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Curvature-driven ac-assisted creep dynamics of magnetic domain walls
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The dynamics of micrometer-sized magnetic domains in ultrathin ferromagnetic films is so dramatically
slowed down by quenched disorder that the spontaneous elastic tension collapse becomes unobservable at
ambient temperature. By magneto-optical imaging we show that a weak zero-bias ac magnetic field can assist
such curvature-driven collapse, making the area of a bubble to reduce at a measurable rate, in spite of the
negligible effect that the same curvature has on the average creep motion driven by a comparable dc field.
An analytical model explains this phenomenon quantitatively.
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An arbitrarily weak quenched disorder has yet a notable
qualitative effect on the driven motion of an extended elastic
system such as an interface embedded in a random medium.
A paradigmatic experimental example is pinned domain walls
(DW5s) in thin film “Ising-like” ferromagnets with a uniform
external magnetic field favoring the growth of a magnetic
domain [1-3]. In these materials, due to the practically un-
avoidable presence of random heterogeneities, DW velocities
can vary dramatically under relatively modest changes of
a weak applied field. Strikingly, the quantitative way the
velocity asymptotically vanishes in the small field limit is
universal [4-6], and is thus succesfully captured by minimal
models that can be solved, in the limit of large systems,
with powerful analytical [7] and numerical [8—11] techniques.
These statistical-physics models yield, in particular, the cel-
ebrated creep-law In(1/v) o« H™* for the average velocity v
of a DW in the presence of weak uniform magnetic driv-
ing field H, with i > 0 a universal exponent [4,5,12]. This
law clearly signals the breakdown of linear response in the
collective transport. The success of this mathematical descrip-
tion unveils the basic physics fact that the glassy universal
dynamics of DWs is mainly controlled by the interplay of
pinning, elasticity, and thermal fluctuations on the driven
elastic interface. As such, creep theory is relevant for many
other driven elastic systems with thermal or “thermal-like”
fluctuations and quenched disorder, ranging from ferroelectric
domain walls [13-17], current driven vortices in supercon-
ductors [18-22], charge density waves [23], to tension driven
cracks [24,25].

Many universal properties predicted by the creep theory,
the velocity-force characteristics [4,5,7,12], the rough geom-
etry of moving DWs [8-10], and even the event statistics
behind the creep law [11,26], have been studied experimen-
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tally by applying external magnetic fields [1,2,6,27-33] or
external currents [34-38] to drive DWs in ultrathin ferromag-
netic films with perpendicular magnetic anysotropy (PMA).
Most of the studies focus on the dc-driven case while compar-
atively very few experimental [14,33] and theoretical [39,40]
studies have focused on the universal properties that can
emerge under a zero-bias ac drive within the creep regime.
Weak ac fields yield nevertheless a rich phenomenology
which is worth studying. In particular, recent experiments
have shown that roughly circular magnetic bubbles evolve
under a pure symmetric ac field in a very intriguing way [33].
The first interesting effect is that the (otherwise ultrastable)
initial bubble monotonically shrinks with the number of al-
ternated positive and negative magnetic field pulses of equal
strength, apparently “rectifying” the ac drive. The second
is the observation that the DW roughness increases at a
much faster rate in the ac protocol compared to the dc
for the same amplitude of the drive. An example of such
evolution, captured by successive MO images, is shown in
Fig. 1. These two intriguing effects have not been explained
yet.

In this article we show that the elastic pressure arising from
the domain mean curvature, even being orders of magnitude
weaker than the driving field pressure, is responsible for the
shrinking of the domain area under ac fields. To show this,
we first derive a model for the ac-driven DW dynamics and
second, we quantitatively test two of its predictions exper-
imentally: (i) the pulse asymmetry needed to stabilize the
average size of the “beating domain” and (ii) the area collapse
rate in the initial dynamics for the case of symmetric positive-
negative pulses. Finally, a qualitative argument is given to
explain the ac enhancement of the DW dynamic roughening
and its effect on the area collapse dynamics.
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FIG. 1. Schematics of the magnetic field protocol. Pulses applied
to grow the domain (red) are followed by the ac-driving pulses
(green) with amplitudes H; and —H|. The sequence of PMOKE
images in the bottom corresponds to the case Hy = H, for an in-
creasing number N of pulses. (Inset) Diagram of the contour I', of
a typical domain at an arbitrary time 7, where 1, (6) indicates the
domain profile measured from the average radius p,;(0). F, and Fy
are the elastic and field normal forces per unit length, respectively.

The proposed model is very simple. Let us consider a
segment of a thin DW in a film of thickness d. In the absence
of disorder and thermal fluctuations, the total force F per unit
length acting on the effectively one-dimensional (1D) DW is
the sum of the magnetic field force Fy = 2M dHn and the
elastic force F, = odkii, with M; being the saturation magne-
tization, o the DW surface tension, and « the DW signed local
curvature. Both forces are parallel to the DW local outward
normal 71 (see inset in Fig. 1). For instance, for a perfectly
circular bubble of radius R, the “Young-Laplace” effective
magnetic field Ck ~ —C/R, with the constant C = o /2Mj,
opposes domain growth. Assuming an overdamped dynamics
we have R = m(H — C/R), with m the effective DW mobility.
For H = 0 this predicts the linear decay A; = Ag — 27 Cm)t,
where A, = wR? is the shrinking circle area. The bubble is
hence unstable and its lifetime scales as ~Aq. This result can
be also obtained from the general Allen-Cahn equation [41].
Quite remarkably the result actually holds for any simple
time-dependent closed curve I'; [42] for which we can write

dA
gfzﬁhumw, (1)

with v, (r;) the local instantaneous normal velocity at
point ry in I'y,. If we assume a linear and instantaneous
response v, (ry) = m[H, + Ck,(ry)], with «,(ry) the instan-
taneous signed local curvature we easily obtain, using the
topological index of the curve fr/ k;(rg)ds = —2m, the rate
44 — ymH,P, — 27Cm, with P, = fr, ds the perimeter. This

dt
generalizes the H; = 0 constant decay rate ‘%

any initial simple closed curve I';.

In the presence of quenched and thermal disorder the
above results are not valid as the normal velocity v, (r;) is in
general expected to be an inhomogeneous nonlinear function
of H, + Ck,. Assuming again instantaneous response we can
write Eq. (1) as

dA

—~/ww+%mMM& ®)
dt r,

= —2nCm to

with Vr(h, r) a temperature- and position-dependent veloc-
ity response function evaluated at the local field b, = H; +
Ck,;. We will argue that for weak enough fields, Vy(h, r) in
Eq. (2) can be approximated by the well-known creep law
for dc-driven DWs. This hydrodynamic approach can be for-
mally justified: in the creep regime, DW velocity is mainly
controlled by creep events with a cutoff radius estimated
to be, for ultrathin ferromagnets, less than 0.1 um [11,31],
clearly well below the ~1-um PMOKE resolution. There-
fore, larger size fluctuations are expected to introduce only
negligible logarithmic corrections [10] into the creep law
Vr(h) ~ exp[—(T;/T)(Hy /h)"*] that describes the DW veloc-
ity in terms of the effective field %, temperature 7', and also
the disorder and elasticity through 7, and H; [43]. Similarly,
the characteristic time associated with individual creep events
is much smaller than the experimental time scale used for
resolving DW displacements so the velocity response can be
considered local and instantaneous.

Replacing the creep velocity Vy (%, r) in Eq. (2) is a step
forward but still yields a nonclosed equation for dA,/dt as
it requires the knowledge of the time-dependent curvature
field «, (r), together with a model for the spatially fluctuating
pinning parameters of the creep law. Nevertheless, to extract
the basic physics some progress can be made by first making
the well-justified approximation that H, > Ck; [44]. Second,
the complexity of Eq. (2) is greatly reduced if we neglect the
heterogeneity of the creep law and replace it by its average
Vr(h,r) = Vr(h) or velocity-field characteristics. This ap-
proximation is not equivalent to neglect disorder completely,
as Vr(h) is in general quite different from the Vr(h) o h ex-
pected for a homogeneous sample, particularly in the strongly
nonlinear creep regime. Developing then at first order in Ck;,
from Eq. (2) we obtain

dA, ,
e Vr(H)F — 27 CVy(H,), 3

only relating the geometric variables A; and P,. The position
and time-dependent curvature «;(r) disappears thanks to the
topological invariant fl“/ k; = —2m [45]. Let us now focus
on the experiments and make some concrete predictions with
Eq. (3).

Our measurements were carried out in ultrathin ferromag-
netic films with PMA, by magneto-optical imaging, using
a homemade polar magneto-optical Kerr effect (PMOKE)
microscope. Two kinds of samples from different sources
were used: a Pt/Co/Pt magnetic monolayer (S1) and a
Pt/[Co/Ni]4/Al multilayer (S2), both grown by dc magnetron
sputtering [46,47]. Helmholtz coils allow one to apply well-
conformed square magnetic field pulses with amplitude H up
to 700 Oe and duration 7; > 1 ms. DW dynamics is char-
acterized with the usual quasistatic technique (see [45] for
experimental details). The ac field is applied to an already
grown domain (see Fig. 1) and it consists of alternated square
pulses of identical duration 7; and amplitude H = H; > 0
(expanding the domain), and H = —H| < 0 (compressing the
domain). The two pulses are periodically repeated with period
T > 211, as schematized in Fig. 1. The magnitudes of all
applied fields are such that the creep law with u = 1/4 is well
observed in the dc protocol (see [45]).
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FIG. 2. Field pulse asymmetry AH used to compensate the cur-
vature collapse of domains with different initial radii R. (Inset)
Evolution of the domain area A with the pulse number, for symmet-
ric pulses AH = 0 and for nearly compensating asymmetric pulses
AH = 0.5 Oe.

Since we are only interested in the smooth evolution of A,
and P, as a function of the number N of ac cycles we de-
fine A and P such that dA/dN = A, .1 — A, and dP/dN =
P,+1 — P,, where n =t /7. Integrating Eq. (3) from ¢t = nt to
t = (n+ 1)t we thus obtain
dA T dP =t
IN ~ —2nCVy(Hy)t — ZVT(H¢)d—N + EAHVT/(H“P,

“)
where AH = H; — H, < H; quantifies a possible pulse
asymmetry, and we have used the expected symmetry Vr(h) =
—Vr(=h).

We test Eq. (4) in two different ways. On one hand, we can
choose AH = AH* such that d A/dN = dP/dN = 0,

AH* = — 4)

where we have defined R = P/2m, approximately the ob-
served average domain radius. This is a simple but rather
general prediction: AH* is independent of Vi only provided
that Vr(h) = —Vr(—h), and of the ac parameters T and H;.
In physical terms, Eq. (5) states that even weak compressing
forces arising from mean curvature are relevant because they
break the forward-backward symmetry of the DW velocity in
the ac field. Importantly, Eq. (5) connects with micromag-
netism through C = o /2M;. Using that Ay ~ Ay, in Fig. 2
we test Eq. (5) experimentally. The main panel shows the
field asymmetry AH stabilizing the average area A of initially
nucleated domains with different initial radius R. An example
of such compensation is shown in the inset, where the evo-
lution of A(N) under symmetric field pulses and asymmetric
compensating pulses are compared for sample S1, with an ini-
tial R = 25um. For both samples, there is a good agreement
with the linear relation between AH* and 1/R predicted in
Eq. (5), for four R values ranging from 15 um to 35 um. The
ordinates, predicted to be zero in Eq. (5), are compatible with
a small spurious dc field present in the laboratory. The fitted
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FIG. 3. Open symbols and dashed regions show the evolution of
the mean value and statistical variance of A(N) (see text) (a) and of
the relative domain area change AA/A, (b), for different amplitudes
of symmetric pulses in sample S2. The black line in (a) is a linear
fit of the initial evolution of A(N) with H ranging from 160 to
180 Oe, yielding the micromagnetic constant C. In (b) numerical
simulation results are shown with full symbols. Inset (c) shows DW
mean squared displacements for H = 160 Oe pulses.

value of C is in both cases of order 1073Oe cm, fairly agreeing
with Cg; = 2.1 x 1073 Oe cm and Cs» = 1.2 x 1073 Oe cm
estimated as C = o /2M from the micromagnetic parameters,
respectively [45].

Let us now go further and focus on the interesting case
of symmetric field pulses Hy = H, = H,i.e., AH = 0. From
Eq. (4) we simply predict

TV (H
_i[A—+4 r( )7’} _4 e ©)
dN| 2rV/(H)t dN

For circular DWs with radius R;, this equation can be readily
obtained from dR,/dt ~ V (H, + Ck;) with k, = —1/R;. Re-
markably, however, Eq. (6) is valid regardless of the circular
shape assumption (see [45] for further details) and contains
the spontaneous (H = 0) collapse as a special case. Fig-
ure 3(a) shows the evolution of the function A(N) defined
in Eq. (6), for four different field amplitudes, measured in
sample S2. The initial slope for the highest amplitudes, us-
ing the creep-regime velocity-field characteristics measured
in S2, gives C &~ 10730e cm, again in fair agreement with the
micromagnetic estimate for C, hence reinforcing the curvature
argument.

Results shown in Figs. 2 and 3(a) confirm that surface
tension forces arising from curvature are responsible for
the domain collapse, in spite of being two orders of mag-
nitude smaller than the ac forces. They also validate the
proposed model but, as can be appreciated in Fig. 3(a),
only for the very first few ac cycles (small N). The linear
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approximation deviates from the data at smaller N as H
decreases. We argue that these deviations are due to large-
scale dynamic roughening, neglected in our simple model.
To show this we exploit that creep dynamics displays a
“depinning-like” regime upon coarse graining many creep
events [7-9] and thus numerically emulate the experi-
mental protocol using the time-dependent Ginzburg-Landau
model [48-51],

N3¢ = V¢ + el(1 +r(x, y))p — ¢’ 1+, (7

near the depinning transition, where ¢ = ¢(x, y, t) models the
local magnetization, and r(x, y) an uncorrelated random-bond
type of disorder of strength ry [52]. The effective ac field
h, = +hy of period T is chosen so as to impose a given
average displacement of the DW in half a period comparable
to that observed in the experiments. After nucleating a circular
domain with saturation magnetization ¢; ~ 1, this model gen-
erates a closed curve I'y (i.e., ¢(ry) = O forry € I'y) describing
a DW with width 6 ~ \/c/eo, and surface tension o ~ ,/ceo,
driven by an ac field in a disordered environment. When ry =
0, Eq. (6) is very accurately satisfied if we replace Vy (H)t —
fzof(S/n and Vj(H)t — %8/ and C — /c€p [45]. When
ro # 0, however, we go beyond the homogeneity assumption
and a deviation from Eq. (6) similar to the experiment is
found. Strikingly, we can empirically adjust ry, and then tune
h and 7 so as to accurately reproduce the experimental data for
the different fields, as shown in Fig. 3(b). Large-scale dynamic
roughening within the creep regime hence slows down the
curvature-driven collapse. The better agreement for small N
between the prediction [Eq. (6)] and the experiment [Fig. 3(a)]
for increasing ac fields is explained by the smoothing effect of
the DW velocity.

Finally, we aim to explain why the ac dynamic roughening
discussed above is enhanced with respect to the dc-driven
case [33]. As a general fact, we expect that a recently nucle-
ated driven DW will display, as it correlates with the disorder,
a growing DW mean squared width, w? ~ t*/% with ¢ and
z the roughness and dynamic exponents, respectively [53]. If
the large-scale geometry of a DW in the dc creep regime is
described by the Edwards-Wilkinson (EW) equation with an
effective temperature [7,9,31] we expect z =2 and ¢ = 1/2,
so w? ~t!/2 for the 1D DW. For the ac case we expect
instead a temporally correlated noise since the DW can revisit
repetitively the same disorder in its oscillatory motion. If we
model such colored noise n(x,t) with an exponent ¢ > 0,
such that for two points in a DW segment (n(x, t)n(x, ")) ~
S(x — x|t —t'|?¥~! (y =0 for uncorrelated noise) linear
theory predicts z =2 and ¢ = 1/2 + 2¢ > 1/2 [53]. There-
fore w? should grow faster than in the dc case. To test this
idea we describe the experimental DW in polar coordinates

p(0,1)[54], and define u,(8) = p,(0) — R; with R, = (p,(0))
the angle-averaged radius (see inset in Fig. 1), and then com-
pute the roughness after N cycles w} = (u3). The inset of
Fig. 3 shows an example of the ac evolution of w3, in sample
S2. Interestingly, it can be seen that w3 ~ N, faster than the
prediction for uncorrelated noise and compatible with corre-
lated noise with ¢ =~ 1/2 in the relevant N range [55]. This
may explain qualitatively why DWs in the ac protocol are
rougher than in the dc protocol for identical field amplitude
and time window, as observed experimentally [33], and in
recent simulations [51].

Summarizing, we have proposed and experimentally tested
a model for the DW creep dynamics of an isolated magnetic
domain in an ultrathin ferromagnet under ac fields at am-
bient temperature. We showed that curvature effects, with a
negligible effect on the average dc-driven motion, play nev-
ertheless a central role in the ac-driven case. The intriguing
“rectification effect” in the zero-bias ac case of Ref. [33] is
then explained by the curvature-induced symmetry breaking
of forward-backward DW motions. Rather strikingly, the same
curvature effects are unable to produce, without ac assis-
tance, any experimentally observable DW displacement [56].
We have also explained, qualitatively, the ac enhancement
of large-scale dynamic roughening. A systematic study of
temperature dependence could give additional cross-check of
the model predictions and further useful insight. Although
we have focused on their important role in the ac-assisted
motion, curvature effects can be relevant in some dc-driven
systems as well: A nonsteady velocity in dc-driven circular
domains was experimentally reported [57]; on the other hand,
in thin and narrow ferromagnetic wires the universal creep
law is satisfied by the dc-driven steady DW velocity only if
an effective “counterfield” AH [58,59], proportional to the
observed average curvature of the narrow DW, is added, in
agreement with our arguments. In the latter case, however,
average curvature is not inherited from the initial conditions
but steadily maintained by the strong localized “dynamic fric-
tion” at the wire edges. Due to the simplicity and generality of
our arguments, we hope that the present work will open new
perspectives for modeling and controlling DW creep motion
in analog ferroelectric materials [15,17,60], as well as in a
variety of elastic systems, far beyond ferromagnetic films.
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