretical maximum of conventional magnetic tunnel junctions. The latter are derived from
the Fermi arc spin texture and display a counterintuitive dependence on the separation of the Weyl nodes. Our
results shed light on the new physics of multilayered spintronic devices composed of magnetic Weyl semimetals,
which might open doors for new energy-efficient spintronic devices.
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Introduction. Magnetic topological materials have been a
subject of intense interest in recent years [1–6], exhibiting
a unique interplay between magnetism and band-structure
topology [2–4,7]. In particular, magnetic Weyl semimetals
(MWSMs), three-dimensional topological semimetals with
broken time-reversal symmetry, have drawn considerable at-
tention due to their unique electronic structure [3,8,9]. In
these materials, low-energy quasiparticles behave as chiral
massless Weyl fermions [8], underpinning several interesting
transport phenomena such as the chiral anomaly [10–13] and
the chiral magnetic effect [14,15]. In addition, MWSMs also
host topologically protected surface states, so-called Fermi arc
(FA) states, with distinctive spin textures [8,16].

In this work, we show that the bulk chiral and FA surface
states have a strong influence on the flow of spin currents
in magnetic tunnel junctions composed of a MWSM and a
trivial ferromagnet (FM) separated by a thin insulating spacer,
as illustrated in Fig. 1(a). The current-induced torque can
be decomposed into fieldlike and dampinglike components,
referring to the reactive and dissipative contributions (m × mP

and m × (m × mP), where m and mP are the magnetization
orientation of free and pinned layers), respectively. We dis-
cuss how the chirality of the MWSM bulk states dictates
the characteristics of current-induced torques acting on the
magnetization of the trivial FM layer, giving rise to uncon-
ventional voltage dependencies. In addition, we show that the
presence of FA states at the MWSM/insulator interface natu-
rally leads to exceptionally large fieldlike spin transfer torques
into the MWSM layer, with a counterintuitive dependence
on the magnetic exchange interaction. Our findings highlight
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the nonequilibrium spin torque phenomena due to MWSM,
offering a different perspective on the application of these
systems in spintronics over what is currently known [17–19].

Theoretical model. We investigate an asymmetric magnetic
tunnel junction (MTJ) [20–22] consisting of an insulating
spacer sandwiched between a MWSM and a trivial FM, as
sketched in Fig. 1(a). We employ a four-band tight-binding
model describing a general three-dimensional magnetic Weyl
semimetal constructed on a cubic lattice of side length a,
whose k-space bulk Hamiltonian is [23,24]

H = τz ⊗ [f (k) · σ] + τx ⊗ [g(k)σ0] + τ0 ⊗
(

β

2
m̂ · σ

)
,

(1)

where f (k) = x̂t sin(kxa) + ŷt sin(kya) + ẑt sin(kza) and
g(k) = t[1 − cos(kxa)] + t[1 − cos(kya)] + t[1 − cos(kza)]
are structure factors, σ = x̂σx + ŷσy + ẑσz is the vector
of Pauli matrices and t = 1 eV is the nearest-neighbor
hopping parameter. The Pauli matrices τ (σ) operate
in the orbital (spin) space and m̂ is the unit vector
pointing along the magnetization direction with β being
the exchange splitting [25], related to the exchange field
strength Bexc by Bexc = β/2μB, where μB is the Bohr
magneton. In constructing the MTJ structure, we discretize
the Hamiltonian operator Ĥ along the transport direction
(x direction) by rewriting it as Ĥ = ∑

j HS (k||)c†
k||, jck||, j +

Ŵc(k||)c†
k||, j+1ck||, j + Ŵ †

c (k||)c†
k||, j−1ck||, j , where k|| = (kz, ky )

is the in-plane momentum, j is the principal layer (PL)
index, and ck||, j (c†

k||, j) annihilates (creates) a particle with
momentum k|| = (kz, ky) at the jth PL. Hence, the MWSM
is viewed as a series of PLs having translational invariance
in the yz plane, as described by HS, and connected to its
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FIG. 1. (a) Asymmetric MTJ composed of a magnetic Weyl
semimetal (left layer) and a trivial ferromagnetic (right layer) con-
tact. (b) Spin texture and local density of states at the interface of
a semi-infinite magnetic Weyl semimetal system as a function of kz,
for ky = 0. Surface normal is x̂, and magnetization direction is ẑ. The
vector field is S = (Sz, Sy ) as described in Ref. [26].

nearest-neighbor PLs via interlayer hopping matrices Ŵc. The
Hamiltonians describing the FM and insulating barrier are
also constructed in a similar fashion [26].

Spin texture of bulk and surface states. We begin by re-
viewing the aspects of the MWSM which underlie the unique
properties of the MTJ device. The key property is the chirality-
derived spin texture of the bulk and surface states in k-space.
Figure 1(b) displays the surface local density of states (LDOS)
A(kz, ε), defined over the yz surface assuming m̂ = ẑ, and
the associated spin texture as a function of the z component
of the in-plane momentum kz, with ky = 0, and energy ε as
obtained from the surface Green’s function of a semi-infinite
MWSM lead [26]. The surface LDOS exhibits two distinct
contributions: from the FA and bulk states. The FA surface
states appear as a straight line connecting the two Weyl
nodes at k±

0 = (0, 0,±k0) [25], which we describe in more
detail in the next paragraph. The projected bulk states form
the Dirac cones around the Weyl points, which we describe
here. The origin of this behavior can be better understood by
considering the long-wavelength simplified effective Hamil-
tonian derived from Eq. (1) for the two crossing bands: H =
h̄v(σxkx + σyky + κσz ), with a kz-dependent mass κ (kz ) =
2t[sin(k0a/2) − | sin(kza/2)|]/h̄v being positive when |kz| <

k0 while vanishing at kz = ±k0. This approximation is valid to
linear order in kx(y) while |kz| � π/a and the Fermi velocity
is v = ta/h̄. The expectation value of the spin operator along
the magnetization direction is 〈σz〉 = n[κ (kz )/εk], where εk =√

k2
x + k2

y + κ (kz )2, with the sign governed solely by the con-

duction (n = +1) and valence (n = −1) band indexes. The
sign change can also be understood as a manifestation of the
opposite electron and hole chirality at a given Weyl node [27].
The spin polarization is the same for both Weyl nodes at a
given energy, reflecting the system magnetization as shown
in Fig. 1(b). The spin texture around the Weyl points results

in a sign change of the spin polarization at the Weyl point
energy, which is important for the behavior of the MTJ device
we discuss in the next section.

We next discuss the properties of the FA surface states,
whose spin texture is shown in Fig. 1(b). Because of their
chiral nature, these states inherit a peculiar spin texture where,
in this model, all spins are perpendicular to the surface normal
and magnetization x̂ × m̂, irrespective of the exchange field
strength, a feature that is not present in the bulk. For clarity,
we consider the long-wavelength description of a MWSM oc-
cupying the x < 0 half-space (interface at x = 0), from which
the following evanescent solutions are obtained by assuming
infinite mass boundary conditions [28]:

�FA
k (r) = C

(−i
1

)
eκxeikyy	kz (z), (2)

with dispersion εFA
q = −h̄vky, where C is a normalization

constant and 	kz (z) is the periodic part of the Bloch state
along the z direction. The decay constant coincides with the
mass term κ (kz ), and the evanescent solution exists as long
as κ (kz ) � 0, a condition satisfied for −k0 � kz � k0. We find
a spin polarization frozen along the y direction that survives
deep into the bulk when kz → ±k0, since κ−1 → ∞ in this
limit. Finally, the associated density of states is energy inde-
pendent and proportional to the Weyl nodes’ separation 2k0.
This indicates that as k0 increases with the exchange field
β/2μB, the number of states with spin polarization perpendic-
ular to the magnetization also increases. These salient features
result in large fieldlike torques acting on the MWSM with a
unique dependence on the Weyl nodes’ separation 2k0 and are
discussed in more detail later.

Torques due to chiral bulk states. We begin by consid-
ering the current-induced torque exerted on the trivial FM
lead, focusing on its voltage dependence. For simplicity, we
neglect spin-orbit coupling in the trivial FM lead and treat it
within a minimal tight-binding approach [26]. This enables
the tracking of spin angular momentum transfer from current-
carrying electrons in the trivial FM solely in terms of spin
currents. In steady state, the spin transfer torque acting on
the local moments at the ith PL of the trivial FM is therefore
Ti = −[∇ · Q]i, where [∇ · Q]i = Qi−1,i − Qi,i+1 in the one-
dimensional chain [20–22,26], and Qi,i+1 is the spin current
flowing between layers i and i + 1. The total spin transfer
torque acting on the trivial FM is T = ∑

i∈FM Ti = Q0,1, cor-
responding to the spin current density between the last PL of
the insulating spacer (0th layer) and the first PL of the right
magnetic lead (1st layer). The Hamiltonians describing the
trivial FM and insulating spacer are also discretized along the
transport direction [26]. We assume that, when the system
is driven out of equilibrium under an applied voltage V =
(μR − μL)/e, where e is the electron charge, the potential
drops linearly within the oxide spacer. Our convention is that
V < 0 gives rise to an electron flow from the MWSM to the
FM layer.

Figure 2 shows the voltage dependence of the current-
induced dampinglike and fieldlike torques in the FM. For
simplicity, we assume ML = ŷ and MR = ẑ and consider
different doping levels EF in the MWSM lead, referenced
from the Weyl node energy. The voltage dependence of the
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FIG. 2. Panels (a) and (b) show the voltage dependence of
dampinglike and fieldlike torques, respectively, acting on the magne-
tization of the ferromagnetic layer at different doping levels EF . The
dashed horizontal line highlights the equilibrium torque values in
both cases. The band diagrams are shown in panel (c) for EF = 0 eV,
with negative (top) and positive (bottom) voltages. Filled bands are
represented by shaded regions and the spin kets represent the net
spin polarization direction. The shaded region between μL and μR

demarcates the transport energy window and the tunnel barrier is
represented in shaded gray.

dampinglike torque for EF = 0 eV (blue symbols) is an even
function of V around V = 0. Such behavior is at odds with the
well-known linear voltage dependence of dampinglike torques
in MTJs containing trivial FM contacts [29–31]. However,
with increasing MWSM doping level, the torque curves ac-
quire a more prominent linear voltage dependence, eventually
leading to dampinglike torques that act in opposite direc-
tions as we reverse the voltage polarity. This behavior can
be visualized by the yellow and red symbols in Fig. 2(a), for
EF = 0.25 eV and EF = 0.5 eV, respectively.

Figure 2(b) displays a similar trend for the nonequilibrium
contributions of the fieldlike torque. The dashed horizontal
line in Fig. 2(b) highlights the equilibrium value, related
to the equilibrium interlayer exchange coupling [29]. The
nonequilibrium contributions are in most cases negative at
small doping levels for both voltage polarities. This changes
at sufficiently high doping levels, e.g., EF = 0.5 eV, where
the nonequilibrium fieldlike torques act in opposite directions
with the voltage polarity.

We trace these nontrivial voltage dependencies to the op-
posite chiralities of bulk valence and conduction MWSM
states, which in turn leads to a sign change of the spin cur-
rent polarization at the Weyl point energy. To show this, we

have sketched the band diagrams for the case EF = 0 eV
in Fig. 2(c) for both voltage polarities. When the system
is driven out-of-equilibrium, the spin current penetrating the
trivial FM layer is determined by the spin character of the
right-propagating states within the transport energy window
eV = μR − μL, illustrated in Fig. 2(c). Under negative ap-
plied voltages, only right-propagating valence states of the
MWSM lead can tunnel into the empty states of the FM lead
while conserving energy and in-plane momentum. Hence, the
states penetrating the right FM lead are |ψt〉 = teikxx|y ↑〉,
where |y ↑〉 indicates the net-spin polarization direction of
valence states. The spin components of the incoming state
transverse to the magnetization of the trivial FM are entirely
lost due to spin-dependent reflection and precession-induced
dephasing of spins [32], leading to a current-induced torque
acting on the FM magnetization.

On the other hand, for positive applied voltages, left-
propagating states undergo a spin-dependent reflection, giving
rise to right-propagating reflected states of the form |ψr〉 =
reikxx|y ↑〉, since all valence states are occupied in the MWSM
lead. Thus, positive and negative applied voltages lead to
right-propagating states with the same net spin orientation, re-
sulting in current-induced torques that drive the magnetization
of the FM layer to the same direction. The physics is governed
by the respective chirality of the bulk particle-hole states.

In contrast, if the Weyl nodes are not at half-filling, particu-
larly in the limit where EF 	 |μL − μR|, the energy transport
window only consists of states of one chirality from the
MWSM. Hence, at V < 0 all tunneling states would be of
the form |ψt〉 = teikxx|y ↓〉, recovering the expected odd-in-
voltage dependency of dampinglike torques. At sufficiently
high doping levels and large positive bias voltages V > 0, van
Hove singularities due to additional MWSM higher-energy
bands within the energy transport window lead to high volt-
age anomalies as observed in Figs. 2(a) and 2(b). The same
argument applies to the case of large hole-doping.

Torques due to Fermi arcs. We next consider the current-
induced torques exerted on the MWSM. We find remarkably
large values of fieldlike torque, which we ascribe to the spin
texture of the Fermi arc surface states. The description of
current-induced torques acting on the MWSM lead cannot be
reduced to a spin-current-only calculation due to the presence
of spin-orbit coupling in these systems [33]. Our approach
is based on the computation of the layer-resolved nonequi-
librium spin density. The current-induced torque acting on
the ith PL of the MWSM lead is Ti = Bexc × si, with Bexc =
(β/2μB)ẑ being the exchange field of the MWSM lead with
magnetization along ẑ, i.e., ML = ẑ. si is the nonequilibrium
spin moment density at the ith PL [26]. In our calculations,
we have considered different exchange field strengths for the
MWSM, quantified by β, ranging from 375 to 750 meV [34],
at a fixed applied voltage of V = 0.4 V so that electrons tunnel
from the trivial FM to the MWSM lead. Finally, we consider
MR = ŷ for the FM lead in the following.

Figure 3(a) displays the k||-dependent nonequilibrium spin
density along the y direction, sy(ε, k||), at the Fermi level
ε = 0 eV for the in-plane magnetized MWSM case. The
dashed circles highlight the projections of the bulk Fermi
surface onto the k||-space. As can be seen, the largest con-
tributions to sy(ε, k||) come from the FA while those from
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FIG. 3. k||-resolved component (a) of the nonequilibrium spin
density sy(εF , k||) at the first MWSM layer and (b) of the sym-
metric contribution, �sy = |sy(kz ) + sy(−kz )|/2, at different MWSM
layers. The dashed circles highlight the projections of bulk Fermi
surfaces onto the k||-space. We assume the following magnetization
directions for the ferromagnet and magnetic Weyl semimetal leads
MR = ŷ and ML = ẑ, respectively.

the bulk are at least 4 orders of magnitude smaller. The total
nonequilibrium spin density at a given energy ε is obtained
by integrating sy(ε, k||) over the entire Brillouin zone. How-
ever, due to the opposite chirality of states from the two
Weyl points, these spin densities should exactly compen-
sate in equilibrium. The net nonequilibrium spin density can
be made apparent by considering the symmetric component
�sy = |sy(ε, ky, kz ) + sy(ε, ky,−kz )|/2. The different panels
in Fig. 3(b) display �sy as one penetrates the MWSM lead;
they clearly show that nonequilibrium spin densities decay
away from the interface, but can still survive tens of layers
deep into the MWSM. This indicates that FA contributions
to current-induced torques are not merely confined to a few
layers from the interface, as in trivial FMs [32]. This is due
to the momentum-dependent evanescent depth of FA states
which diverges at the connection points with the bulk Fermi
surfaces, as discussed previously. Figure 3(b) reveals that the
most relevant contributions deep into the MWSM lead come
from the arc connections points with the bulk Fermi surface,
while the contributions around kz = 0 decay very rapidly from
the interface.

The interface contribution to the total spin density is shown
in Fig. 4(a) as a function of energy considering β = 500 meV
(left panel) and β = 750 meV (right panel). We consider
two distinct situations: in-plane, ML = ẑ, and out-of-plane,
ML = x̂, magnetized MWSM lead, while keeping MR = ŷ for
the FM. Because the FA density of states is proportional to the
in-plane projection of ML, these two cases allow us to isolate
contributions of FA states from that of bulk states. Figure 4(a)
shows that in-plane and out-of-plane configurations contribute
the same sy, except in a narrow energy window (shaded re-
gion) where there is an extra enhancement in the in-plane case.
This energy window coincides with the FA states, confirming
their role in the enhanced current-induced fieldlike torques.
This result indicates that FA states lead to a highly anisotropic
angular dependence for this torque. Additional evidence of
the FA role is provided by comparing the left and right
panels of Fig. 4(a), where we show sy(ε) for β = 500 meV
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FIG. 4. Energy dependence of sy(ε) = (2π )−2
∫

d2k||sy(ε, k||)
considering ML = ẑ (in-plane) and ML = x̂ (out-of-plane) config-
urations for β = 500 meV (left panel) and β = 750 meV (right
panel). The shaded energy window corresponds to Fermi arc states.
(b) Fieldlike torque efficiency Tx/J exerted on the MWSM interface.
Torque efficiency in conventional MTJs is limited to the shaded
region.

and β = 750 meV, respectively. As is apparent, the extra
contribution due to FAs increases very rapidly with β. Such
behavior is counterintuitive: one would expect that increasing
the exchange field would lead to a less prominent contribution
from those spin states misaligned with the magnetization due
to spin-orbit coupling, a picture that is no longer valid in the
presence of Weyl nodes due to constraints imposed on spin
states by the well-defined handedness of carriers.

This discrepancy can be reconciled by noting that the den-
sity of FA states increases with β due to the larger separation
of Weyl nodes. This in turn results in an enhancement of sy

within the FA energy window because its spin eigenstates are
locked to the ±y direction, as previously discussed. Such a
feature leads to interfacial fieldlike torques that increase very
prominently with β, as shown in Fig. 4(b). In particular, the in-
terfacial fieldlike torque efficiency Tx/J , where J is the current
density, surpasses the theoretical limit of ≈2(h̄/2e) expected
for conventional MTJs. These results indicate that fieldlike
torques might play an important role in the magnetization
dynamics of MWSM systems.

Conclusion. We have studied the current-induced torques
in magnetic tunnel junctions containing a magnetic Weyl
semimetal contact. Our results show that the presence of mag-
netic Weyl semimetals substantially modifies the behavior of
current-induced torques. First, the chirality of electronic bulk
states gives rise to anomalous voltage dependencies of spin
transfer torque acting on a trivial ferromagnetic layer. Second,
the presence of topologically protected Fermi arc states was
found to produce giant fieldlike torques acting on the Weyl
semimetal, in conjunction with a counterintuitive behavior
where the torque increases with the exchange field strength.
Most MWSMs discovered to date consist of multiple pairs of
Weyl points with crossing bands. Nevertheless, the minimal
model herein allows us to elucidate on the new nonequi-
librium spin torque physics, which could underpin a new
generation of spintronics with energy-efficient magnetization
switching.
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