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Possible insulator-pseudogap crossover in the attractive Hubbard model on the Lieb lattice
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We study the attractive Hubbard model on the Lieb lattice to understand the normal state above the super-
conducting critical temperature in a flat band system. We use cluster dynamical mean-field theory to compute
the two-particle susceptibilities with full quantum fluctuations included in the cluster. At interaction strengths
lower than the hopping amplitude, we find that the normal state on the flat band shows insulating behavior
stemming from the localization properties of the flat band. A flat-band enhanced pseudogap with a depleted
spectral function arises at larger interactions.
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Flat, dispersionless energy bands host superconductivity
governed by the quantum geometry and topology of the band
[1–5]. The predicted transition temperature exceeds exponen-
tially that of conventional superconductors [6–9], promising
superconductivity at elevated temperatures. The observations
of superconductivity and insulating phases at quasiflat bands
in twisted bilayer graphene [10–12] reinforce such prospects.
The nature of the normal state above the critical temperature
of a flat-band superconductor is, however, an outstanding open
question. A Fermi liquid is excluded due to the absence of a
Fermi surface [13]. As the band width and kinetic energy are
zero, any attractive interaction could be anticipated to cause
pairing already in the normal state. Indeed preformed pairs
[14,15] and a pseudogap [16–18] have been suggested. Here
we show that the normal state in a Lieb lattice features, for
decreasing interaction, a crossover from a flat-band enhanced
pseudogap to a non-Fermi liquid with insulating proper-
ties. For small interactions, when lowering the temperature,
one could thus expect an insulator-superconductor transition
unique to flat-band systems.

The mean-field superconducting order parameter vanishes
at the critical temperature. Understanding the normal state is
thus inherently a beyond mean-field problem. Two-particle
properties, that is, four-operator correlations must be evalu-
ated with quantum fluctuations included. For this, we use a
cluster expansion of dynamical mean-field theory (DMFT)
[19]. DMFT has been used previously to investigate, for
example, the normal-state properties of the attractive single-
band Hubbard model [20–23], and its cluster variants for
studies of pairing fluctuations with different geometries [24].
The normal state of (partially or nearly) flat-band systems with
repulsive interactions has also been studied in Refs. [25–29].
We calculate the orbital-resolved pair and spin susceptibilities
based on two-particle Green’s functions.

We focus on the Lieb lattice, shown in Fig. 1(a), due
to its conceptual simplicity and experimental relevance. The
localized flat-band states reside at the lattice sites A and C

*paivi.torma@aalto.fi

only, and can be monitored separately from site B both in
experiments and simulations. This gives a means of distin-
guishing flat-band effects. The Lieb lattice has been realized
experimentally for ultracold gases [30,31], in designer lattices
made by atomistic control [32,33] and in photonic lattices
[34]. Some covalent-organic frameworks are also predicted to
provide the Lieb lattice [35]. We relate our predictions of the
insulating and pseudogap phases to generic flat-band effects
to unveil their relevance beyond the Lieb lattice, for instance
for moiré materials [36] where bands of different degree of
flatness can be designed.

The band structure of the Lieb lattice, shown in Fig. 1(b),
features two dispersive bands and a perfectly dispersionless
flat band (FB),

E±(k) = ±t
√

2
√

2 + cos(kx ) + cos(ky), EFB = 0, (1)

where the indices + and − refer to the upper and lower
dispersive band, respectively, and t is the nearest-neighbor
hopping amplitude. The lattice constant is taken as a = 1.

We study the attractive Hubbard model with the Hamilto-
nian

H =
∑

σ

∑
iα, jβ

ti jc
†
σ,iαcσ, jβ −

∑
σ

∑
iα

μσ nσ,iα (2)

+ U
∑

iα

(n↑,iα − 1/2)(n↓,iα − 1/2), (3)

where c†
σ,iα is the creation operator for a fermion with spin

σ =↑,↓ in the unit cell i and the sublattice α = A, B,C and
nσ,iα = c†

σ,iαcσ,iα . The hopping amplitude ti j is t between near-
est neighbors and 0 otherwise. Below, all energies are in units
of the hopping t . The on-site interaction strength is denoted
by U .

To study normal-state properties, we use a cluster ex-
pansion of DMFT where we use one unit cell of the Lieb
lattice as our cluster [see Fig. 1(a)]. In this method, the lattice
model is mapped to an effective Anderson impurity model,
and the lattice quantities are computed self-consistently. The
self-energy is assumed to be uniform and local to each unit
cell, �i j ≈ �δi j . Here, � is a matrix in the orbital indices.
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FIG. 1. (a) The Lieb lattice. The unit cell indicated with dashed
lines is used as a cluster in DMFT. The three sublattices are labeled
A, B, and C as shown. An example of a localized FB state is shown
in the lower left-hand corner. The A and C sites on a square plaquette
have amplitudes of alternating sign. Since we consider only nearest-
neighbor hopping, this state is localized by destructive interference.
(b) Band structure of the Lieb lattice. The FB is at energy E = 0.

DMFT has been able to qualitatively describe topological
interacting states [37,38]. Flat-band superconductivity is gov-
erned by quantum geometry and topology of the band [1–5],
but its essence is in Wannier function overlap at the local
level [15,39]. DMFT and mean-field predictions have been
shown to agree with exact diagonalization and Quantum
Monte Carlo in several attractively interacting flat-band sys-
tems [2,3,14,17,18,39].

More precisely, the principle of DMFT is as follows. The
self-energy �(iωn) and Green’s function G(k, iωn) are related
by the Dyson equation

G(k, iωn) = [G0(k, iωn)−1 − �(iωn)]−1, (4)

where G0(k, iωn) is the noninteracting Green’s function and
ωn are fermionic Matsubara frequencies. To map the lattice
model to an impurity model, we consider the local part of the
Green’s function G(iωn) = ∑

k G(iωn, k). The bath Green’s
function of the impurity model is obtained from

G0(iωn) = [G
−1

(iωn) + �(iωn)]−1. (5)

In this work, the impurity problem defined by G0(iωn) is
solved using an interaction expansion continuous time Monte
Carlo solver [40,41]. The solution of the impurity problem
provides the impurity Green’s function G(iωn) and a new
estimate for the self-energy. In DMFT, the self-energy of the
impurity is equal to the self-energy of the lattice, so the result
can be plugged into Eq. (4). This procedure is repeated until
the self-consistency condition G(iωn) = G(iωn) is fulfilled.

Calculation of the two-particle susceptibilities is a central
and highly nontrivial part of our work. The main ideas are dis-
cussed here, and further details are given in the Supplemental
Material [42]. This procedure [43] allows one to compute the
generalized susceptibilities

χi jkl (τ1, τ2, τ3) = G(4)
i jkl (τ1, τ2, τ3) − Gi j (τ1, τ2)Gkl (τ3, 0),

(6)
where G(4),ph

i jkl (τ1, τ2, τ3) = 〈Tτ [c†
i (τ1)c j (τ2)c†

k (τ3)cl (0)]〉 is
the two-particle Green’s function. Here, Tτ is the imaginary
time ordering operator and τi are imaginary times. The indices
i, j, k, l contain the spin and the orbital indices A, B, or C.

To conveniently define the spin and pairing susceptibilities,
we define the Fourier transform in the particle-hole (ph) and
particle-particle (pp) channels as follows:

χ
ph,ω,ω′,ν
i jkl =

∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3

× χi jkl (τ1, τ2, τ3)e−iωτ1 ei(ν+ω)τ2 e−i(ν+ω′ )τ3 , (7)

χ
pp,ω,ω′,ν
i jkl =

∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3

× χi jkl (τ1, τ2, τ3)e−iωτ1 ei(ν−ω′ )τ2 e−i(ν−ω)τ3 , (8)

where ν is a bosonic Matsubara frequency and ω and ω′ are
fermionic Matsubara frequencies.

The generalized susceptibilities can be computed with the
impurity solver for the cluster. However, within DMFT, the
local cluster susceptibilities are not equal to the lattice sus-
ceptibilities. Instead, the self-consistency is only at the level
of the local irreducible vertex function �, which is the two-
particle equivalent to the self-energy. Like the self-energy, �

is assumed to be momentum independent. It is related to the
generalized susceptibilities by the Bethe-Salpeter equation

χ c,ω,ω′,ν
i jkl = χ c,ω,ω′,ν

0,i jkl + χ c,ω,ω′′,ν
0,i j′ ji′ �c,ω′′,ω′′′,ν

i′ j′k′l ′ χ c,ω′′′,ω′,ν
k′kl ′l . (9)

Here, c denotes the channel and χ c
0 is the bare susceptibility.

Repeated indices are summed over. The Bethe-Salpeter equa-
tion can be written separately for the cluster and the lattice
quantities. The irreducible vertex in each channel is obtained
by inverting the Bethe-Salpeter equation for the cluster. The
lattice susceptibilities can then be computed by plugging the
result in the Bethe-Salpeter equation for the lattice quantities.

We first study the local contributions to the static spin
susceptibility, given by

χ spin
α = 2

β2

∑
ω,ω′

(
χ

ph,ω,ω′,ν=0
↑α,↑α,↑α,↑α − χ

ph,ω,ω′,ν=0
↑α,↑α,↓α,↓α

)
. (10)

These susceptibilities are shown in Fig. 2(a) at half-filling
μ = 0. The susceptibility at the B site increases monotonously
when the temperature is lowered. This is consistent with
Fermi liquid (FL) behavior. On the A/C sites at both U = −1
and U = −2, the spin susceptibility increases down to T ≈
0.2|U |, and then decreases rapidly. This indicates the forma-
tion of a pseudogap at the A/C sites. We find this pseudogap
also away from the FB, as discussed in [42].

To get further information about the nature of the normal
state, we study the Green’s functions in the middle of the
imaginary time interval, Gαα (β/2). This quantity is related to
the orbital-resolved local spectral function Aα by [44,45]

βGαα (β/2) =
∫

dω

2πT

Aα (ω)

cosh[ω/(2T )]
. (11)

Since the integral is dominated by the range ω � T ,
βGαα (β/2) approximates Aα (ω = 0) at low temperatures.
The advantage of studying βGαα (β/2) is avoiding the ana-
lytical continuation necessary to obtain the spectral function
within DMFT. However, βGαα (β/2) is only a reasonable
approximation for the spectral function at low tempera-
tures. At half-filling and intermediate interactions, the critical
temperature for superconductivity is too high to accurately
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FIG. 2. (a) Orbital-resolved spin susceptibilities χ spin
α as a func-

tion of T/|U | at half-filling for interaction strengths U = −1 and
U = −2. The susceptibilities are multiplied by the interaction
strength for visual clarity. In both (a) and (b), results for the A site
are plotted with circles and results for the B site with crosses. The
fluctuating data on the B site at U = −1 is due to numerical noise in
the two-body Green’s function. (b) The Green’s function βGα,α (β/2)
at inverse temperature β = 20 as a function of chemical potential.
Superconductivity is suppressed. The inset shows βGA,A(β/2) at
half-filling as a function of |U |. The results for the A and C sites
are identical due to the symmetry of the Lieb lattice.

estimate the spectral function in the normal state using this
method. We thus suppress the superconducting order and
study βGαα (β/2) at a low temperature T = 1/20. This pro-
vides us qualitative information about the nature of the state
provided the spectral function does not vary drastically with
temperature.

In a FL at zero temperature, the spectral function becomes
Aα = ρα[μ − Re�(ω = 0)], where ρα is the orbital-resolved
noninteracting density of states. In the Lieb lattice, ρA/C is
infinite at μ = 0 due to the FB. As can be seen from Fig. 2(b),
for low interaction strengths, a peak in βGAA(β/2) is visible.
However, when the interaction is increased, βGAA(β/2) be-
comes depleted in an increasingly wide region. This confirms
the non-Fermi liquid (NFL) behavior in the spin susceptibility
at the A/C in Fig. 2(a) is indeed related to a pseudogap in the
normal state.

While the spectral function tells about a pseudogap, at low
interactions, the imaginary part of the self-energy is helpful
in characterizing the FB normal state. In a FL, Im�(iωn)
vanishes linearly at low frequencies, �(iωn) ≈ iωna + b. As
shown in Fig. 3(a), this is observed at the B site. At a low
interaction U = −1, Im�A/C (ω) instead seems to diverge at
ω = 0. As the interaction strength is increased, the diver-
gence disappears and the linear behavior expected for a FL
is recovered around U ≈ −1.75. The imaginary part of the
self-energy is related to the quasiparticle weight Z by

Z =
(

1 − Im�(iωn)

ωn

∣∣∣∣
ωn→0

)−1

. (12)

Due to the momentum independence of the self-energy within
DMFT, Z = m/m∗, where m is the bare mass and m∗ is the
effective mass [46]. The divergence of Im�(iωn) around ω =
0 thus indicates a divergence of the effective mass. Therefore,
at low interaction strengths, the divergence in the self-energy
indicates insulating behavior.

FIG. 3. (a) Imaginary part of the self-energy at half-filling and in-
verse temperature β = 20. The superconducting order is suppressed.
The left panel shows the divergence of the self-energy, a signature
of a NFL insulator, at low interactions on the A/C sites. The right
panel shows the behavior at the B site, which is the one expected
for a FL. (b) Imaginary part of the self-energy at the first Matsubara
frequency, Im�αα (ω0 = πT ) as a function of T/|U | at interactions
U = −0.5 (left) and U = −3 (right). The superconducting transition
takes place at approximately TC ≈ 0.06|U |. In the left panel, the red
line shows a power-law fit (7.9 × 10−3)T −0.52 to Im�AA(iω0). On
the A/C sites, Im�(ω0) diverges as the temperature is lowered at
U = −0.5, whereas it decreases at U = −3.

The results presented in Fig. 3(a) are at a low temperature
with the superconducting order suppressed. This is neces-
sary because, at high temperatures, the linear vanishing of
the self-energy can become invisible if the lowest Matsubara
frequency is too high. To verify that the NFL behavior at
low interaction strengths exists also when the superconducting
transition is not suppressed, we show Im�(iωn=0) as a func-
tion of temperature in Fig. 3(b). At U = −0.5, Im�(iωn=0)
approximately follows a power law proportional to T −1/2 (dif-
ferent from, e.g., the Mott insulator T −1), and diverges at low
temperature. At U = −3, �(iωn=0) instead decreases when
the critical temperature is approached. This shows the quali-
tative difference in the behavior of the self-energy at different
interaction strengths subsists also when the superconducting
order is not suppressed.

DMFT does not allow us to completely discard the possi-
bility of a non-Fermi liquid instead of an insulator. To further
study this phase, we use exact diagonalization at zero temper-
ature. The Drude weight [42], shown in Fig. 4(a), decreases
with interaction below |U | ∼ 3. Due to the finite size of the
system studied with exact diagonalization, it does not reach
zero in the noninteracting case, but it is expected to converge
to zero as the bulk limit is approached, meaning the half-
filled noninteracting system becomes an insulator. We found a
qualitatively similar behavior for the flat band in the kagome
lattice [42].

At zero temperature, the insulator cannot subsist at fi-
nite interactions. However, at low interactions, transport can
be expected to be dominated by pairs, as single particles
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FIG. 4. (a) Drude weight and (b) −Eb/2 in the Lieb lattice com-
puted using exact diagonalization at zero temperature and half-filling
for a 12-site cluster with periodic boundary conditions. The dashed
line in (b) indicates Tc ≈ 0.06|U | estimated from the DMFT calcu-
lations. (c) Determinant of the inverse effective mass tensor (1/m∗)
of two particles on the flat band obtained by solving the two-body
problem in the Lieb lattice.

become localized. Thus, we investigate the binding energy of
two electrons Eb = E [(N + 1)↑, (N + 1)↓] + E (N↑, N↓) −
2E [(N + 1) ↑, N ↓], where E (N ↑, M ↓) is the ground state
energy when there are N particles with spin up and M particles
with spin down. As can be seen from Fig. 4(b), when the
interaction is decreased, the energy per particle needed to
break a pair, −Eb/2, approaches the critical temperature. At
low interaction strengths, the pairs are thus broken by ther-
mal fluctuations already near the superconducting transition.
Moreover, the effective mass of a pair in a flat band diverges
when the interaction is decreased [1,15], as is seen from the
effective mass of two particles on the Lieb lattice flat band
shown in Fig. 4(c). An insulator at finite interactions and finite
temperature can thus be explained by the diverging effective
mass of pairs and their destruction near the superconducting
transition, while single particles are localized.

We thus find two different NFL phases in the normal state.
When the hopping amplitude is of the order of the interaction
or larger, the self-energy at the A/C sites diverges, indicating
insulating behavior related to the FB. When the interaction
is increased, the insulating behavior disappears as shown by
Fig. 3(a), and the spectral function is increasingly suppressed
at low temperatures [Fig. 2(a)]. This is a pseudogap phase.
The spin susceptibility [Fig. 2(a)] shows NFL features sug-
gesting pairs form already in the normal state also at low
interaction strengths. However, the onset temperature of the
pseudogap becomes vanishingly close to the superconducting
critical temperature at low interaction strengths. In both the
insulator and pseudogap cases, the NFL around half-filling is
linked to the FB, and the behavior at the B site is that of a
FL. We considered weak and intermediate coupling. In the
strong-coupling limit, the normal state is expected to contain
bosonic pairs as the Bose-Einstein condensation (BEC) limit
of the BCS-BEC crossover is reached [16,47,48].

A pseudogap was also predicted in the normal state of
the Lieb lattice in [16]. In this Monte Carlo study, a metallic
state is predicted at low interaction strengths and a pseudogap
phase with short-range pairing correlations at intermediate
interactions. In contrast, our results show that the state at low
interaction strengths at the FB singularity is not a metallic
FL phase. In agreement with this previous study, we find that
the normal state at interactions above |U | ≈ 1 is a pseudo-
gap phase, characterized here by a depletion of the spectral

FIG. 5. Pairing susceptibilities χ pair
α as a function of temperature

for different chemical potentials at interaction strength U = −2.

function and a suppressed spin susceptibility. A similar pseu-
dogap state was predicted in [17,18] for lattices with a (quasi)
flat band. The onset temperature of the pseudogap in these
studies is predicted to be proportional to the interaction
strength, which is similar to our result. In summary, we have
confirmed by DMFT the presence of a pseudogap in the
Lieb lattice, predicted with Monte Carlo studies in flat-band
systems. The NFL with insulating behavior we find at low
interactions has not been predicted before, and is unique to
flat-band systems: it arises from the localization of particles
due to destructive quantum interference.

The superconducting phase transition is characterized by
the pairing susceptibility, which has local contributions

χpair
α = 2

β2

∑
ω,ω′

χ
pp,ω,ω′,ν=0
↑α,↑α,↓α,↓α. (13)

The pairing susceptibilities at U = −2 and different chemical
potentials are shown in Fig. 5(a). At half-filling, the pairing
susceptibility is strongly dominated by the A/C sites, where
the FB states reside. In contrast, the pairing susceptibility
χ

pair
B barely increases below T ≈ 0.6. The total pairing sus-

ceptibility diverges at the critical temperature, so this shows
that the phase transition is driven by pairing at the A/C sites.
When the chemical potential is tuned away from the FB, the
susceptibility at the B site becomes the dominant susceptibil-
ity. The difference between the susceptibilities in the different
sublattices is, however, not as pronounced as at the FB. Even
accounting for the different critical temperatures, the pairing
susceptibility at the FB singularity is always larger than the
local pairing susceptibilities away from the FB. The large
difference between the susceptibilities at the A/C and B sites
at μ = 0 is thus not only due to a suppression of the suscep-
tibility at the B site, but the FB enhances the local pairing
susceptibility at the A/C sites. We have verified that the charge
density wave instability, which can compete with the super-
conducting order in the Lieb lattice at fillings n = 1/3 and
n = 2/3 [47], is weaker than the superconducting instability
at μ = 1 and μ = 2 [42].

In summary, we found a crossover between two non-Fermi
liquid normal states in the Lieb lattice: a state with insu-
lating characteristics at the A/C sites below interactions of
|U | � 1 and a metallic state featuring a pseudogap above. The
insulator and pseudogap behaviors can coexist in a small tem-
perature range. The crossover can be observed in present-day
ultracold gas setups since cooling below Tc, often an obsta-
cle, is not needed, and susceptibilities [49] and pseudogaps
[50,51] can be measured. In twisted bilayer graphene (TBG)
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the interaction strength is not known, but mean-field studies
indicate it is in the regime where flat-band effects are signif-
icant [5,52–54]. Thus the possibility of a flat-band insulator
interacting normal state should be considered in addition to
pseudogap [55] and other exotic normal states [56,57] already
observed, in particular for other moiré materials with stronger
flat-band character than TBG. Due to the particle-hole sym-
metry, our results are also relevant for flat-band magnetism
[58–60]: the spin susceptibility maps to the charge suscepti-
bility and vice versa.

Pseudogap phases have been predicted and observed in
many strongly interacting dispersive systems [21,51,61,62].
For instance, in the square lattice with attractive interactions
it appears for large interactions while the weak interaction

regime is a Fermi liquid [21]. Here we showed that a flat band
enhances the pseudogap formation. The non-Fermi liquid with
insulator behavior found at small interactions is qualitatively
unique to flat bands.
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