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Modified Curie-Weiss law for jeff magnets

Ying Li ,1,2,* Stephen M. Winter,3,† David A. S. Kaib ,2 Kira Riedl,2 and Roser Valentí 2,‡

1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics,
Xi’an Jiaotong University, Xi’an 710049, China

2Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 1, 60438, Frankfurt am Main, Germany
3Department of Physics and Center for Functional Materials, Wake Forest University, North Carolina 27109, USA

(Received 3 March 2021; accepted 20 May 2021; published 17 June 2021)

In spin-orbit-coupled magnetic materials, the usually applied Curie-Weiss law can break down. This is due
to potentially sharp temperature dependence of the local magnetic moments. We therefore propose a modified
Curie-Weiss formula suitable for analysis of experimental susceptibility. We show for octahedrally coordinated
materials of d5 filling that the Weiss constant obtained from the improved formula is in excellent agreement with
the calculated Weiss constant from microscopic exchange interactions. Reanalyzing the measured susceptibility
of several Kitaev candidate materials with the modified formula resolves apparent discrepancies between various
experiments regarding the magnitude and anisotropies of the underlying magnetic couplings.
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Great interest has been devoted towards searching for Ki-
taev spin liquid candidate materials with strongly anisotropic
Ising couplings on the honeycomb lattice [1–7]. Such inter-
actions were proposed to be realizable in the edge-sharing
octahedra of d5 transition metal ions, where strong spin-orbit
coupling (SOC) splits the t2g states into multiplets with ef-
fective angular momentum jeff = 3/2 and 1/2 [8–11]. While
other proposals for realization of the Kitaev model also exist
for materials with d7 filling [12–14], as well as for complex
magnetic interactions for d1 filling [15], we concentrate in this
work on the well-studied d5 case. Promising candidate mate-
rials include Na2IrO3 [16–18], α-Li2IrO3 [18–21], α-RuCl3

[22–26], as well as H3LiIr2O6 [27–29].
One of the persistent questions regarding all of these

spin-orbital coupled magnets is the specific details of the low-
symmetry magnetic couplings, which are difficult to extract
from any single experiment. The overall scale and anisotropies
are often first addressed via the (direction-dependent) Weiss
constant �, appearing in the phenomenological Curie-Weiss
(C-W) law describing the high-temperature magnetic suscep-
tibility

χ = χ0 + Ns(μeff )2

3kB(T − �)
, (1)

where χ0 accounts for temperature-independent background
contributions, Ns is the number of sites, and μeff denotes the
effective magnetic moment. While thermal fluctuations dom-
inate for temperatures T � �, quantum effects typically play
a decisive role for T � �. For this reason, quantum magnets
nearby spin-liquid ground states with finite but suppressed
ordering temperature TN may still display a wide tempera-
ture range TN < T < � where responses resemble those of
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spin-liquid states. This occurs provided a large frustration
parameter f = �/TN can be defined. The excitations in this
temperature regime may even be interpreted in terms of frac-
tionalization [30–33]. Evidently, the accurate estimation of �

is an important first characterization of a spin-liquid candidate
and frustrated magnets in general. However, as we discuss in
this work, standard C-W fits are insufficient for jeff magnets
with strong SOC.

For the examples of Na2IrO3 [18] and α-Li2IrO3 [21],
standard C-W fits suggest strongly anisotropic �-values as
large as ∼ − 125 K despite antiferromagnetic ordering tem-
peratures of 15 K in α-Li2IrO3 [18,34] and 13 − 18 K in
Na2IrO3 [18,35,36]. While competition between anisotropic
interactions of different signs may render f a poor measure
of frustration [18], the scale of the couplings suggested by
these �-values is much larger than expected from ab initio
calculations [37–40]. Furthermore, recent analysis of resonant
inelastic x-ray scattering (RIXS) data on Na2IrO3 led to pro-
posed models that account for neither the anisotropy nor the
magnitude of the observed Weiss constants [41].

Similarly, the magnetic susceptibility of α-RuCl3 (TN ∼
7 K) has been measured by various groups [23,26,42–45],
with standard C-W fitting indicating strongly anisotropic
Weiss constants up to ∼130 K, corresponding to f > 15. This
motivated various studies to interpret experimental responses
at intermediate temperatures in terms of Kitaev spin-liquid-
like behavior [30,31,33]. However, theoretical analysis of the
inelastic neutron scattering response suggests that the exci-
tation bandwidth may be incompatible with the large energy
scales implied by the fitted �-values [46,47]. Moreover, the
fitted effective moments of 2.0 to 2.7 μB are anomalously
large compared to the pure jeff = 1/2 value (1.73 μB), indi-
cating inadequacy of the C-W form. Indeed, similar deviations
observed in a wide range of Ru compounds support this con-
clusion [48].

The oversimplified use of the Curie-Weiss law can mis-
judge frustrations [49], relative anisotropies, and signs of the
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FIG. 1. (a) Kitaev candidate honeycomb layers (M = {Ir, Ru},
A = {O, Cl}) with view in the ab- and ac-planes. Arrows indicate
local x, y, z directions and crystallographic a, b, c axes. c∗ is the
direction perpendicular to the ab-plane. Canonical X , Y , Z bonds
are indicated. (b) Temperature-dependent effective magnetic moment
μeff(T ) for different SOC-strengths λ (in eV) and fixed trigonal
splitting � = 0 eV. (c) μeff(T̃ ) with T̃ = T/λ for different values of
�̃ = �/λ in the ab-plane. (d) μeff(T̃ ) perpendicular to the ab-plane.

underlying couplings. A key observation is that the Curie-
Weiss law only represents an adequate high-temperature
approximation for χ (T ) if the quantum operators representing
the magnetic moments commute with the Zeeman operator.
This holds only if the local moments are of pure spin com-
position, while strong SOC may induce significant deviations.
For isolated paramagnetic metal complexes [48,50–52], and
dimers [53], this effect can be modelled by temperature-
dependent moments μeff (T ) due to additional van Vleck
contributions. Such effects must also be present in jeff quan-
tum magnets, but are, with few exceptions [14], usually
ignored in the analysis of χ (T ).

In this work, we therefore propose an improved formula ac-
counting for μeff (T ). We then perform exact diagonalization
of the one-site multi-orbital Hubbard model for d5 filling with
inclusion of spin-orbit and crystal-field terms. This allows
to compare the results of the improved formula accounting
for μeff (T ) to standard Curie-Weiss fitting for a range of
models where the underlying couplings are exactly computed.
Finally, we apply the modified fitting formula to experimental
susceptibilities to yield corrected Weiss constants, and discuss
corresponding implications.

The electronic Hamiltonian for the d5 filling of octa-
hedrally coordinated transition metal ions in edge-sharing
geometries [see Fig. 1(a)] is given by

Htot = Hhop + HCF + HSO + HU , (2)

which is the sum of, respectively, the kinetic hopping
term, crystal-field splitting, spin-orbit coupling, and Coulomb

interaction. The explicit expression for each term is given
in the Supplemental Material [54]. Locally, SOC splits the
t2g levels into j1/2 and j3/2 states, with a single hole in the
j1/2 level in the ground state. The low-energy states are thus
spanned by j1/2 doublet degrees of freedom, which can be
described by an effective spin model with jeff = 1/2. The
effective Hamiltonian is written as Heff ≡ P (Htot + HZ)P ,
where [55]

PHtotP =
∑
iα jβ

Jαβ
i j Sα

i Sβ
j , (3)

PHZP = −
∑
iαβ

hαgαβ
i Sβ

i . (4)

Here, P is a projection operator onto the low-energy
subspace, Jαβ

i j describe interactions between j1/2 pseudospin

components Sα
i (α ∈ {x, y, z}), gαβ

i are effective g-values,
and hα respective magnetic field components. The conjugate
high-energy subspace contains states with finite density of
local j1/2 → j3/2 spin-orbital excitons, and intersite particle-
hole excitations. In reality, the Zeeman operator HZ = −h ·∑

i(gsS̃i + gLLi ) (S̃i denotes the pure spin angular momen-
tum, in contrast to the pseudospin Si) mixes the j1/2 and
j3/2 states, generating contributions to the magnetic suscep-
tibility that are not captured within this low-energy theory.
Such van Vleck-like contributions may modify the high-
temperature susceptibility significantly. We therefore consider
a regime where the temperature kBT is large compared to
the magnetic interactions between j1/2 moments (kBT �
Jαβ

i j ∼ 10-100 K), but small compared to the splitting between
the j1/2 and j3/2 levels (kBT � λ ∼ 0.1–0.5 eV ∼ 1160–
5800 K). For this case, we propose an improved Curie-Weiss
formula for the diagonal components of the susceptibility
(details of the derivation are given in [54]):

χα (T ) ≈ χα
0 + Cα (T )

T − �α
, (5)

Cα (T ) = Ns

3kB

[
μα

eff (T )
]2

, (6)

�α = − S(S + 1)

3kB

∑
iγ jδ gαγ

i Jγ δ

i j gδα
j∑

iγ gαγ
i gγα

i

. (7)

In this approximation, the effective temperature dependence
of �α is neglected, which is adequate for the present cases (see
[54]). The most important observation is that the temperature
dependence of μα

eff (T ) severely complicates the extraction
of �α from experimental susceptibility data. It is often pos-
sible to fit such data to a conventional Curie-Weiss form
χ = χ0 + C/(T − �); however, the values of C and � ob-
tained from such fits are not directly relatable to the exchange
constants of the low-energy spin model. The way to proceed
in order to extract reliable C-W constants is to first obtain
the effective moment μα

eff (T ) of a single magnetic site, which
can be computed exactly by diagonalizing the local Hamil-
tonian HCF + HSO + HU . For specific cases of trigonal and
tetragonal distortions, analytical expressions are also available
[50,51]. The C-W constants can then be extracted by fitting
Eq. (5) to the measured χα (T ).

In what follows we demonstrate this procedure for the case
of octahedral transition metal ions with trigonal symmetry,

L220408-2



MODIFIED CURIE-WEISS LAW FOR jeff . . . PHYSICAL REVIEW B 103, L220408 (2021)

where the t2g electron level is split into an a1g singlet and
an eg doublet with a splitting equal to 3� = E (a1g) − E (eg).
Figure 1(b) illustrates the temperature dependence of μeff (T )
for � = 0 and in Figs. 1(c) and 1(d) we show μeff (T ) as a
function of T̃ = T/λ for different values of �̃ = �/λ. For
Ru3+, we take λ = 0.15 eV, while for Ir4+, we take λ =
0.4 eV [56]. As suggested by these calculations, the effective
moment is a generically increasing function of temperature for
low-spin d5 compounds, for all orientations of the magnetic
field. This implies that C(T ) and χ (T ) are anomalously en-
hanced with increasing temperature entirely due to local van
Vleck contributions. As we show next, if such data are fitted
with a conventional Curie-Weiss form, it leads to large Curie
constants C > g2S(S + 1)/(3kB) and anomalously antiferro-
magnetic Weiss temperatures � compared to Eq. (7).

In the following we benchmark the standard C-W function
versus the improved Eq. (5). As both cases are intended for the
high-temperature paramagnetic regime with only ultra-short-
range correlations, we can compare them to exact results of
a single bond. On that bond we solve the t2g-only Hubbard
model for edge-sharing octahedra with the field oriented per-
pendicular to the plane of the bond [i.e., parallel to the cubic
z-direction, for the canonical Z-bond defined in Fig. 1(a)].
We then consider a range of parameters with �/λ ∼ −0.3
to +0.3, t2/λ ∼ 0 to 1, and t3/λ ∼ −0.5 to 0 (see [54] for
explicit parameter definitions). In the following we discuss
results for U/λ ∼ 4.25 and JH/λ ∼ 0.75, corresponding to Ir.
The conclusions below are also valid for parameter values cor-
responding to Ru. For each set of hoppings, we first compute
the precise low-energy couplings via the projection indicated
in Eqs. (3) and (4). In terms of the cubic (x, y, z) coordinates
[Fig. 1(a)], the exchange couplings Ji j are conventionally
parametrized [10,39] as

Ji j =
⎛
⎝

J 
 
′

 J 
′

′ 
′ J + K

⎞
⎠. (8)

From these, we obtain via Eq. (7) the intrinsic Weiss constant
�z

0 = {gab
2[8
′ − 2(
 + 3J + 2K )] − 4gabgc∗ (−
 + 
′ +

K ) − gc∗ 2(2
 + 4
′ + 3J + K )}/[12kB(2gab
2 + gc∗ 2)]

where gab and gc∗ are the g-tensor components in the ab-plane
and along c∗. We then compute χ z(T̃ ) via full diagonalization
of Htot [Eq. (2)] on the cluster, and fit it within the region
from T̃ = 800 K/eV to 1500 K/eV, which corresponds to
300 ∼ 600 K for iridates and 120 ∼ 220 K for α-RuCl3.
The results are shown in Fig. 2, where we compare two
fitting procedures. The first fit to χ z(T̃ ), yielding �̃z

fit,1
(�z

fit,1/λ), uses the improved Eq. (5) that includes the
temperature-dependent μeff (T ) (determined as described in
the previous paragraph). The second fit function, yielding
�̃z

fit,2 (�z
fit,2/λ), is the standard Curie-Weiss law, with μeff

being a temperature-independent fitting constant. In all cases,
we set χα

0 = 0. We find that �̃z
fit,2 < �̃z

0 over the entire range
of parameters, with deviations from the intrinsic �z

0 as large
as ∼ − 120 K for Ir and ∼ − 50 K for Ru. In comparison,
�̃z

fit,1 does not deviate nearly as strong from the intrinsic �z
0.

Having validated the use of Eq. (5) for a model system, we
now turn to the experimental susceptibilities of the d5 Kitaev
candidate materials A2IrO3 (A = {Na, Li}) and α-RuCl3. In

FIG. 2. Comparison of fitted renormalized Weiss constant �̃fit =
�fit/λ for fitting functions �̃z

fit,1 with temperature-dependent μeff (T )
[Eqs. (5) and (6)] and �̃z

fit,2 with constant μfit [Eq. (1)] vs. the
intrinsic renormalized Weiss constant �̃0 = �0/λ [Eq. (7)], over a
wide range of parameters. The fitted �̃z

fit,1 agree much better with the
intrinsic �̃0.

each case, we make a global fit to data in the c∗ axis and
ab-plane [defined in Fig. 1(a)] using Eq. (5) with five fit-
ting parameters: χ c∗

0 , χab
0 ,�c∗

,�ab, and �. Note that standard
Curie-Weiss fits for these materials employed six free parame-
ters. The effective moments μα

eff (T,�, λ) were computed via
exact diagonalization of HCF + HSO + HU on a single site in
each case [as shown previously in Figs. 1(c) and 1(d)]. For
practical applications, approximative analytical expressions
[50,51] for μeff may be alternatively used.

The fitting results are presented in Fig. 3. For each com-
pound, we show fitted �c∗

and �ab as a function of crystal

FIG. 3. Fits to experimental χ (T ) using Eq. (5). (a)–(c): Best-fit
Weiss constants as a function of crystal field �, with 1 − R2 shown in
green indicating fit quality. Vertical dashed lines mark the best overall
fits. (d)–(f): Experimental data from Refs. [18,21,57] together with
best overall fit. For each material, |χα

0 | < 0.2 × 10−3 cm3/mol, thus
influencing the fits negligibly. The Weiss constants obtained with
Eq. (5) differ significantly from conventional Curie-Weiss analysis
neglecting the T -dependent μeff (T ).
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field �, together with (1 − R2) to indicate the quality of the
fit. Below, we discuss the fitted Weiss constants for each com-
pound and their implications for the microscopic couplings by
recalling

�ab
0 = − 3

4kB
[J + 1

3
K − 1

3
(
 + 2
′)], (9)

�c∗
0 = − 3

4kB
[J + 1

3
K + 2

3
(
 + 2
′)], (10)

where the g-factors in Eq. (7) are canceled out due to the
diagonal g-tensor in the a, b, c∗ coordinates.

For Na2IrO3, we refit the susceptibility data from [18] over
the range 150–300 K [see Figs. 3(a) and 3(d)]. A standard
Curie-Weiss fit yields �ab

fit,2 = −259 K and �c∗
fit,2 = −90 K,

which are unlikely to be accurate. Microscopic considera-
tions [10,11,39] suggest that 
 > 0, so the finding of �ab <

�c∗
would require very large 
′ < 0, which is broadly in-

compatible with ab initio calculations [37,39,58] and RIXS
experiments [59,60]. Using the improved Eq. (5), we instead
obtain �ab

fit,1 = −71 K and �c∗
fit,1 = −75 K. The global best

fit corresponds to 3� = −156 meV [indicated in Fig. 3(a)
by a dashed line], which is compatible with the estimate
of |3�| ∼ 170 meV from RIXS [19]. The revised Weiss
constants are reduced in magnitude and nearly isotropic,
indicating that the anomalous susceptibility anisotropy in
this temperature range likely results from μeff , i.e., from
the g-tensor anisotropy due to the local trigonal distortion.
Assuming the largest nearest-neighbor coupling to be fer-
romagnetic K < 0, the antiferromagnetic sign of the Weiss
constants may be explained by further-neighbor antiferro-
magnetic (Heisenberg) couplings, as previously anticipated
for this compound [39,61]. Along this line, we note that the
revised Weiss constants are in better agreement with a recently
proposed model featuring such couplings from [41] that was
inspired by analysis of RIXS measurements (for which �ab

0 =
−73 K, �c∗

0 = −116 K).
Turning to α-Li2IrO3, a standard Curie-Weiss fit of the

reported susceptibility data [21] yields �ab
fit,2 = −52 K and

�c∗
fit,2 = −459 K. In contrast, for the modified Eq. (5), the re-

vised Weiss constants are �ab
fit,1 = +6 K and �c∗

fit,1 = −21 K,
which are significantly reduced. The global best fit over a
temperature range 150–300 K corresponds to 3� = +96 meV
[see Figs. 3(b) and 3(e)]. Considering Eqs. (9) and (10), this
relatively small magnitude of the �-values may be related to a
competition between different couplings, i.e., a ferromagnetic
Kitaev coupling K < 0, and competitive antiferromagnetic
Heisenberg terms (i.e., K ∼ −3J). The enhanced anisotropy
compared to Na2IrO3 may indicate relatively larger 
, 
′ cou-
plings. All of these suggestions are consistent with previous
ab initio estimates [39], and place α-Li2IrO3 in a region of the
J-K-
-
′ phase diagram [10] consistent with the experimen-
tally observed incommensurate ordered state [34].

For α-RuCl3, single crystal susceptibility data from [57]
is fitted over the temperature range 175–400 K. A stan-
dard Curie-Weiss fit with constant μeff yields �ab

fit,2 = +35 K,
�c∗

fit,2 = −129 K, in line with previous reports [23,26,42–44].
For the modified Eq. (5), the global best fit corresponds to
3� = +51 meV [see Figs. 3(c) and 3(f)], which agrees well

with recent analysis of susceptibility data in [62], and Raman
scattering and infrared absorption data in [63]. For this case,
the fitted Weiss constants are �ab

fit,1 = +55 K and �c∗
fit,1 =

+33 K. These values differ significantly in terms of both mag-
nitude and anisotropy from most previous reports (excluding
[62]). However, they are compatible with the suggested ranges
of parameters estimated from ab initio approaches [39,64–
68], employing Eqs. (9) and (10). The overall scale of the
couplings also accords with the saturation of nearest-neighbor
spin correlations around T ∼ � ∼ 35 K, as measured via op-
tical spectral weight for spin-dependent transitions [69].

Assuming that the revised �-values are more accurate,
we consider their full implications for α-RuCl3, as it is the
most intensively studied compound. For this material, a broad
inelastic neutron scattering response reminiscent of the Kitaev
spin-liquid ground state was reported for 40 K < T < 100 K
in [31]. This was discussed in terms of TH ∼ � ∼ 100 K,
where TH is an energy scale associated with the Majorana
spinon bandwidth. However, if the true interaction scale is
much smaller than these estimates, then this range would
instead correspond to the thermal paramagnet (T > �), where
a relatively wide range of couplings can produce a response
similar to the experiment [70]. Similarly, in [30] the tempera-
ture dependence of the Raman scattering intensity for 25 K <

T < 300 K was shown to be compatible with fermionic statis-
tics of the Majorana excitations of the Kitaev model. However,
the data were modelled with K ∼ 10 meV, corresponding
to |�| ∼ 30 K. Evidently, the majority of the data fall in
the regime of a thermal paramagnet with short-range fer-
romagnetic correlations [62,70], where coherent magnetic
quasiparticles with well-defined statistics are unlikely to per-
sist.

In summary, we investigated the failure of the stan-
dard Curie-Weiss law for several Kitaev candidate materials
with strong spin-orbit coupling. For such materials, addi-
tional temperature-dependent van Vleck-like contributions
always appear, with the lowest-order contribution providing
an anisotropic and temperature-dependent effective moment.
Failure to account for this effect in fitting of experimental
susceptibility yields Weiss constants that are not represen-
tative of the underlying magnetic couplings. We therefore
proposed and validated a modified formula that accounts for
μeff (T ). The later quantity may be estimated either via ex-
act diagonalization of a local model Hamiltonian, or from
analytical expressions [50,51,54] when available. This was
applied to various j1/2 honeycomb materials with d5 filling,
and shown to resolve several previous apparent discrepancies
between χ (T ) and other experiments. We conclude that some
previous reports likely overestimated the scale of the magnetic
couplings and possibly the degree of magnetic frustration. For
other classes of materials, and other fillings, different devi-
ations may be expected and must be considered. This work
should aid in the improved analysis of experimental χ (T ), as
a first characterization of novel quantum magnets.
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