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An analytic method is proposed to compute the surface energy and elementary excitations of the XXZ spin
chain with generic nondiagonal boundary fields. For the gapped case, in some boundary parameter regimes
the contributions of the two boundary fields to the surface energy are nonadditive. Such a correlation effect
between the two boundaries also depends on the parity of the site number N even in the thermodynamic limit
N → ∞. For the gapless case, contributions of the two boundary fields to the surface energy are additive due
to the absence of long-range correlation in the bulk. Although the U (1) symmetry of the system is broken,
exact spinonlike excitations, which obviously do not carry spin- 1

2 , are observed. The present method provides a
universal procedure to deal with quantum integrable systems either with or without U (1) symmetry.

DOI: 10.1103/PhysRevB.103.L220401

Quantum integrable systems with generic nondiagonal
boundary fields have attracted a lot of attention since their
important applications in high-energy physics [1], open string
and gauge theory [2–4], condensed matter physics [5], and
nonequilibrium statistical physics [6,7]. However, how to
compute the physical quantities of such kinds of systems
has puzzled people for quite a long time. In the past sev-
eral decades, many efforts have been made to approach this
tough problem [8–18] but only under some special conditions
can the physical quantities be calculated. Formally, the exact
spectra of quantum integrable models without U (1) symmetry
can be expressed in terms of inhomogeneous T -Q relations
[14,15]. However, to study their physical properties based on
the inhomogeneous Bethe ansatz equations is still quite hard
because of the complicated patterns of Bethe roots in the
complex plane.

In this Letter, we propose an analytic method to study the
surface energy and elementary excitations of the XXZ spin
chain with arbitrary nondiagonal boundary fields. Our central
idea lies in that, instead of the Bethe roots, we use the zero
roots of the transfer matrix to parametrize the spectrum. Start-
ing from a transfer matrix including proper site-dependent
inhomogeneity [described by a density σ (θ ) in the thermody-
namic limit], the density of the zero roots of the homogeneous
transfer matrix, which is crucial to compute the physical quan-
tities, can be obtained via analytic continuation.

*wlyang@nwu.edu.cn
†yupeng@iphy.ac.cn

The model Hamiltonian we consider reads

H =
N−1∑
j=1

{
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + cosh ησ z

j σ
z
j+1

}

+ �h− · �σ1 + �h+ · �σN , (1)

where σα
j (α = x, y, z) are the Pauli matrices on site j, η

is the anisotropic parameter, and �h± ≡ (hx
±, hy

±, hz
±) are the

boundary fields

hz
± = ∓ sinh η cosh α± sinh β±

sinh α± cosh β±
,

hx
± = sinh η cos θ±

sinh α± cosh β±
, hy

± = sinh η sin θ±
sinh α± cosh β±

, (2)

characterized by the boundary parameters α±, β±, and
θ±. Hamiltonian (1) is generated by the transfer matrix
t (u) as

H = sinh η
∂ ln t (u)

∂u

∣∣∣∣
u=0,{θ j=0}

− c0, (3)

where {θ j | j = 1, . . . , N} are the inhomogeneity param-
eters, c0 = N cosh η + tanh η sinh η, and t (u) is defined
as [19]

t (u) = tr0{K+
0 (u)R0N (u − θN ) · · · R01(u − θ1)

× K−
0 (u)R10(u + θ1) · · · RN0(u + θN )}. (4)
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Here K−
0 (u) is the boundary reflection matrix on one end of

the spin chain,

K−(u) =
(

K−
11(u) K−

12(u)
K−

21(u) K−
22(u)

)
,

K−
11(u) = 2 sinh α− cosh β− cosh u

+ 2 cosh α− sinh β− sinh u,

K−
12(u) = e−iθ− sinh(2u), K−

21(u) = eiθ− sinh(2u),

K−
22(u) = 2 sinh α− cosh β− cosh u

− 2 cosh α− sinh β− sinh u, (5)

and K+
0 (u) is the dual boundary matrix on the other end,

K+(u) = K−(−u − η)|(α−,β−,θ− )→(−α+,−β+,θ+ ). (6)

The six-vertex R-matrix

R0, j (u) = sinh(u + η) + sinh u

2 sinh η
+ 1

2

(
σ x

j σ
x
0 + σ

y
j σ

y
0

)
+ sinh(u + η) − sinh u

2 sinh η
σ z

j σ
z
0 (7)

satisfies the Yang-Baxter equation (YBE) [20,21] and the re-
flection matrices satisfy the reflection equation (RE) or the
dual one [19,22–24]. The YBE and REs lead to that the
transfer matrices with different spectral parameters commute
mutually, i.e., [t (u), t (v)] = 0, which ensures the integrability
of model (1).

Given an arbitrary eigenvalue �(u) of the transfer matrix
t (u), we have the identities [25]

�(θ j )�(θ j − η) = a(θ j )a(−θ j ), j = 1, . . . , N, (8)

�(0) = a(0), �

(
iπ

2

)
= a

(
iπ

2

)
, (9)

with

a(u) = −4
sinh(2u + 2η)

sinh(2u + η)
sinh(u − α−) cosh(u − β−)

× sinh(u − α+) cosh(u − β+)

×
N∏

l=1

sinh(u − θl + η) sinh(u + θl + η)

sinh2 η
. (10)

From the definition of t (u) in Eq. (4), we deduce that �(u) is
a degree 2N + 4 trigonometric polynomial of u. It also pos-
sesses the properties �(u) = �(−u − η) and �(u + iπ ) =
�(u). Thus we can parametrize the eigenvalue �(u) by its
roots {z j} as

�(u) = �0

N+2∏
j=1

sinh

(
u − z j + η

2

)
sinh

(
u + z j + η

2

)
. (11)

�0 = −8 cos(θ− − θ+) sinh−2N η is determined by the
asymptotic behavior of t (u) when u → ∞. In such a sense,
Eqs. (8)–(10) determine the roots {z j | j = 1, . . . , N + 2}
completely for a given set of inhomogeneity parameters. In
the homogeneous limit {θ j = 0| j = 1, . . . , N}, Eq. (8) is
replaced by [14]

[�(u)�(u − η)](n)|u=0 = [a(u)a(−u)](n)|u=0, (12)
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FIG. 1. Exact numerical diagonalization results of the root distri-
butions in the ground state for N = 10. (a) The blue asterisks indicate
z̄ roots for {θ̄ j = 0} and the brown squares specify z̄ roots with
the inhomogeneity parameters {θ̄ j = 0.5 j}. (b) The blue asterisks
indicate z roots for {θ j = 0} and the brown squares specify z roots
with the inhomogeneity parameters {θ j = 0.1 j}.

where the superscript (n) indicates the nth-order derivative
and n = 0, 1, . . . , N − 1. From Eqs. (3) and (11), the eigen-
values of Hamiltonian (1) can be expressed as

E = sinh η

N+2∑
j=1

[
coth

(
z j + η

2

)
− coth

(
z j − η

2

)]
− c0.

(13)

A plausible fact is that, by choosing a proper set of inhomo-
geneity parameters, the root distributions possess manageable
patterns in the thermodynamic limit. For example, for real
η, we choose all {θ j} ≡ {iθ̄ j} to be imaginary. As shown in
Fig. 1(a), the imaginary inhomogeneity parameters almost do
not affect the imaginary parts of the roots z̄ j ≡ −iz j but the
distribution along the real axis, which allows us to derive the
density of roots via Fourier transformation with an auxiliary
function σ (θ̄ ), a given density of the inhomogeneity. The
density of roots of the corresponding homogeneous system
can then be obtained by finally taking the homogeneous limit
σ (θ̄ ) → δ(θ̄ ). For the imaginary η case, as shown in Fig. 1(b),
we can follow the same procedure by using real inhomogene-
ity parameters.

Now let us turn to consider the surface energy defined
by Eb = Eg − Ep, where Eg is the ground-state energy of
the present system and Ep is the ground-state energy of the
corresponding periodic chain [15]. For a real η > 0, there is
a finite gap in the bulk spectrum. All the boundary param-
eters must be real to ensure a Hermitian Hamiltonian (1).
For arbitrary imaginary inhomogeneity parameters, from the
intrinsic properties of the R matrix one can easily prove that
t†(u) = t (u∗) and �∗(u) = �(u∗). Due to the periodicity of
�(u), we fix the real parts of z̄ j in the interval (−π

2 , π
2 ]. The

roots can be classified into (i) real ±z̄ j and (ii) ±z̄ j , ±z̄∗
j

conjugate pairs with imaginary parts around ± inη

2 (n � 2)
[26] and (iii) conjugate pairs induced by the boundary fields
either at the origin or at Re{z̄ j} = π

2 . We remark that the
structure of the bulk conjugate pairs is quite similar to the
string structure of the Bethe roots in the periodic chain [27]
and the boundary conjugate pairs are tightly related to the
boundary bound states appearing in the diagonal boundary
case [11]. In addition, one can easily prove that the energy
is invariant under the parameter changes: (i) α± → −α±,
(ii) β±→ − β±, (iii) α+→ − α+, β+→ − β+, θ+ → π + θ+,
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(iv) α− → −α−, β− → −β−, θ− → π + θ−, and (v) β+ →
β−, β− → β+. Therefore, we consider only the case of
α±, β+ > 0 and |β+| � |β−|. It is sufficient to quantify the
boundary contributions by tuning β− in four regimes: (I) β+ >

β− > η/2, (II) η/2 � β− � 0, (III) 0 > β− > −η/2, and (IV)
−η/2 � β− > −∞.

We consider first the ground state for even N and the
α±, β+ > η/2 case. In regime I, all the z̄ roots form conju-
gate pairs as {z̄ j ∼ z̃ j ± ηi| j = 1, . . . , N + 2} with real z̃ j . In
the thermodynamic limit, the distribution of z̃ roots can be
described by a density per site, ρ(z̃). Furthermore, we assume
that the inhomogeneity also has a continuum density per site
σ (θ̄ j ) ∼ 1/N (θ̄ j − θ̄ j−1). Taking the logarithm of Eq. (8) and
making the difference of the equations for θ j and θ j−1, by
omitting the O(N−1) terms we readily have

N
∫ π

2

− π
2

[b2(u − θ̄ ) + b2(u + θ̄ )]σ (θ̄ )d θ̄ + b2

(
u − π

2

)

+ b2(u) + b 2β−
η

(
u − π

2

)
+ b 2β+

η

(
u − π

2

)
+ b 2α−

η

(u)

+ b 2α+
η

(u) = N
∫ π

2

− π
2

[b1(u − z̃) + b3(u − z̃)]ρ(z̃) dz̃

+ b1(u) + b1

(
u − π

2

)
, (14)

where bn(x) = cot(x + nηi
2 ) + cot(x − nηi

2 ). The above equa-
tion is a convolution one and allows us to make the Fourier
transformation

ρ̃(k) = [
2Nb̃2σ̃ (k) + [1 + (−1)k](b̃2 − b̃1) + b̃ 2α+

η

+ b̃ 2α−
η

+ (−1)k
(
b̃ 2β+

η

+ b̃ 2β−
η

)]/
[N (b̃1 + b̃3)], (15)

where the Fourier spectrum k takes integer values and
b̃n(k) = −2 sgn(k)π ie−η|nk|. In the homogeneous limit, we
take σ (θ̄ ) = δ(θ̄ ). The ground-state energy of Hamiltonian (1)
can thus be expressed as

Eg1 = Ni sinh η

2π

∞∑
k=−∞

[ã1(k) − ã3(k)]ρ̃(k) − c0, (16)

where ãn(k) = 2π ie−η|nk| is the Fourier transformation of
an(x) = cot(x − nηi

2 ) − cot(x + nηi
2 ). We note that the bound-

ary parameters θ± do not appear in Eq. (14), implying that
they contribute nothing to the surface energy in the leading or-
der. Direct calculation gives the surface energy Eb1 in regime
I as

Eb1 = eb(α+, β+) + eb(α−, β−) + eb0,

eb(α, β ) = −2 sinh η

∞∑
k=1

tanh(kη){(−1)ke−2kη

+ e−2k|α| + (−1)ke−2k|β|} − tanh η sinh η,

eb0 = −2 sinh η

∞∑
k=1

{tanh(kη)[1 − (−1)k]e−2kη

− [1 + (−1)k]e−kη} + tanh η sinh η, (17)
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FIG. 2. (a)–(c) Exact numerical results of z̄ roots of the ground
state in different regimes of boundary parameters for N = 10 and
η = 2. (d) The surface energy versus β− for η = 1.5. The blue
line indicates the analytic result and the brown squares indicate the
DMRG results for N = 212.

where eb(α, β ) indicates the contribution of one boundary
field and eb0 is the surface energy induced by the free open
boundary [11].

In regime II, besides the bulk conjugate pairs around the
±ηi lines, there exist two boundary conjugate pairs π

2 ±
(β− + η

2 )i and π
2 ± (β+ + η

2 )i fixed by Eq. (9) as shown in
Fig. 2(b). Taking the boundary roots into account, with a
similar procedure used in regime I we find that the bare contri-
bution of the boundary conjugate pairs to the energy is exactly
canceled by that of the back flow of the continuous root
density, as happened in the diagonal boundary case [11]. The
surface energy Eb2 takes exactly the same form of Eqs. (17).
Taking α− → ∞ and β− → 0, �h− = 0, eb(∞, 0) = 0. There-
fore, the contributions of the two boundary fields and the free
open boundary to the surface energy are additive in regimes I
and II.

In regime III, there also exist two boundary conjugate pairs.
However, the absolute value of the imaginary part of the inner
conjugate pair is β− + η

2 <
η

2 . In this case, the inner boundary
conjugate pair indeed contributes a nonzero value to energy
and the surface energy reads

Eb3 = 4 sinh η

∞∑
k=1

(−1)ke−kη tanh(kη) cosh(2kβ−+kη)

+ Eb1 + sinh η[tanh(β− + η) − tanh(β−)]. (18)

The contributions of the two boundaries to the surface energy
are no longer additive and a correlation effect between the two
boundary fields appears.

In regime IV, only one boundary conjugate pair exists as
shown in Fig. 2(c). However, due to the symmetry of root dis-
tribution, two real roots around ±π

2 must exist. The boundary
conjugate pair contributes nothing to the surface energy but
the two real roots do contribute a nonzero value to energy and
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FIG. 3. The distribution of z̄ roots for N = 10 and η = 2. (a) The
ground state. (b) A low-lying excited state.

the surface energy reads

Eb4 = Eb1 + Eh,

Eh = 2 sinh η

[ ∞∑
k=1

(−1)k2 tanh(kη)

ekη
+ tanh

η

2

]
. (19)

In this regime, the correlation effect of the two boundaries
does not rely on the magnitudes of the boundary fields but on
the sign of β+β−.

We note that if |β±| < η/2 and β+β− < 0, we can always
choose β− as − min{|β+|, |β−|} and β+ as max{|β+|, |β−|} in
Eq. (18) to get the correct surface energy. For comparison, the
density matrix renormalization group (DMRG) method [28] is
performed for N = 212 and several values of β−. Our analytic
results coincide perfectly with the numerical ones as shown
in Fig. 2(d). For α± ∈ (0, η/2), central conjugate pairs asso-
ciated with the boundary fields around ±i(η/2 + α±) exist
in the ground state as shown in Fig. 3(a). Exact calculation
shows that these boundary roots contribute nothing to the
surface energy in the thermodynamic limit, as their contri-
butions are exactly canceled by that of the back flow of the
bulk root density. By examining the root patterns we obtain
that the surface energy Eodd

b (β−) for an odd N can be given
by Ebl (−β−) for an even N as Eodd

b (β−) = Ebl (−β−) − Eh,
where l = 1, 2, 3, 4 indicates the corresponding boundary
parameter regime. Such a parity dependence of the surface
energy is in fact due to the long-range Néel order in the bulk.
For an even N the two boundary spins prefer to be antiparallel,
while for an odd N the two boundary spins prefer to be par-
allel. Therefore, fixed boundary fields must induce different
surface energies for even N and odd N in the thermodynamic
limit N → ∞.

Usually, exact fractional excitations can be derived in most
of the integrable models with U (1) symmetry. A typical kind
of fractional excitation in the periodic spin chain model is the
spinon, which is believed to carry spin- 1

2 [29]. In the open
boundary case, the unparallel boundary fields break the U (1)
symmetry and the z component of the total spin is no longer
a good quantum number. A question thus arises: Is there any
spinonlike excitation in the present system? As an example to
answer this question, let us consider a simple root distribution
away from that of the ground state in regime I: taking two
conjugate pairs away in the ground-state configuration and
adding four real roots on the real axis. The four real roots
are distributed symmetrically around the origin as required
by the symmetry of the eigenvalue function �(u). In addi-
tion, two imaginary conjugate pairs may appear in the root
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FIG. 4. (a)–(c) z roots of the ground state for N = 10, η = 1.8i,
and given sets of boundary parameters. (d) The surface energy versus
the boundary parameter ᾱ+ for η = 0.8i. The blue dots indicate the
analytic results and the brown squares are the ones obtained via
DMRG for N = 212.

configuration as shown in Fig. 3(b). We denote the four real
roots as ±z1 and ±z2. The excitation energy in the thermody-
namic limit associated with this root pattern can be derived by
following the same procedure discussed in the preceding text:

Ee = ε(z1) + ε(z2), ε(z) = 2 sinh η

∞∑
k=−∞

e−2ikz

cosh(kη)
.

(20)

It seems that the excitation energy only depends on the posi-
tions of the real roots and takes exactly the same dispersion
form of spinons in the periodic chain. However, such kinds
of elementary excitations should be rather different from the
traditional spinons [29] due to the broken U (1) symmetry.
In fact, these excitations must be helical in the real space to
match the two unparallel boundaries. The helical structure can
be characterized either by the quantity 〈�σ j × �σ j+1〉, which is
nonzero in the nondiagonal boundary cases but zero in the
parallel boundary cases, or by the structure of the eigenvectors
constructed from a helical pseudovacuum state [12,30].

For an imaginary η, the spectrum of Hamiltonian (1) is
massless. We take imaginary α± and real β± and θ± to de-
fine real boundary fields. By choosing real inhomogeneity
parameters, we have t†(u) = t (−u∗) and �∗(u) = �(−u∗).
The roots can be classified into (i) real, ±z j ; (ii) on the
line, Im{z j} = −π

2 ; (iii) bulk conjugate pairs, Im{z j} ∼ ± inη

2
(n � 2); and (iv) central conjugate pairs associated with the
boundaries. For convenience, let us introduce the notations
γ = −iη with γ ∈ (0, π ) and ᾱ± = −iα±. Without losing
generality, we restrict −π

2 � Im{z j} < π
2 for the periodicity

of �(u).
For γ ∈ [π

2 , π ), the z roots in the ground state for a given
set of boundary parameters and N = 10 is shown in Fig. 4(a).
Most of the roots are located on the line −i π

2 and one con-
jugate pair ± i(π−γ )

2 is located on the imaginary axis. The
existence of this conjugate pair does not depend on the values
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of the boundary parameters. By tuning the value of β−, we
find that the structure of z roots keeps unchanged, which
indicates that the ground-state energy is given by a unified
formula for arbitrary real boundary parameters β±.

By varying α−, a central conjugate pair ±i( γ

2 + |ᾱ−|) ap-
pears when |ᾱ−| ∈ (0,

π−γ

2 ) as shown in Fig. 4(b). Direct
calculation shows that the central conjugate pairs do not con-
tribute to the surface energy. The above conclusion also holds
for ᾱ+. Besides, depending on ᾱ± and the parity of N , two real
roots may exist at the boundaries as shown in Fig. 4(c). These
roots tend to ±∞ in the thermodynamic limit and also do not
contribute to the surface energy. For the case corresponding
to Fig. 4(a), in the thermodynamic limit the density of roots
satisfies

N
∫ ∞

−∞
[b2(u − θ ) + b2(u + θ )]σ (θ )dθ + b2(u)

+ 1

2

[
b π

γ
(u + β+) + b π

γ
(u − β+) + b π

γ
(u + β−)

+ b π
γ

(u − β−)
] + b 2ᾱ+

γ

(u) + b 2ᾱ−
γ

(u) = b π
γ
−1(u)

+ b π
γ

(u) + b1(u) + N
∫ ∞

−∞
b π

γ
−1(u − z)ρ(z) dz, (21)

where bn(x) = csch2(x + nγ i
2 ) + csch2(x − nγ i

2 ). Taking the
Fourier transformation and homogeneous limit σ (θ ) → δ(θ ),
we finally obtain the surface energy

Eb = − sin γ

2

∫ ∞

−∞

tanh
( kγ

2

)
sinh

(
kπ
2

){
cosh

k(π − 2γ )

2
− 1

+ cosh
k
(
π − 2ᾱ+ + 2π

⌊
ᾱ+
π

)
⌋)

2
+ cos β+

+ cosh
k
(
π − 2ᾱ− + 2π

⌊
ᾱ−
π

)⌋)
2

+ cos β−

− cosh
kγ

2
− cosh

k(π − γ )

2

}
dk. (22)

For γ ∈ (0, π
2 ), most of the roots in the ground state are

located on the lines ±iγ and the rest of the roots form central
conjugate pairs as shown in Fig. 1(b). The surface energy is
still given by Eq. (22). Comparison of the DMRG results and
our analytic results is given in Fig. 4(d). The present result
also coincides exactly with that derived in [16]. The absence
of correlation and parity effects is due to the absence of long-
range order in the gapless bulk.

In conclusion, an analytic method is developed to obtain
the surface energy and elementary excitations of the XXZ
spin chain with generic nondiagonal boundary fields in both
gapped and gapless regimes. This method provides a uni-
versal procedure to compute physical quantities of quantum
integrable systems either with or without U (1) symmetry
[15,31,32] in thermodynamic limit.
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