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The formation of polarons due to the interaction between charge carriers and lattice ions has been proposed
to have wide-ranging effects on charge carrier dynamics in lead halide perovskites. The hypothesis underlying
many of those proposals is that charge carriers are ‘protected’ from scattering by their incorporation into large
polarons. Following the approach of Kadanoff for scattering due to polar optical phonons, we derive expressions
for the rates of scattering of polarons by acoustic phonons and ionized impurities, and compute the energy and
angular dependent rates for electrons and holes in MAPbI3, MAPbBr3, and CsPbI3. We then use the ensemble
Monte Carlo method to compute polaron distribution functions which satisfy a Boltzmann transport equation
incorporating the same three scattering mechanisms, from which we extract mobilities for temperatures in the
range 50–500 K. A comparison of the results with those of analogous calculations for bare band carriers indicates
that polaronic effects on the scattering and mobilities of charge carriers in lead halide perovskites are more
limited than has been suggested in some parts of the recent literature.
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Lead halide perovskites (LHPs) are currently the subject
of intense research, primarily due to their application as an
active layer in next generation semiconductor devices and
photovoltaic cells in particular [1]. However, a number of
fundamental aspects of their (opto)electronic properties re-
main under debate, such as the origins of the observed long
carrier lifetimes, the seemingly benign nature of defects, and
the mobility limiting scattering mechanism(s) [2,3].

In materials with polar bonding, such as LHPs, the elec-
trostatic interaction between a charge carrier and the lattice
ions in its vicinity causes the latter to be displaced from their
equilibrium positions. The charge carrier and the polarized
region of the lattice which surrounds it together comprise a
quasiparticle known as a polaron, and polaronic effects have
been suggested to play a central role in numerous elementary
processes underlying charge-carrier dynamics in LHPs [4–7],
including exciton dissociation [8–11], hot carrier cooling
[12–17], radiative and nonradiative recombination [18–24],
and steady state mobilities [18,25,26].

It is important to note the distinction between the so-called
‘small’ and ‘large’ polaron. In the former case, the charge car-
rier is self trapped and moves through the lattice via thermally
activated hops, leading to mobilities which increase with
temperature; in contrast, the latter is an itinerant species, ex-
hibiting mobilities which decrease with temperature [27,28].
The latter scenario is consistent with experimental measure-
ments of charge-carrier mobilities in LHPs [3,29], and it is
therefore the species considered herein.

The most widely recognized consequence of large polaron
formation is an increase in the effective mass of a charge
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carrier from that predicted by conventional band theory. In
LHPs, the increase has been calculated to be of the order of
30–70% [25,30–32] at room temperature. On the other hand,
the hypothesis underlying many of the proposals of ways in
which polaron formation influences charge carrier dynamics
is that charge carriers are ‘protected’ from interactions with
phonons, defects, and other charge carriers by their incorpo-
ration into polarons [4].

The aim of this Letter is to provide a quantitative anal-
ysis of that hypothesis, building primarily on the canonical
theory of (what are now commonly known as) large polarons
[33–36]. Scattering rates of polarons by acoustic phonons and
ionized impurities are derived, and their values, along with
those for scattering by polar-optical phonons, are computed
for electron and hole polarons in MAPbI3, MAPbBr3, and
CsPbI3 (where MA stands for methylammonium, CH3NH3).
The rates, along with the computed polaron masses, are then
used to define an augmented form of Kadanoff’s semiclassical
Boltzmann transport equation for polarons under the influence
of a constant electric field [35,37]. Finally, the Boltzmann
transport equation is solved for a range of temperatures using
the ensemble Monte Carlo method [38], and the drift veloci-
ties calculated from the steady state distribution functions are
used to determine temperature dependent carrier mobilities.
A comparison of the results of those computations with the
results of analogous calculations for bare band carriers sug-
gests that polaron formation has a much less significant impact
on carrier scattering and mobilities than has been suggested.
Due to the qualitative similarity between the results for both
electrons and holes in the three materials, data for electrons in
MAPbI3 only are presented here, and the rest of the data are
provided in the Supplemental Material [39].

The simplest model of an electron in a crys-
talline semiconductor is that defined by the effective
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mass Hamiltonian:

H0 = h̄2|k|2
2m∗ . (1)

In the remainder of the paper, particles described by Eq. (1)
are referred to as ‘bare band’ or simply ‘band’ electrons.

In the Feynman model of a polaron, a second particle is
coupled via an harmonic potential to the electron, representing
the effects of the ‘cloud of virtual phonons’ associated with
the polarized region of the lattice surrounding it [33], so that
the Hamiltonian takes the following form [35,37]:

HF = h̄2|k|2
2m∗ + h̄2|kc|2

2mc
+ 1

2
κ (r − rc)2

= h̄2|K|2
2M

+ h̄ωosc

3∑
i=1

(
(aosc)†

i (aosc)i + 1

2

)
. (2)

In Eqs. (1) and (2), r, k, and m∗ are the position, wave vector,
and effective mass of the electron, with analogous quantities
for the phonon cloud being identified with a ‘c’ subscript,
and κ is the spring constant of the harmonic potential. M and
K are the total mass and wave vector of the polaron, (aosc)†

i
and (aosc)i are the ladder operators for the polaron’s internal
harmonic oscillator state, with the index i labeling the three
Cartesian directions, and ωosc is the angular frequency of the
harmonic oscillator.

Despite the simplicity of the Feynman Hamiltonian, its
description of large polaron dispersion relations has been
shown to compare very well with the results of diagram-
matic Monte Carlo calculations over a wide range of coupling
strengths [43]. Furthermore, we note that it contains essential
physics that commonly used electronic structure methods,
such as density functional theory, do not, despite recent de-
velopments [44,45]. In particular, the degrees of freedom of
the ionic cores—the quantized vibrations of which consti-
tute phonons—are treated classically in DFT calculations,
whereas the electron and the phonon cloud are treated on an
equal quantum mechanical footing in Eq. (2).

The eigenfunctions of the Feynman Hamiltonian have the
form of a plane wave in the center-of-mass coordinates, mul-
tiplied by a three-dimensional harmonic oscillator state in the
relative coordinates, and thus describe delocalized itinerant
states of a composite particle. We use the notation |K, n〉
for the eigenstates, where K is the polaron wave vector and
n = (nx, ny, nz ) labels the polaron’s internal oscillator state.

Equation (2) contains two free parameters, which we
choose to be the total polaron mass M and the oscillator fre-
quency ωosc. Following previous theoretical studies on large
polarons in LHPs [25,30], we determine their values as func-
tions of the lattice temperature by minimizing the expression
for the free energy derived by Y. Osaka [34]. The derivation
of that expression assumes the presence of a single optical
phonon branch, while the real phonon band structure consists
of numerous branches. In order to circumvent that problem,
we follow Frost [30] in using a single effective optical phonon
angular frequency ωpop, which is derived from the full optical
phonon spectrum via the ‘B’ scheme of Hellwarth and Biaggio
[46].

TABLE I. Material parameters for (electrons in) MAPbI3 that
were used in our study. Parameters were chosen to align with
comparable previous studies, and sourced entirely from ab initio
calculations reported in the literature. The elastic constant cL was
calculated from the mean value of C11, C22 and C33 presented in
Ref. [40]).

Parameter Value

Band effective mass m∗ = 0.15me [41]
Polar optical phonon frequency ωpop/2π = 2.25 THz [30]
Low frequency permittivity εLF = 25.7ε0 [41]
High frequency permittivity εHF = 4.5ε0 [42]
Acoustic deformation potential � = −2.13 eV [40]
Elastic constant cL = 32 GPa [40]

The results of minimizing the electron-polaron free en-
ergy, using the material parameters for MAPbI3 contained
in Table I, are presented in Fig. 1(a); they are essentially
identical to those presented in Ref. [30], although there is a
small discrepancy due to the conduction and valence band
effective masses being swapped in that paper. The temperature
dependent mass of the polaron, M, has a maximum value of
∼2.3m∗, which it assumes at ∼35 K. However, it decreases
monotonically for temperatures above that value, such that
at 300 K it is only ∼1.4m∗. We also note that the angular
frequency of the polaron harmonic oscillator ωosc increases
quasilinearly with temperature above ∼15 K, which results in
the equilibrium probability of a polaron being in its internal
ground state n = 0 being essentially independent of temper-
ature. The probability for an electron polaron in MAPbI3 is
plotted in Fig. 1(b), from which it can be seen that its value
remains greater than 99.7% up to a temperature of 500 K; this
result has significant implications for the scattering rates of
the polaron, which we now go on to discuss.

After the work of Kadanoff [35], the scattering rates for
polarons are calculated using Fermi’s golden rule, with eigen-
states of Eq. (2), |Ki, ni〉 and |Kf , nf〉, as the initial and final
states. We restrict ourselves to the case in which the polaron is
in its internal ground state both before and after the scattering
event, i.e., nf = ni = 0, which, in light of the discussion in

FIG. 1. (a) Temperature dependence of the mass M (in units
of m∗, the bare band electron effective mass) and oscillator fre-
quency ωosc (in units of ωpop, the effective polar optical phonon
frequency) of the large electron polaron in MAPbI3. Both quan-
tities were calculated using the material parameters compiled in
Table I. (b) Temperature dependence of the occupancy of the internal
harmonic oscillator ground state of the large electron polaron in
MAPbI3.
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the previous paragraph, we expect to be a valid approximation
close to equilibrium.

The scattering rates S(Ki → Kf ) are therefore calculated
according to the following general expression:

S(Ki → Kf ) = 2π

h̄
|〈Kf , 0|Hpert|Ki, 0〉|2

× δ(EKf ,0 − EKi,0 − �E ). (3)

In Equation (3), Hpert is a time-dependent perturbing Hamil-
tonian, the forms of which are well known for the main
scattering mechanisms in polar semiconductors, namely
acoustic and polar optical phonons, and ionized impurities
[38]. The magnitude of �E in Eq. (3) depends on the scatter-
ing mechanism; for (quasi)elastic scattering, such as that due
to acoustic phonons and ionized impurities, �E = 0, while
for polar optical phonon scattering, �E = h̄ωpop.

The derivations of the scattering rates are provided in the
Supplemental Material [39], and the resulting forms com-
pared with the corresponding rates for bare band carriers. In
short, the differences between the scattering rates for polarons
and those for band electrons amount to replacing k in the
band-electron expressions with K and then multiplying by
exp(−h̄mred|Kf − Ki|2/2(m∗)2ωosc), where mred = m∗mc/M
is the reduced mass of the polaron. As previously noted
for the case of polar optical phonon scattering [35,37], the
exponential factor should act to suppress large changes in mo-
mentum, ostensibly supporting the hypothesis that polarons
are protected from scattering in comparison to their band
carrier counterparts. We begin investigating the validity of
this hypothesis by examining the total scattering rates for
each mechanism as functions of the particle’s wave vector
before scattering, which are calculated by integrating over all
possible final states:

W (Ki ) =
∫

d3KfS(Ki → Kf ). (4)

Total scattering rates for electron polarons in MAPbI3 are
plotted in Fig. 2 at 100 and 300 K; to enable a direct compar-
ison with the analogous rates for band electrons, also plotted
in Fig. 2, the rates are plotted as functions of the initial kinetic
energy of the particle. For scattering due to ionized impurities,
a density of such defects of 1016 cm−3 is assumed, which
is towards the upper end of the range of values measured in
polycrystalline LHP solar cells [18,47,48].

Of the mechanisms considered, the acoustic phonon scat-
tering rate is the most significantly affected by polaron
formation, while the effects on polar optical and impurity
scattering rates are essentially negligible. In all cases, the
differences between scattering rates for the bare band electron
and the electron polaron are reduced at 300 K with respect
to 100 K. We also note that polar optical phonon scattering
is dominant for both band electrons and electron polarons, in
contrast to assumptions made in a previous study [49].

In order to understand these results, we must examine the
probability distributions of final states arising from a scatter-
ing event due to a given mechanism. Following a scattering
event, a particle’s final wave vector Kf can be fully described
by its spherical coordinates in a reference frame defined by its
initial wave vector Ki. The magnitude of Kf is determined by
the delta function in Eq. (3), so that the relevant function is

FIG. 2. Total scattering rates of large electron polarons (solid
lines) and bare band electrons (dashed lines) in MAPbI3, at 100 and
300 K. Total (i.e., integrated over all final states) scattering rates
due to polar optical phonon absorption and emission (P. optical abs.
and em, respectively), acoustic phonons, and ionized impurities are
shown. The rates are calculated using the material parameters com-
piled in Table I and the polaron mass M for the relevant temperature.

the probability density per unit solid angle of Kf being at an
angle θ to Ki following a scattering event:

S(Ki, θ ) =
∫

d|Kf ||Kf |2S(Ki → Kf )

W (Ki )
. (5)

Note that the distribution of the azimuthal angle is constant
due to the cylindrical symmetry of the reference frame (as-
suming isotropy of the underlying material, as we do here);
therefore, only the dependence on the magnitude of the initial
wave vector, and the (polar) angle between the final and initial
wave vectors, need be considered.

The final state distributions at 100 and 300 K for both bare
band electrons and polarons are plotted in Fig. 3 as functions
of the polar angle θ and the initial kinetic energy, which is
used as the radial coordinate rather than the magnitude of
the initial wave vector in order to facilitate comparison. In
accordance with the total scattering rates plotted in Fig. 2,
the most strongly affected distribution is that of acoustic
phonon scattering, which is isotropic in the band electron
case but exhibits the expected suppression of large changes
in momentum in the polaron case. However, the impurity
and polar optical phonon distributions are already strongly
forward scattering for band electrons, so that the effects of
the suppression of large changes in momentum in the polaron
case are minor. Thus, although the concept of charge carriers
being protected from scattering does survive some scrutiny,
the effects appear to be non-negligible only in the case of
acoustic phonon scattering at low temperatures. Furthermore,
we expect their influence to be marginal in MAPbI3, since po-
lar optical phonons remain the dominant cause of scattering.

Finally, as the simplest example of a measurable quantity
that depends on scattering, we consider polaronic effects on
the mobility of charge carriers in MAPbI3, at temperatures in
the range of 50–500 K. The temperature dependence of the
mobility has been measured experimentally using a variety of
techniques, and despite a relatively large spread in absolute
values, a ∼T −1.5 dependence has been consistently observed
[50–53]. According to textbook semiconductor theory, a T −1.5
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FIG. 3. Probability densities, per unit solid angle, of particle
states after scattering in MAPbI3 at 100 K and 300 K, as a function of
the initial kinetic energy (in eV, radial coordinate) and the angle be-
tween the initial and final wave vectors (in radians, polar coordinate).
The distributions for bare band electrons (BE) and large electron
polarons (EP) are plotted on the left and right halves of each polar
plot. The contours delineate divisions of 50 meV. The probabilities
are calculated using the material parameters compiled in Table I and
the polaron mass M for the relevant temperature.

dependence is indicative of acoustic phonons being the dom-
inant cause of carrier scattering, but the values of mobility
around room temperature calculated under that assumption
are significantly greater than those observed [26,54]. On the
other hand, if polar optical phonon scattering is assumed to be
dominant, which is usually the case in polar semiconductors
such as MAPbI3, the calculated room temperature mobilities
are of the correct order of magnitude, but the temperature
dependence approaches T −0.5 in the high temperature limit.
The formation of large polarons has been proposed as one
possible explanation for this apparently anomalous behavior
[4,26,49].

We modelled polaron transport under the influence of
an electric field using an augmented form of Kadanoff’s
semiclassical Boltzmann transport equation [35,37]. For an
ensemble of electron polarons subject to a constant electric
field E in an otherwise homogeneous system (such as the
bulk of a semiconductor, as considered here), the Boltzmann

FIG. 4. Temperature dependent mobilities of bare band electrons
and large electron polarons in MAPbI3 (blue and red circles, respec-
tively), calculated from steady state solutions to Boltzmann transport
equations obtained using the ensemble Monte Carlo method, the ma-
terial parameters compiled in Table I, and the polaron mass M for the
relevant temperature. Experimental data from the literature are also
shown: squares from Ref. [50], diamonds from Ref. [51], upward
triangles from Ref. [52], and downward triangles from Ref. [53].
Lines between data points are plotted as guides to the eye only.
Dashed lines are fits to the theoretical data for temperatures above
200 K.

transport equation reads

∂ f

∂t
− e

h̄
E · ∂ f

∂K
=

(
∂ f

∂t

)
pop

+
(

∂ f

∂t

)
aco

+
(

∂ f

∂t

)
imp

, (6)

where f (K, t ) is the one-particle distribution function. The
three terms on the right hand side of Equation (6) represent
the change in the distribution function due to each of the
three scattering mechanisms considered above, namely polar
optical phonons (pop), acoustic phonons (aco), and ionized
impurities (imp); it is the final two of the three terms that
are additional to Kadanoff’s Boltzmann transport equation for
polarons [35].

Essentially exact steady state solutions to Eq. (6) were
obtained using the ensemble Monte Carlo method [38,55];
further details of the calculations can be found in the Supple-
mental Material [39]. The magnitude of the drift velocity vd

was then determined from the ensemble average wave vector
K, and the mobility μ calculated according to

|vd | = h̄
∣∣K∣∣
M

= μ|E|, (7)

where M is the (temperature dependent) polaron mass. Anal-
ogous calculations were also carried out for bare band
electrons, using the appropriate mass and scattering rates.

The calculated mobilities for large electron polarons and
bare band electrons are plotted in Fig. 4, along with data
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from several experimental studies of charge carrier mobility in
MAPbI3 for reference. For bare band electrons, fitting a power
law to the theoretical data points for temperatures above 200 K
recovers the expected T −0.50 dependence, with a value of
∼130 cm2 V−1 s−1 at room temperature. Turning to the data
for polarons, we see that the mobility at room temperature
is reduced by almost a factor of 2 to ∼70 cm2 V−1 s−1, but
more significantly, the temperature dependence of the mo-
bility extracted for values above 200 K gives T −0.18, which
is further removed from the experimentally observed ∼T −1.5

dependence.
Several other possible microscopic mechanisms have been

proposed as possible explanations for the observed tempera-
ture dependence of the mobility, namely (i) the enhancement
of acoustic phonon scattering and suppression of polar optical
phonon scattering due to Rashba splitting in the electronic
band structure [56], (ii) vibrational anharmonicity and non-
linear electron–phonon coupling [57], (iii) the presence of
multiple low energy optical phonon modes [58], and (iv)
microstructural disorder [59]. While our results indicate that
polaronic effects alone do not provide an explanation for the
apparently anomalous temperature dependence of carrier mo-
bilities in MAPbI3, that does not necessarily preclude their
playing a role in a quantitative theory of carrier dynamics
in LHPs in which one or more of the effects listed above,
or indeed, others which have not yet been considered, are
included.

In conclusion, we have presented an analysis of the effects
of large polaron formation in MAPbI3 on carrier scattering
and mobilities, by direct comparison of bare band electrons
with large electron polarons on an equal theoretical footing.
Our results show that, of the three mechanisms considered
here, scattering of polarons due to acoustic phonons is the
most significantly different from that of bare band carriers,

with the final state distribution exhibiting a striking change
from an isotropic to an anisotropic one upon polaronic ef-
fects being taken into account. In contrast, the rates and final
state distributions for scattering by polar optical phonons and
ionized impurities, both of which are significantly stronger
sources of scattering than acoustic phonons, are not signif-
icantly affected by polaron formation. We also found that
the polaron mobility exhibits a smaller negative exponent
for the temperature dependence than band electron mobility
(T −0.18 vs T −0.50) in the high temperature limit, which sug-
gests that other possible explanations should be considered
for the ∼T −1.5 dependence of carrier mobility in MAPbI3

observed in experiments. The results for holes in MAPbI3, and
electrons and holes in MAPbBr3 and CsPbI3, which are given
in the Supplemental Material [39], are qualitatively similar
and indicate that our conclusions apply generally to LHPs.

Finally, while our study provides evidence challenging the
growing consensus that polaronic effects play a central role in
understanding the optoelectronic properties of this important
class of material, quantitative investigations of other critical
aspects of charge-carrier dynamics, such as trapping and re-
combination, are required before a definitive conclusion as to
the overall significance of polaronic effects can be reached.
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